Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, (C7H7N2)4[Mo8O26], features centrosymmetric [Mo8O26]4− polyoxidomolybdate(VI) anions and benzimidazolium cations. The constituent MoO6 octa­hedra show typical distortions. These components are connected to each other by way of N—H...O hydrogen bonds, thereby forming a three-dimensional framework.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807030735/hb2458sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807030735/hb2458Isup2.hkl
Contains datablock I

CCDC reference: 654827

Key indicators

  • Single-crystal X-ray study
  • T = 291 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.017
  • wR factor = 0.041
  • Data-to-parameter ratio = 13.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 4 PLAT432_ALERT_2_C Short Inter X...Y Contact O1 .. C14 .. 2.93 Ang. PLAT432_ALERT_2_C Short Inter X...Y Contact O8 .. C14 .. 2.95 Ang.
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Mo1 (6) 5.93 PLAT794_ALERT_5_G Check Predicted Bond Valency for Mo2 (6) 5.76 PLAT794_ALERT_5_G Check Predicted Bond Valency for Mo3 (6) 5.94 PLAT794_ALERT_5_G Check Predicted Bond Valency for Mo4 (6) 5.93
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 4 ALERT type 5 Informative message, check

Comment top

Recently, much attention has focused on the intriguing structure of polyoxometalate (POM) clusters. To extend our recent work, where [Mo8O26]4- units are hydrogen bonded to organic cations forming three-dimensional networks (Liu et al., 2006), we obtained the title compound, (I), by using sodium molybadate and benzimidazole as the starting materials.

Compound (I) is composed of centrosymmetric [Mo8O26]4- anions and protonated benzimidazole cations as shown in Fig. 1. The [Mo8O26]4- anion is constructed from eight MoO6 units. The four unique Mo atoms exhibit distorted octahedral geometries, with the Mo—O distances in the expected range (Table 1). Bond-valence sum calculations (Brown & Altermatt, 1985) indicate oxidation states of 5.93–5.98 for Mo, in agreement with the expected value of 6. By way of N—H···O hydrogen bonds (Table 2) between the organic cations and the anions, a three-dimensional network is formed (Fig. 2).

Related literature top

For related structures, see: Liu et al. (2006). For background literature, see: Brown & Altermatt (1985).

Experimental top

NaMo4.2H2O (0.85 g 3.5 mmol) and benzimidazole (0.18 g 1.5 mmol) were dissolved in 10 ml water by vigorous stirring. 2 ml (1.5 M) HCl solution was added to the resulting suspension and stirred for 1 h. Then the suspension was sealed in a 20-ml Teflon-lined reactor with heating for 4 d at 438 K. After slowly cooling to room temperature over a period of 15 h, light yellow blocks of (I) were recovered.

Refinement top

The H atoms were positioned geometrically (C—H = 0.93 Å, N—H = 0.86 Å) and refined as ridimg with Uiso = 1.2Ueq(carrier).

Structure description top

Recently, much attention has focused on the intriguing structure of polyoxometalate (POM) clusters. To extend our recent work, where [Mo8O26]4- units are hydrogen bonded to organic cations forming three-dimensional networks (Liu et al., 2006), we obtained the title compound, (I), by using sodium molybadate and benzimidazole as the starting materials.

Compound (I) is composed of centrosymmetric [Mo8O26]4- anions and protonated benzimidazole cations as shown in Fig. 1. The [Mo8O26]4- anion is constructed from eight MoO6 units. The four unique Mo atoms exhibit distorted octahedral geometries, with the Mo—O distances in the expected range (Table 1). Bond-valence sum calculations (Brown & Altermatt, 1985) indicate oxidation states of 5.93–5.98 for Mo, in agreement with the expected value of 6. By way of N—H···O hydrogen bonds (Table 2) between the organic cations and the anions, a three-dimensional network is formed (Fig. 2).

