Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title complex, [Ni(C7H3Cl2NO2S3)(C18H15P)2], a distorted cis-NiS2P2 square-planar configuration around the Ni atom occurs due to the steric effect of the bulky triphenyl­phosphine ligands and the bidendate chelation by the two S atoms of the dithio­carbimate ligand. The crystal packing is stabilized by weak Car—H...X (X = O and S) inter­molecular inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807029844/hb2442sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807029844/hb2442Isup2.hkl
Contains datablock I

CCDC reference: 652063

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.047
  • wR factor = 0.123
  • Data-to-parameter ratio = 19.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Ni - S2 .. 6.33 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Ni - P1 .. 6.36 su PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C6 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 1 C43 H33 Cl2 N Ni O2 P2 S3
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Ni (9) 2.93
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

We became interested in the syntheses and characterization of nickel(II) complexes with dithiocarbimates and phosphines due to their similarities with the dithiocarbimate compounds, which have shown catalytic activity, especially for oligomerization of olefins (Cavell et al., 1998; Foulds et al., 1994). As only the nickel complexes with general formulae Ni(RSO2N?CS2)(PPh3)2 (R = 2-CH3C6H4, 4-CH3C6H4 and 4-BrC6H4) have had their structures determined by X-ray diffraction techniques (Oliveira et al., 2002), the title compound (I) was prepared.

As shown in Fig. 1, the structure of (I) is composed of neutral Ni(2,5-Cl2C6H3SO2NCS2)(Ph3P)2 complex molecules. The NiII atom is coordinated by two sulfur atoms from the dithiocarbimate anion and by two phosphorus atoms of the triphenylphosphine ligands into a distorted square-planar geometry. The small S—Ni—S angle is determined by the geometry of the chelate ligand, while the opposite P—Ni—P angle is rather large, probably due to the steric effect of the large triphenylphosphine ligands (Table 1). The two Ni—S bond lenghts are not significantly different, although the two Ni—P distances are. The C—S [1.732 (3) and 1.722 (3) Å] bond lengths of the NCS2 fragment are nearly equal and are much shorter than typical C—S single bonds [ca 1.81 Å]. The C1?N bond distance of 1.303 (3)Å is shorter than normal single Csp2—Nsp2 bond length [ca 1.35 Å] and similar to that of the double bond C?N [1.275–1.300 Å] (Allen et al., 1987; Orpen et al., 1989). This behavior indicates that the electron density is delocalized over the entire NCS2 moiety. Similar behavior is observed for related nickel complexes (Oliveira et al., 2002; Oliveira et al., 2003; Franca et al., 2006). The repulsive interaction cis between the SO2(2,5-Cl2C6H3) group and the S1 atom, which are in greater position in relation to the C1—N bond, is responsible for the difference between the angles S1—C1—N [132.6 (2)°] and S2—C1—N [121.8 (2)°].

The torsion angle C1—N—S3—C2 describing the conformation of the ligands along the N—S3 bond is 85.1 (3)°. The Car—Car bond lengths of the triphenylphosphine aromatic rings involved in the intermolecular interactions are shorter than typical values described in the literature[1.372–1.388 Å] (Allen et al., 1987).

In the crystal structure of (I), the molecules are linked through C—H···O and C—H···S interactions (Table 2 and Fig. 2).

Related literature top

For related literature, see: Allen et al. (1987); Cavell et al. (1998); Foulds et al. (1994); Franca et al. (2006); Oliveira et al. (2002, 2003); Orpen et al. (1989); Bruno et al. (2002).

Experimental top

The potassium dithiocarbimate dihydrate was prepared according to Franca et al.,(2006). The title compound was prepared in 30:20 ml e thanol:water mixture from nickel chloride hexahydrate (1.0 mmol), triphenylphosphine (2.0 mmol) and potassium 2,5-dichlorophenylsulfonyldithiocarbimate dihydrate (1.0 mmol) analogously as described in the literature for similar compounds (Oliveira et al., 2002). Suitable crystals were obtained after slow evaporation of a solution of the compound in dichloromethane/ethanol (2:3 v/v). Elemental analysis: Found (calculated)%: C 56.77 (58.46), H 3.81 (3.76), N 1.54 (1.59) and Ni 6.79 (6.64). M.p. 175.0–176.5°C. IR (most important bands) (cm-1): 1449 ν(C?N); 1312 νass(SO2); 1153 νsym(SO2); 939 νass(CS2) and 370 ν(NiS).