For related structures, see: Liu et al. (2006). For background literature, see: Brown & Altermatt (1985).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. he molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level (H atoms omitted for clarity). Symmetry code: i) 1 - x, 1 - y, 1 - z.].
[Figure 2] Fig. 2. The packing diagram of (I) with dashed lines indicating the N···O contacts for the hydrogen bonds.
Tetrabenzimidazolium hexacosaoxidooctamolybdate top
Crystal data top
(C7H7N2)4[Mo8O26]Z = 1
Mr = 1660.10F(000) = 796
Triclinic, P1Dx = 2.567 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.229 (1) ÅCell parameters from 3244 reflections
b = 10.225 (1) Åθ = 1.7–26.8°
c = 11.966 (2) ŵ = 2.36 mm1
α = 84.510 (2)°T = 291 K
β = 83.261 (2)°Block, light yellow
γ = 73.667 (1)°0.24 × 0.17 × 0.12 mm
V = 1073.8 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4166 independent reflections
Radiation source: fine-focus sealed tube3739 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1111
Tmin = 0.630, Tmax = 0.750k = 1212
9089 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.017H-atom parameters constrained
wR(F2) = 0.041 w = 1/[σ2(Fo2) + (0.0164P)2 + 0.4475P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4166 reflectionsΔρmax = 0.36 e Å3
317 parametersΔρmin = 0.39 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00508 (19)
Crystal data top
(C7H7N2)4[Mo8O26]γ = 73.667 (1)°
Mr = 1660.10V = 1073.8 (2) Å3
Triclinic, P1Z = 1
a = 9.229 (1) ÅMo Kα radiation
b = 10.225 (1) ŵ = 2.36 mm1
c = 11.966 (2) ÅT = 291 K
α = 84.510 (2)°0.24 × 0.17 × 0.12 mm
β = 83.261 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4166 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3739 reflections with I > 2σ(I)
Tmin = 0.630, Tmax = 0.750Rint = 0.016
9089 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0170 restraints
wR(F2) = 0.041H-atom parameters constrained
S = 1.01Δρmax = 0.36 e Å3
4166 reflectionsΔρmin = 0.39 e Å3
317 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.59927 (2)0.532347 (18)0.263597 (15)0.02152 (6)
Mo20.62950 (2)0.795167 (18)0.385504 (16)0.02363 (6)
Mo30.323131 (19)0.507990 (17)0.449853 (15)0.01839 (6)
Mo40.351949 (19)0.767969 (17)0.572658 (15)0.02083 (6)
O10.19688 (17)0.61523 (16)0.36842 (13)0.0302 (4)
O20.24277 (16)0.37504 (15)0.49679 (13)0.0251 (3)
O30.47554 (16)0.41241 (14)0.33915 (12)0.0210 (3)