Refinement top

All the H atoms were geometrically placed (C—H = 0.93 Å) and refined as riding with Uiso(H) = 1.2 Ueq(C).

Structure description top

We became interested in the syntheses and characterization of nickel(II) complexes with dithiocarbimates and phosphines due to their similarities with the dithiocarbimate compounds, which have shown catalytic activity, especially for oligomerization of olefins (Cavell et al., 1998; Foulds et al., 1994). As only the nickel complexes with general formulae Ni(RSO2N?CS2)(PPh3)2 (R = 2-CH3C6H4, 4-CH3C6H4 and 4-BrC6H4) have had their structures determined by X-ray diffraction techniques (Oliveira et al., 2002), the title compound (I) was prepared.

As shown in Fig. 1, the structure of (I) is composed of neutral Ni(2,5-Cl2C6H3SO2NCS2)(Ph3P)2 complex molecules. The NiII atom is coordinated by two sulfur atoms from the dithiocarbimate anion and by two phosphorus atoms of the triphenylphosphine ligands into a distorted square-planar geometry. The small S—Ni—S angle is determined by the geometry of the chelate ligand, while the opposite P—Ni—P angle is rather large, probably due to the steric effect of the large triphenylphosphine ligands (Table 1). The two Ni—S bond lenghts are not significantly different, although the two Ni—P distances are. The C—S [1.732 (3) and 1.722 (3) Å] bond lengths of the NCS2 fragment are nearly equal and are much shorter than typical C—S single bonds [ca 1.81 Å]. The C1?N bond distance of 1.303 (3)Å is shorter than normal single Csp2—Nsp2 bond length [ca 1.35 Å] and similar to that of the double bond C?N [1.275–1.300 Å] (Allen et al., 1987; Orpen et al., 1989). This behavior indicates that the electron density is delocalized over the entire NCS2 moiety. Similar behavior is observed for related nickel complexes (Oliveira et al., 2002; Oliveira et al., 2003; Franca et al., 2006). The repulsive interaction cis between the SO2(2,5-Cl2C6H3) group and the S1 atom, which are in greater position in relation to the C1—N bond, is responsible for the difference between the angles S1—C1—N [132.6 (2)°] and S2—C1—N [121.8 (2)°].

The torsion angle C1—N—S3—C2 describing the conformation of the ligands along the N—S3 bond is 85.1 (3)°. The Car—Car bond lengths of the triphenylphosphine aromatic rings involved in the intermolecular interactions are shorter than typical values described in the literature[1.372–1.388 Å] (Allen et al., 1987).

In the crystal structure of (I), the molecules are linked through C—H···O and C—H···S interactions (Table 2 and Fig. 2).

For related literature, see: Allen et al. (1987); Cavell et al. (1998); Foulds et al. (1994); Franca et al. (2006); Oliveira et al. (2002, 2003); Orpen et al. (1989); Bruno et al. (2002).