O40.46161 (18)0.63830 (16)0.18737 (13)0.0319 (4)
O50.71731 (18)0.42950 (16)0.16958 (13)0.0335 (4)
O60.71645 (16)0.65156 (15)0.28576 (13)0.0257 (3)
O70.49682 (19)0.89710 (17)0.30301 (14)0.0369 (4)
O80.76798 (19)0.87561 (17)0.38041 (15)0.0367 (4)
O90.48639 (15)0.62428 (14)0.43799 (12)0.0205 (3)
O100.51772 (16)0.83940 (14)0.52966 (13)0.0259 (3)
O110.21769 (18)0.86259 (16)0.48887 (15)0.0331 (4)
O120.27027 (15)0.60199 (14)0.59189 (12)0.0203 (3)
O130.29207 (18)0.82691 (15)0.70370 (13)0.0305 (4)
N10.0343 (2)0.2892 (2)0.33685 (17)0.0311 (4)
H10.05770.33010.35990.037*
N20.2501 (2)0.1370 (2)0.32224 (17)0.0361 (5)
H20.32040.06290.33430.043*
N30.0228 (2)0.9984 (2)0.21433 (16)0.0322 (5)
H30.11291.03900.24190.039*
N40.1923 (2)0.8467 (2)0.19049 (17)0.0361 (5)
H40.26420.77320.20010.043*
C10.3472 (4)0.3758 (4)0.0935 (2)0.0571 (9)
H1A0.42190.39120.03870.069*
C20.3790 (3)0.2587 (3)0.1625 (2)0.0467 (7)
H2A0.47340.19490.15680.056*
C30.2617 (3)0.2403 (2)0.2418 (2)0.0301 (5)
C40.1232 (3)0.3380 (2)0.2503 (2)0.0295 (5)
C50.0927 (3)0.4568 (3)0.1810 (2)0.0459 (7)
H50.00040.52250.18740.055*
C60.2088 (4)0.4715 (3)0.1025 (3)0.0578 (8)
H60.19310.54930.05330.069*
C70.1140 (3)0.1698 (3)0.3779 (2)0.0340 (5)
H70.07960.11680.43700.041*
C80.2702 (4)1.0854 (3)0.0449 (2)0.0535 (8)
H80.34051.10010.10360.064*
C90.1329 (4)1.1830 (3)0.0289 (2)0.0513 (8)
H90.11441.26180.07700.062*
C100.0226 (3)1.1684 (3)0.0553 (2)0.0405 (6)
H100.06961.23460.06570.049*
C110.0576 (3)1.0483 (2)0.12367 (19)0.0281 (5)
C120.1963 (3)0.9507 (2)0.1081 (2)0.0298 (5)
C130.3060 (3)0.9675 (3)0.0231 (2)0.0449 (7)
H130.39900.90230.01270.054*
C140.0600 (3)0.8788 (3)0.2520 (2)0.0368 (6)
H140.03010.82510.31250.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.02068 (10)0.01992 (10)0.02009 (10)0.00139 (7)0.00210 (7)0.00032 (7)
Mo20.02158 (10)0.01685 (10)0.02935 (11)0.00353 (7)0.00360 (8)0.00124 (7)
Mo30.01566 (9)0.01633 (10)0.02133 (10)0.00196 (7)0.00036 (7)0.00102 (7)
Mo40.01792 (10)0.01417 (10)0.02733 (11)0.00122 (7)0.00287 (7)0.00206 (7)
O10.0263 (8)0.0277 (9)0.0334 (9)0.0019 (7)0.0066 (7)0.0022 (7)
O20.0219 (8)0.0219 (8)0.0313 (9)0.0065 (6)0.0000 (6)0.0013 (6)
O30.0204 (7)0.0180 (7)0.0224 (8)0.0020 (6)0.0008 (6)0.0038 (6)
O40.0282 (8)0.0321 (9)0.0299 (9)0.0013 (7)0.0023 (7)0.0032 (7)
O50.0335 (9)0.0305 (9)0.0293 (9)0.0004 (7)0.0067 (7)0.0027 (7)
O60.0225 (8)0.0229 (8)0.0282 (8)0.0048 (6)0.0062 (6)0.0001 (6)