Computing details top

Data collection: COLLECT (Enraf–Nonius, 2000); cell refinement: SCALEPACK; data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. View of the C—H···S and C—H···O intermolecular interactions (broken lines) in (I).
[N-(2,5-Dichlorophenylsulfonyl)dithiocarbimato(2-)- κ2S,S']bis(triphenylphosphine-κP)nickel(II) top
Crystal data top
[Ni(C7H3Cl2NO2S3)(C18H15P)2]F(000) = 3632
Mr = 883.43Dx = 1.445 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 41144 reflections
a = 18.4654 (3) Åθ = 2.9–27.5°
b = 15.2416 (2) ŵ = 0.88 mm1
c = 28.8619 (5) ÅT = 293 K
V = 8123.0 (2) Å3Prism, brown
Z = 80.20 × 0.18 × 0.03 mm
Data collection top
Nonius KappaCCD
diffractometer
5597 reflections with I > 2σ(I)
CCD rotation images, thick slices scansRint = 0.063
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
θmax = 27.5°, θmin = 2.9°
Tmin = 0.844, Tmax = 0.974h = 2322
41274 measured reflectionsk = 1719
9277 independent reflectionsl = 2837
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0606P)2 + 0.6249P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.124(Δ/σ)max = 0.031
S = 1.02Δρmax = 0.44 e Å3
9277 reflectionsΔρmin = 0.38 e Å3
487 parameters
Crystal data top
[Ni(C7H3Cl2NO2S3)(C18H15P)2]V = 8123.0 (2) Å3
Mr = 883.43Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 18.4654 (3) ŵ = 0.88 mm1
b = 15.2416 (2) ÅT = 293 K
c = 28.8619 (5) Å0.20 × 0.18 × 0.03 mm
Data collection top
Nonius KappaCCD
diffractometer
9277 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
5597 reflections with I > 2σ(I)
Tmin = 0.844, Tmax = 0.974Rint = 0.063
41274 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.02Δρmax = 0.44 e Å3
9277 reflectionsΔρmin = 0.38 e Å3
487 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.108821 (19)0.29799 (2)0.164898 (11)0.03513 (11)
P20.17650 (4)0.20227 (5)0.12389 (2)0.03769 (18)
S10.05827 (4)0.38162 (5)0.21807 (2)0.04220 (19)
S20.16167 (5)0.25340 (5)0.22963 (2)0.0505 (2)
P10.04277 (4)0.36360 (5)0.11063 (2)0.03681 (18)
S30.07421 (5)0.41888 (6)0.33031 (3)0.0564 (2)
Cl10.23725 (6)0.44726 (8)0.37366 (4)0.0924 (3)
Cl20.09475 (9)0.74289 (9)0.25675 (7)0.1463 (6)
O20.07530 (15)0.39752 (17)0.37835 (7)0.0786 (8)
O10.00420 (13)0.43555 (16)0.31015 (8)0.0709 (7)
N0.12051 (14)0.34355 (16)0.30359 (8)0.0505 (7)
C260.26532 (16)0.24552 (17)0.10822 (9)0.0419 (7)
C370.26867 (18)0.0864 (2)0.17204 (10)0.0519 (8)
H370.30680.11610.1580.062*
C140.03409 (16)0.29937 (19)0.09022 (9)0.0416 (7)
C270.29528 (18)0.31181 (18)0.13457 (11)0.0505 (8)
H270.26860.33690.15850.061*
C10.11252 (16)0.33135 (18)0.25921 (9)0.0399 (7)
C150.03301 (18)0.2090 (2)0.09561 (11)0.0534 (8)
H150.0060.1820.11020.064*
C80.00162 (17)0.46596 (18)0.13038 (9)0.0411 (7)
C320.19791 (17)0.10864 (18)0.16150 (9)0.0416 (7)
C390.14815 (18)0.1978 (2)0.02842 (10)0.0517 (8)
H390.16750.25420.02810.062*
C380.14443 (16)0.15119 (18)0.07007 (9)0.0411 (7)
C90.06137 (17)0.4641 (2)0.15675 (10)0.0507 (8)
H90.0850.41110.16170.061*
C250.16342 (18)0.42726 (18)0.06566 (11)0.0519 (8)
H250.1830.42950.09530.062*
C430.11539 (18)0.06701 (19)0.06948 (10)0.0525 (8)
H430.11240.03490.09680.063*
C410.0948 (2)0.0775 (2)0.01238 (12)0.0689 (11)
H410.07820.05290.03990.083*
C360.2827 (2)0.0201 (2)0.20334 (12)0.0667 (10)
H360.33030.00570.21050.08*
C200.09327 (16)0.39802 (18)0.05934 (9)0.0417 (7)
C350.2269 (3)0.0250 (2)0.22402 (11)0.0677 (11)
H350.23670.06990.24490.081*
C210.06526 (19)0.3956 (2)0.01444 (10)0.0583 (9)
H210.0180.37670.00940.07*
C340.1570 (2)0.0035 (2)0.21386 (10)0.0603 (9)
H340.11920.03420.22760.072*
C330.14217 (19)0.06362 (19)0.18324 (10)0.0495 (8)
H330.09430.07880.17710.059*
C400.1235 (2)0.1611 (2)0.01208 (11)0.0641 (10)
H400.12610.19280.03950.077*
C30.1939 (2)0.5287 (2)0.34238 (12)0.0669 (10)
C290.40438 (19)0.3065 (2)0.09024 (13)0.0628 (9)
H290.45070.32750.0840.075*
C130.03587 (19)0.5454 (2)0.12431 (12)0.0593 (9)
H130.0780.54860.10680.071*
C120.0077 (3)0.6202 (2)0.14415 (15)0.0856 (13)
H120.03150.67340.14020.103*
C280.36505 (19)0.3412 (2)0.12564 (13)0.0606 (9)
H280.38510.3850.1440.073*
C310.30672 (18)0.2095 (2)0.07258 (11)0.0581 (9)
H310.28780.16430.05460.07*
C100.0891 (2)0.5400 (3)0.17565 (11)0.0621 (10)
H100.13180.53790.19270.075*
C240.2048 (2)0.4534 (2)0.02786 (15)0.0700 (10)
H240.25190.47340.03230.084*
C170.1492 (2)0.1978 (3)0.05903 (13)0.0802 (12)
H170.18760.16370.04840.096*
C190.09431 (18)0.3380 (2)0.06974 (11)0.0574 (9)
H190.09610.39860.06630.069*
C40.2293 (2)0.6077 (3)0.33782 (15)0.0851 (13)
H40.27380.61670.35230.102*
C20.12607 (18)0.5160 (2)0.32230 (11)0.0547 (8)
C420.0909 (2)0.0307 (2)0.02816 (11)0.0643 (10)
H420.07160.02570.0280.077*
C300.37536 (19)0.2404 (2)0.06382 (12)0.0656 (10)
H300.40230.21630.03980.079*
C220.1073 (3)0.4210 (3)0.02223 (12)0.0775 (12)
H220.08840.41850.05210.093*
C180.1515 (2)0.2872 (3)0.05452 (12)0.0764 (11)
H180.19170.31380.04110.092*
C70.0958 (2)0.5822 (3)0.29587 (12)0.0699 (10)
H70.0510.57410.28180.084*
C160.0905 (2)0.1588 (2)0.07918 (13)0.0722 (11)
H160.08890.09810.08190.087*