O70.0344 (9)0.0287 (9)0.0376 (10)0.0034 (7)0.0013 (8)0.0041 (7)
O80.0301 (9)0.0274 (9)0.0518 (11)0.0116 (7)0.0069 (8)0.0008 (8)
O90.0195 (7)0.0168 (7)0.0230 (8)0.0026 (6)0.0005 (6)0.0009 (6)
O100.0250 (8)0.0197 (8)0.0329 (9)0.0075 (6)0.0035 (6)0.0053 (6)
O110.0285 (9)0.0235 (8)0.0448 (10)0.0034 (7)0.0065 (7)0.0023 (7)
O120.0181 (7)0.0167 (7)0.0235 (8)0.0023 (6)0.0026 (6)0.0008 (6)
O130.0304 (8)0.0226 (8)0.0334 (9)0.0007 (7)0.0054 (7)0.0059 (7)
N10.0201 (9)0.0316 (11)0.0385 (12)0.0027 (8)0.0014 (8)0.0048 (9)
N20.0284 (11)0.0328 (11)0.0419 (13)0.0038 (9)0.0098 (9)0.0062 (9)
N30.0224 (10)0.0354 (11)0.0325 (11)0.0012 (8)0.0022 (8)0.0050 (9)
N40.0257 (10)0.0314 (11)0.0413 (12)0.0059 (9)0.0022 (9)0.0033 (9)
C10.063 (2)0.087 (2)0.0351 (16)0.047 (2)0.0136 (14)0.0132 (16)
C20.0305 (14)0.071 (2)0.0411 (16)0.0146 (14)0.0042 (12)0.0237 (15)
C30.0251 (12)0.0352 (13)0.0305 (13)0.0062 (10)0.0026 (10)0.0119 (10)
C40.0283 (12)0.0278 (12)0.0331 (13)0.0078 (10)0.0028 (10)0.0053 (10)
C50.0525 (17)0.0352 (15)0.0475 (17)0.0080 (13)0.0071 (14)0.0014 (12)
C60.080 (2)0.0532 (19)0.0459 (18)0.0311 (18)0.0052 (17)0.0080 (14)
C70.0297 (13)0.0355 (14)0.0367 (14)0.0080 (11)0.0056 (10)0.0012 (11)
C80.0538 (19)0.078 (2)0.0345 (16)0.0326 (17)0.0006 (14)0.0053 (15)
C90.071 (2)0.0465 (17)0.0429 (17)0.0272 (16)0.0195 (15)0.0151 (13)
C100.0483 (16)0.0296 (13)0.0423 (16)0.0039 (12)0.0174 (13)0.0002 (11)
C110.0267 (12)0.0267 (12)0.0288 (12)0.0019 (10)0.0053 (10)0.0044 (9)
C120.0253 (12)0.0310 (13)0.0308 (13)0.0035 (10)0.0019 (9)0.0042 (10)
C130.0311 (14)0.0618 (19)0.0375 (15)0.0079 (13)0.0073 (12)0.0097 (13)
C140.0311 (13)0.0394 (14)0.0342 (14)0.0040 (11)0.0008 (11)0.0051 (11)
Geometric parameters (Å, º) top
Mo1—O51.6890 (15)N2—C71.320 (3)
Mo1—O41.7113 (16)N2—C31.378 (3)
Mo1—O61.8964 (15)N2—H20.8600
Mo1—O31.9896 (14)N3—C141.316 (3)
Mo1—O12i2.3304 (14)N3—C111.381 (3)
Mo1—O92.3744 (14)N3—H30.8600
Mo2—O81.6961 (16)N4—C141.322 (3)
Mo2—O71.7115 (17)N4—C121.384 (3)
Mo2—O61.9164 (15)N4—H40.8600
Mo2—O101.9270 (15)C1—C21.368 (4)
Mo2—O2i2.2735 (15)C1—C61.374 (5)
Mo2—O92.4668 (14)C1—H1A0.9300
Mo3—O11.6890 (15)C2—C31.395 (3)
Mo3—O21.7426 (14)C2—H2A0.9300
Mo3—O31.9302 (14)C3—C41.383 (3)
Mo3—O121.9761 (14)C4—C51.383 (3)
Mo3—O92.1516 (14)C5—C61.371 (4)
Mo3—O9i2.3643 (14)C5—H50.9300
Mo4—O111.7054 (16)C6—H60.9300
Mo4—O131.7081 (16)C7—H70.9300
Mo4—O101.8737 (14)C8—C131.370 (4)
Mo4—O122.0262 (14)C8—C91.381 (4)