C50.1980 (3)0.6738 (3)0.31137 (17)0.0919 (14)
H50.22180.72720.30790.11*
C60.1327 (3)0.6609 (3)0.29047 (16)0.0864 (13)
C230.1763 (3)0.4497 (3)0.01572 (14)0.0790 (12)
H230.20410.46690.0410.095*
C110.0547 (3)0.6171 (3)0.16952 (14)0.0816 (12)
H110.07340.66820.18250.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0387 (2)0.0379 (2)0.02878 (18)0.00171 (16)0.00288 (15)0.00028 (14)
P20.0394 (4)0.0402 (4)0.0334 (4)0.0018 (3)0.0043 (3)0.0045 (3)
S10.0436 (5)0.0507 (4)0.0323 (4)0.0052 (4)0.0008 (3)0.0028 (3)
S20.0643 (6)0.0518 (5)0.0354 (4)0.0143 (4)0.0103 (4)0.0024 (3)
P10.0373 (4)0.0401 (4)0.0330 (4)0.0005 (3)0.0014 (3)0.0018 (3)
S30.0527 (5)0.0816 (6)0.0348 (4)0.0103 (4)0.0072 (4)0.0117 (4)
Cl10.0748 (7)0.1148 (9)0.0875 (7)0.0109 (6)0.0260 (6)0.0013 (6)
Cl20.1631 (15)0.0837 (9)0.1921 (15)0.0407 (9)0.0270 (12)0.0282 (10)
O20.0895 (19)0.116 (2)0.0306 (11)0.0289 (17)0.0115 (12)0.0063 (12)
O10.0446 (15)0.1049 (19)0.0631 (14)0.0028 (13)0.0065 (12)0.0231 (14)
N0.0566 (17)0.0619 (16)0.0329 (13)0.0060 (14)0.0042 (12)0.0008 (12)
C260.0423 (18)0.0439 (16)0.0394 (15)0.0005 (14)0.0034 (14)0.0007 (13)
C370.051 (2)0.0528 (18)0.0520 (18)0.0115 (16)0.0086 (16)0.0057 (15)
C140.0406 (18)0.0492 (17)0.0351 (14)0.0010 (14)0.0006 (13)0.0009 (13)
C270.051 (2)0.0460 (17)0.0545 (19)0.0027 (16)0.0006 (15)0.0080 (15)
C10.0403 (17)0.0435 (15)0.0357 (15)0.0092 (13)0.0023 (12)0.0006 (13)
C150.053 (2)0.0528 (19)0.0541 (19)0.0094 (16)0.0067 (16)0.0001 (15)
C80.0439 (18)0.0463 (16)0.0331 (14)0.0062 (15)0.0044 (13)0.0025 (12)
C320.050 (2)0.0405 (15)0.0348 (15)0.0060 (15)0.0064 (13)0.0075 (13)
C390.064 (2)0.0492 (18)0.0423 (17)0.0053 (16)0.0049 (16)0.0046 (14)
C380.0388 (17)0.0446 (17)0.0399 (16)0.0074 (14)0.0059 (13)0.0060 (13)
C90.046 (2)0.060 (2)0.0462 (18)0.0042 (16)0.0019 (15)0.0051 (15)
C250.054 (2)0.0465 (17)0.0556 (19)0.0008 (16)0.0089 (16)0.0033 (15)
C430.062 (2)0.0534 (19)0.0424 (17)0.0034 (16)0.0089 (15)0.0024 (15)
C410.087 (3)0.073 (2)0.046 (2)0.005 (2)0.0177 (19)0.0136 (18)
C360.072 (3)0.061 (2)0.067 (2)0.025 (2)0.023 (2)0.0069 (19)
C200.0435 (19)0.0435 (16)0.0380 (15)0.0059 (14)0.0032 (13)0.0049 (13)
C350.104 (3)0.0481 (19)0.051 (2)0.021 (2)0.022 (2)0.0010 (16)
C210.058 (2)0.076 (2)0.0411 (17)0.0096 (19)0.0001 (15)0.0096 (16)
C340.092 (3)0.0468 (18)0.0424 (17)0.0018 (19)0.0033 (18)0.0024 (15)
C330.053 (2)0.0535 (18)0.0419 (16)0.0006 (16)0.0078 (15)0.0048 (15)
C400.086 (3)0.064 (2)0.0420 (18)0.002 (2)0.0125 (17)0.0024 (16)
C30.058 (2)0.078 (2)0.065 (2)0.004 (2)0.0110 (18)0.0194 (19)
C290.047 (2)0.073 (2)0.069 (2)0.0107 (18)0.0001 (18)0.0132 (19)
C130.058 (2)0.0492 (19)0.071 (2)0.0044 (17)0.0144 (18)0.0059 (17)
C120.101 (3)0.046 (2)0.110 (3)0.006 (2)0.029 (3)0.016 (2)
C280.054 (2)0.0497 (19)0.078 (2)0.0084 (17)0.0094 (19)0.0071 (18)
C310.049 (2)0.073 (2)0.0522 (19)0.0042 (18)0.0030 (16)0.0184 (17)
C100.058 (2)0.079 (3)0.0494 (19)0.024 (2)0.0110 (17)0.0016 (18)
C240.055 (2)0.060 (2)0.095 (3)0.0007 (18)0.025 (2)0.013 (2)
C170.071 (3)0.108 (3)0.061 (2)0.042 (3)0.005 (2)0.007 (2)
C190.056 (2)0.063 (2)0.0533 (19)0.0029 (18)0.0134 (16)0.0000 (16)
C40.064 (3)0.087 (3)0.105 (3)0.010 (3)0.025 (2)0.028 (3)
C20.049 (2)0.066 (2)0.0495 (18)0.0003 (17)0.0147 (16)0.0180 (17)
C420.083 (3)0.056 (2)0.053 (2)0.0124 (19)0.0149 (18)0.0098 (17)
C300.047 (2)0.096 (3)0.054 (2)0.000 (2)0.0100 (16)0.009 (2)
C220.095 (3)0.094 (3)0.044 (2)0.021 (3)0.013 (2)0.0176 (19)
C180.057 (3)0.115 (3)0.057 (2)0.015 (2)0.0179 (18)0.000 (2)
C70.066 (3)0.081 (3)0.063 (2)0.012 (2)0.0185 (19)0.010 (2)
C160.081 (3)0.064 (2)0.071 (2)0.033 (2)0.011 (2)0.0080 (19)
C50.084 (4)0.076 (3)0.116 (4)0.010 (3)0.047 (3)0.022 (3)
C60.095 (4)0.064 (3)0.100 (3)0.017 (3)0.039 (3)0.004 (2)
C230.082 (3)0.086 (3)0.069 (3)0.016 (2)0.031 (2)0.028 (2)
C110.100 (3)0.060 (2)0.085 (3)0.025 (2)0.019 (2)0.013 (2)
Geometric parameters (Å, º) top
Ni—S12.2027 (8)C36—C351.374 (5)
Ni—S22.2147 (8)C36—H360.93
Ni—P12.2227 (8)C20—C211.396 (4)
Ni—P22.2564 (8)C35—C341.363 (5)
P2—C261.824 (3)C35—H350.93
P2—C381.836 (3)C21—C221.369 (5)
P2—C321.836 (3)C21—H210.93
S1—C11.732 (3)C34—C331.379 (4)
S2—C11.722 (3)C34—H340.93
P1—C141.822 (3)C33—H330.93
P1—C81.827 (3)C40—H400.93
P1—C201.827 (3)C3—C41.376 (5)
S3—O21.425 (2)C3—C21.394 (5)
S3—O11.440 (3)C29—C281.360 (5)
S3—N1.626 (3)C29—C301.373 (5)
S3—C21.779 (3)C29—H290.93
Cl1—C31.731 (4)C13—C121.377 (5)
Cl2—C61.732 (5)C13—H130.93
N—C11.303 (3)C12—C111.366 (6)
C26—C271.380 (4)C12—H120.93
C26—C311.394 (4)C28—H280.93
C37—C361.380 (4)C31—C301.376 (5)
C37—C321.384 (4)C31—H310.93
C37—H370.93C10—C111.348 (5)
C14—C151.386 (4)C10—H100.93
C14—C191.390 (4)C24—C231.365 (5)
C27—C281.388 (5)C24—H240.93
C27—H270.93C17—C161.367 (6)
C15—C161.391 (5)C17—C181.369 (5)
C15—H150.93C17—H170.93
C8—C131.378 (4)C19—C181.381 (5)
C8—C91.390 (4)C19—H190.93
C32—C331.387 (4)C4—C51.391 (6)
C39—C401.374 (4)C4—H40.93
C39—C381.398 (4)C2—C71.382 (5)
C39—H390.93C42—H420.93
C38—C431.391 (4)C30—H300.93
C9—C101.377 (4)C22—C231.360 (6)
C9—H90.93C22—H220.93