Mo4—O92.2920 (14)C8—H80.9300
Mo4—O3i2.3282 (14)C9—C101.375 (4)
O2—Mo2i2.2735 (15)C9—H90.9300
O3—Mo4i2.3282 (14)C10—C111.388 (3)
O9—Mo3i2.3643 (14)C10—H100.9300
O12—Mo1i2.3304 (14)C11—C121.389 (3)
N1—C71.318 (3)C12—C131.382 (3)
N1—C41.388 (3)C13—H130.9300
N1—H10.8600C14—H140.9300
O5—Mo1—O4105.31 (8)Mo4—O9—Mo3i97.32 (5)
O5—Mo1—O6101.08 (7)Mo3—O9—Mo190.98 (5)
O4—Mo1—O6101.29 (7)Mo4—O9—Mo1163.40 (7)
O5—Mo1—O3102.06 (7)Mo3i—O9—Mo196.91 (5)
O4—Mo1—O397.15 (7)Mo3—O9—Mo2164.34 (7)
O6—Mo1—O3145.27 (6)Mo4—O9—Mo286.20 (5)
O5—Mo1—O12i88.99 (7)Mo3i—O9—Mo291.36 (5)
O4—Mo1—O12i163.57 (6)Mo1—O9—Mo284.96 (4)
O6—Mo1—O12i83.44 (6)Mo4—O10—Mo2117.78 (8)
O3—Mo1—O12i71.47 (5)Mo3—O12—Mo4108.37 (6)
O5—Mo1—O9160.57 (7)Mo3—O12—Mo1i110.62 (6)
O4—Mo1—O993.95 (6)Mo4—O12—Mo1i103.56 (6)
O6—Mo1—O977.16 (5)C7—N1—C4108.8 (2)
O3—Mo1—O972.42 (5)C7—N1—H1125.6
O12i—Mo1—O971.58 (5)C4—N1—H1125.6
O8—Mo2—O7105.57 (8)C7—N2—C3109.2 (2)
O8—Mo2—O6102.83 (7)C7—N2—H2125.4
O7—Mo2—O698.70 (8)C3—N2—H2125.4
O8—Mo2—O10102.88 (8)C14—N3—C11109.3 (2)
O7—Mo2—O1097.41 (7)C14—N3—H3125.4
O6—Mo2—O10144.59 (6)C11—N3—H3125.4
O8—Mo2—O2i90.59 (7)C14—N4—C12109.0 (2)
O7—Mo2—O2i163.82 (7)C14—N4—H4125.5
O6—Mo2—O2i77.95 (6)C12—N4—H4125.5
O10—Mo2—O2i77.84 (6)C2—C1—C6122.2 (3)
O8—Mo2—O9160.08 (7)C2—C1—H1A118.9
O7—Mo2—O994.33 (7)C6—C1—H1A118.9
O6—Mo2—O974.51 (5)C1—C2—C3116.3 (3)
O10—Mo2—O973.00 (5)C1—C2—H2A121.9
O2i—Mo2—O969.50 (5)C3—C2—H2A121.9
O1—Mo3—O2105.03 (7)N2—C3—C4106.3 (2)
O1—Mo3—O3102.28 (7)N2—C3—C2132.9 (2)
O2—Mo3—O397.94 (6)C4—C3—C2120.9 (2)
O1—Mo3—O12100.13 (7)C5—C4—C3122.5 (2)
O2—Mo3—O1295.90 (6)C5—C4—N1131.4 (2)
O3—Mo3—O12149.52 (6)C3—C4—N1106.2 (2)
O1—Mo3—O998.18 (7)C6—C5—C4115.6 (3)
O2—Mo3—O9156.70 (6)C6—C5—H5122.2
O3—Mo3—O978.80 (6)C4—C5—H5122.2
O12—Mo3—O977.78 (5)C5—C6—C1122.6 (3)
O1—Mo3—O9i173.99 (6)C5—C6—H6118.7
O2—Mo3—O9i80.91 (6)C1—C6—H6118.7
O3—Mo3—O9i77.44 (6)N1—C7—N2109.5 (2)
O12—Mo3—O9i78.12 (5)N1—C7—H7125.2
O9—Mo3—O9i75.85 (6)N2—C7—H7125.2
O11—Mo4—O13104.73 (8)C13—C8—C9122.0 (3)
O11—Mo4—O10103.28 (7)C13—C8—H8119.0
O13—Mo4—O10102.11 (7)C9—C8—H8119.0
O11—Mo4—O1295.20 (7)C10—C9—C8122.5 (3)
O13—Mo4—O1298.38 (7)C10—C9—H9118.7
O10—Mo4—O12147.72 (6)C8—C9—H9118.7
O11—Mo4—O996.07 (7)C9—C10—C11115.7 (3)
O13—Mo4—O9158.39 (6)C9—C10—H10122.2
O10—Mo4—O978.28 (6)C11—C10—H10122.2
O12—Mo4—O973.59 (5)N3—C11—C10132.2 (2)
O11—Mo4—O3i163.43 (7)N3—C11—C12106.1 (2)
O13—Mo4—O3i86.70 (6)C10—C11—C12121.7 (2)