C25—C201.382 (4)C18—H180.93
C25—C241.390 (4)C7—C61.387 (5)
C25—H250.93C7—H70.93
C43—C421.390 (4)C16—H160.93
C43—H430.93C5—C61.363 (6)
C41—C421.372 (5)C5—H50.93
C41—C401.380 (5)C23—H230.93
C41—H410.93C11—H110.93
S1—Ni—S277.09 (3)C22—C21—C20120.0 (4)
S1—Ni—P189.89 (3)C22—C21—H21120
S2—Ni—P1166.98 (3)C20—C21—H21120
S1—Ni—P2167.01 (3)C35—C34—C33120.3 (4)
S2—Ni—P290.00 (3)C35—C34—H34119.9
P1—Ni—P2103.02 (3)C33—C34—H34119.9
C26—P2—C38103.50 (13)C34—C33—C32120.6 (3)
C26—P2—C32103.53 (14)C34—C33—H33119.7
C38—P2—C32103.90 (12)C32—C33—H33119.7
C26—P2—Ni113.22 (9)C39—C40—C41120.6 (3)
C38—P2—Ni122.64 (10)C39—C40—H40119.7
C32—P2—Ni108.16 (9)C41—C40—H40119.7
C1—S1—Ni88.66 (10)C4—C3—C2120.6 (4)
C1—S2—Ni88.53 (10)C4—C3—Cl1117.2 (3)
C14—P1—C8103.64 (14)C2—C3—Cl1122.2 (3)
C14—P1—C20106.85 (13)C28—C29—C30119.6 (3)
C8—P1—C20102.70 (13)C28—C29—H29120.2
C14—P1—Ni114.43 (9)C30—C29—H29120.2
C8—P1—Ni113.12 (9)C12—C13—C8120.1 (3)
C20—P1—Ni114.85 (10)C12—C13—H13120
O2—S3—O1116.51 (15)C8—C13—H13120
O2—S3—N107.03 (15)C11—C12—C13120.9 (4)
O1—S3—N113.89 (13)C11—C12—H12119.6
O2—S3—C2108.00 (15)C13—C12—H12119.6
O1—S3—C2106.50 (16)C29—C28—C27120.6 (3)
N—S3—C2104.08 (14)C29—C28—H28119.7
C1—N—S3120.5 (2)C27—C28—H28119.7
C27—C26—C31118.4 (3)C30—C31—C26120.4 (3)
C27—C26—P2119.2 (2)C30—C31—H31119.8
C31—C26—P2122.2 (2)C26—C31—H31119.8
C36—C37—C32120.0 (3)C11—C10—C9120.4 (3)
C36—C37—H37120C11—C10—H10119.8
C32—C37—H37120C9—C10—H10119.8
C15—C14—C19118.7 (3)C23—C24—C25119.9 (4)
C15—C14—P1119.1 (2)C23—C24—H24120
C19—C14—P1122.2 (2)C25—C24—H24120
C26—C27—C28120.4 (3)C16—C17—C18119.8 (4)
C26—C27—H27119.8C16—C17—H17120.1
C28—C27—H27119.8C18—C17—H17120.1
N—C1—S2121.8 (2)C18—C19—C14120.6 (3)
N—C1—S1132.6 (2)C18—C19—H19119.7
S2—C1—S1105.68 (15)C14—C19—H19119.7
C14—C15—C16119.8 (3)C3—C4—C5119.3 (4)
C14—C15—H15120.1C3—C4—H4120.4
C16—C15—H15120.1C5—C4—H4120.4
C13—C8—C9118.1 (3)C7—C2—C3119.4 (3)
C13—C8—P1121.4 (2)C7—C2—S3117.5 (3)
C9—C8—P1120.1 (2)C3—C2—S3123.1 (3)
C37—C32—C33118.7 (3)C41—C42—C43120.5 (3)
C37—C32—P2121.6 (2)C41—C42—H42119.7
C33—C32—P2119.5 (2)C43—C42—H42119.7
C40—C39—C38120.5 (3)C29—C30—C31120.6 (3)
C40—C39—H39119.8C29—C30—H30119.7
C38—C39—H39119.7C31—C30—H30119.7
C43—C38—C39118.5 (3)C23—C22—C21121.0 (4)
C43—C38—P2121.7 (2)C23—C22—H22119.5
C39—C38—P2119.7 (2)C21—C22—H22119.5
C10—C9—C8120.7 (3)C17—C18—C19120.3 (4)
C10—C9—H9119.6C17—C18—H18119.9
C8—C9—H9119.6C19—C18—H18119.9
C20—C25—C24120.3 (3)C2—C7—C6119.6 (4)
C20—C25—H25119.9C2—C7—H7120.2
C24—C25—H25119.9C6—C7—H7