O10—Mo4—O3i85.57 (6)C13—C12—N4132.2 (2)
O12—Mo4—O3i70.93 (5)C13—C12—C11121.7 (2)
O9—Mo4—O3i71.74 (5)N4—C12—C11106.1 (2)
Mo3—O2—Mo2i118.22 (7)C8—C13—C12116.3 (3)
Mo3—O3—Mo1111.04 (7)C8—C13—H13121.8
Mo3—O3—Mo4i110.02 (6)C12—C13—H13121.8
Mo1—O3—Mo4i104.82 (6)N3—C14—N4109.6 (2)
Mo1—O6—Mo2118.12 (7)N3—C14—H14125.2
Mo3—O9—Mo493.78 (5)N4—C14—H14125.2
Mo3—O9—Mo3i104.15 (6)
O1—Mo3—O2—Mo2i178.62 (8)O5—Mo1—O9—Mo2101.4 (2)
O3—Mo3—O2—Mo2i76.32 (8)O4—Mo1—O9—Mo286.24 (6)
O12—Mo3—O2—Mo2i76.45 (8)O6—Mo1—O9—Mo214.45 (5)
O9—Mo3—O2—Mo2i3.8 (2)O3—Mo1—O9—Mo2177.50 (6)
O9i—Mo3—O2—Mo2i0.49 (7)O12i—Mo1—O9—Mo2101.73 (5)
O1—Mo3—O3—Mo173.20 (9)O8—Mo2—O9—Mo3174.9 (2)
O2—Mo3—O3—Mo1179.44 (7)O7—Mo2—O9—Mo37.9 (3)
O12—Mo3—O3—Mo163.25 (14)O6—Mo2—O9—Mo389.9 (3)
O9—Mo3—O3—Mo122.85 (7)O10—Mo2—O9—Mo3104.3 (3)
O9i—Mo3—O3—Mo1100.65 (7)O2i—Mo2—O9—Mo3172.6 (3)
O1—Mo3—O3—Mo4i171.21 (7)O8—Mo2—O9—Mo494.7 (2)
O2—Mo3—O3—Mo4i63.85 (8)O7—Mo2—O9—Mo482.57 (7)
O12—Mo3—O3—Mo4i52.35 (13)O6—Mo2—O9—Mo4179.59 (6)
O9—Mo3—O3—Mo4i92.74 (6)O10—Mo2—O9—Mo413.86 (6)
O9i—Mo3—O3—Mo4i14.94 (5)O2i—Mo2—O9—Mo496.92 (6)
O5—Mo1—O3—Mo3178.06 (7)O8—Mo2—O9—Mo3i2.6 (2)
O4—Mo1—O3—Mo370.67 (9)O7—Mo2—O9—Mo3i179.81 (6)
O6—Mo1—O3—Mo351.17 (13)O6—Mo2—O9—Mo3i82.35 (6)
O12i—Mo1—O3—Mo397.14 (7)O10—Mo2—O9—Mo3i83.38 (6)
O9—Mo1—O3—Mo321.23 (6)O2i—Mo2—O9—Mo3i0.32 (5)
O5—Mo1—O3—Mo4i63.17 (8)O8—Mo2—O9—Mo199.4 (2)
O4—Mo1—O3—Mo4i170.56 (7)O7—Mo2—O9—Mo183.37 (7)
O6—Mo1—O3—Mo4i67.60 (12)O6—Mo2—O9—Mo114.47 (5)
O12i—Mo1—O3—Mo4i21.63 (5)O10—Mo2—O9—Mo1179.80 (6)
O9—Mo1—O3—Mo4i97.54 (6)O2i—Mo2—O9—Mo197.14 (5)
O5—Mo1—O6—Mo2178.51 (8)O11—Mo4—O10—Mo273.22 (10)
O4—Mo1—O6—Mo270.24 (10)O13—Mo4—O10—Mo2178.25 (8)
O3—Mo1—O6—Mo250.49 (15)O12—Mo4—O10—Mo250.01 (16)
O12i—Mo1—O6—Mo293.82 (8)O9—Mo4—O10—Mo220.33 (8)
O9—Mo1—O6—Mo221.28 (8)O3i—Mo4—O10—Mo292.58 (8)
O8—Mo2—O6—Mo1179.67 (9)O8—Mo2—O10—Mo4179.12 (9)
O7—Mo2—O6—Mo171.42 (10)O7—Mo2—O10—Mo472.98 (10)
O10—Mo2—O6—Mo144.70 (16)O6—Mo2—O10—Mo443.50 (16)
O2i—Mo2—O6—Mo192.49 (8)O2i—Mo2—O10—Mo491.32 (9)
O9—Mo2—O6—Mo120.70 (7)O9—Mo2—O10—Mo419.30 (7)
O1—Mo3—O9—Mo480.78 (7)O1—Mo3—O12—Mo474.85 (8)
O2—Mo3—O9—Mo494.17 (15)O2—Mo3—O12—Mo4178.69 (7)
O3—Mo3—O9—Mo4178.23 (6)O3—Mo3—O12—Mo462.00 (13)
O12—Mo3—O9—Mo417.88 (5)O9—Mo3—O12—Mo421.42 (6)
O9i—Mo3—O9—Mo498.53 (6)O9i—Mo3—O12—Mo499.29 (7)
O1—Mo3—O9—Mo3i179.31 (7)O1—Mo3—O12—Mo1i172.27 (7)
O2—Mo3—O9—Mo3i4.35 (18)O2—Mo3—O12—Mo1i65.81 (7)
O3—Mo3—O9—Mo3i79.70 (6)O3—Mo3—O12—Mo1i50.88 (13)
O12—Mo3—O9—Mo3i80.65 (6)O9—Mo3—O12—Mo1i91.46 (6)
O9i—Mo3—O9—Mo3i0.0O9i—Mo3—O12—Mo1i13.59 (5)
O1—Mo3—O9—Mo183.31 (7)O11—Mo4—O12—Mo374.37 (8)
O2—Mo3—O9—Mo1101.73 (15)O13—Mo4—O12—Mo3179.88 (7)
O3—Mo3—O9—Mo117.68 (5)O10—Mo4—O12—Mo350.81 (14)
O12—Mo3—O9—Mo1178.03 (6)O9—Mo4—O12—Mo320.44 (6)
O9i—Mo3—O9—Mo197.38 (6)O3i—Mo4—O12—Mo396.34 (7)
O1—Mo3—O9—Mo28.6 (3)O11—Mo4—O12—Mo1i168.13 (7)
O2—Mo3—O9—Mo2176.4 (2)O13—Mo4—O12—Mo1i62.38 (7)
O3—Mo3—O9—Mo292.4 (3)O10—Mo4—O12—Mo1i66.70 (13)
O12—Mo3—O9—Mo2107.3 (3)O9—Mo4—O12—Mo1i97.06 (6)
O9i—Mo3—O9—Mo2172.1 (3)O3i—Mo4—O12—Mo1i21.17 (5)
O11—Mo4—O9—Mo375.88 (7)C6—C1—C2—C31.0 (4)
O13—Mo4—O9—Mo388.44 (18)C7—N2—C3—C40.9 (3)
O10—Mo4—O9—Mo3178.24 (6)C7—N2—C3—C2179.0 (3)
O12—Mo4—O9—Mo317.77 (5)C1—C2—C3—N2178.7 (3)
O3i—Mo4—O9—Mo392.60 (6)C1—C2—C3—C41.4 (4)
O11—Mo4—O9—Mo3i179.31 (6)N2—C3—C4—C5179.3 (2)
O13—Mo4—O9—Mo3i16.37 (19)C2—C3—C4—C50.7 (4)
O10—Mo4—O9—Mo3i76.96 (6)N2—C3—C4—N10.5 (2)
O12—Mo4—O9—Mo3i87.04 (6)C2—C3—C4—N1179.4 (2)
O3i—Mo4—O9—Mo3i12.20 (4)C7—N1—C4—C5179.8 (3)
O11—Mo4—O9—Mo130.5 (2)C7—N1—C4—C30.0 (3)
O13—Mo4—O9—Mo1165.2 (2)C3—C4—C5—C60.4 (4)
O10—Mo4—O9—Mo171.9 (2)N1—C4—C5—C6179.4 (3)
O12—Mo4—O9—Mo1124.1 (2)C4—C5—C6—C10.8 (5)
O3i—Mo4—O9—Mo1161.0 (2)C2—C1—C6—C50.1 (5)
O11—Mo4—O9—Mo288.42 (6)C4—N1—C7—N20.6 (3)
O13—Mo4—O9—Mo2107.26 (17)C3—N2—C7—N10.9 (3)
O10—Mo4—O9—Mo213.93 (6)C13—C8—C9—C100.6 (5)
O12—Mo4—O9—Mo2177.93 (6)C8—C9—C10—C110.2 (4)
O3i—Mo4—O9—Mo2103.09 (5)C14—N3—C11—C10179.7 (3)
O5—Mo1—O9—Mo393.8 (2)C14—N3—C11—C120.0 (3)
O4—Mo1—O9—Mo378.61 (7)C9—C10—C11—N3179.7 (3)
O6—Mo1—O9—Mo3179.31 (6)C9—C10—C11—C120.7 (4)
O3—Mo1—O9—Mo317.65 (5)C14—N4—C12—C13179.6 (3)
O12i—Mo1—O9—Mo393.42 (5)C14—N4—C12—C110.0 (3)
O5—Mo1—O9—Mo4159.5 (2)N3—C11—C12—C13179.7 (2)
O4—Mo1—O9—Mo428.1 (2)C10—C11—C12—C130.6 (4)
O6—Mo1—O9—Mo472.6 (2)N3—C11—C12—N40.0 (3)
O3—Mo1—O9—Mo4124.4 (2)C10—C11—C12—N4179.7 (2)
O12i—Mo1—O9—Mo4159.8 (2)C9—C8—C13—C120.7 (4)
O5—Mo1—O9—Mo3i10.6 (2)N4—C12—C13—C8179.5 (3)
O4—Mo1—O9—Mo3i177.01 (6)C11—C12—C13—C80.1 (4)
O6—Mo1—O9—Mo3i76.31 (6)C11—N3—C14—N40.0 (3)
O3—Mo1—O9—Mo3i86.73 (6)C12—N4—C14—N30.1 (3)
O12i—Mo1—O9—Mo3i10.96 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O12ii0.861.932.780 (2)172
N2—H2···O7iii0.862.022.846 (3)160
N3—H3···O13iv0.861.922.756 (2)164
N4—H4···O40.861.952.781 (3)162
Symmetry codes: (ii) x, y+1, z+1; (iii) x, y1, z; (iv) x, y+2, z+1.

Experimental details

Crystal data
Chemical formula(C7H7N2)4[Mo8O26]
Mr1660.10
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)9.229 (1), 10.225 (1), 11.966 (2)
α, β, γ (°)84.510 (2), 83.261 (2), 73.667 (1)
V3)1073.8 (2)
Z1
Radiation typeMo Kα
µ (mm1)2.36
Crystal size (mm)0.24 × 0.17 × 0.12
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.630, 0.750
No. of measured, independent and
observed [I > 2σ(I)] reflections
9089, 4166, 3739
Rint0.016
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.041, 1.01
No. of reflections4166
No. of parameters317
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.39

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SAINT, SHELXTL (Bruker, 1997), SHELXTL, DIAMOND (Brandenburg, 1999).

Selected bond lengths (Å) top
Mo1—O51.6890 (15)Mo3—O11.6890 (15)
Mo1—O41.7113 (16)Mo3—O21.7426 (14)
Mo1—O61.8964 (15)Mo3—O31.9302 (14)
Mo1—O31.9896 (14)Mo3—O121.9761 (14)
Mo1—O12i2.3304 (14)Mo3—O92.1516 (14)
Mo1—O92.3744 (14)Mo3—O9i2.3643 (14)
Mo2—O81.6961 (16)Mo4—O111.7054 (16)
Mo2—O71.7115 (17)Mo4—O131.7081 (16)
Mo2—O61.9164 (15)Mo4—O101.8737 (14)
Mo2—O101.9270 (15)Mo4—O122.0262 (14)
Mo2—O2i2.2735 (15)Mo4—O92.2920 (14)
Mo2—O92.4668 (14)Mo4—O3i2.3282 (14)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O12ii0.861.932.780 (2)172
N2—H2···O7iii0.862.022.846 (3)160
N3—H3···O13iv0.861.922.756 (2)164
N4—H4···O40.861.952.781 (3)162
Symmetry codes: (ii) x, y+1, z+1; (iii) x, y1, z; (iv) x, y+2, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds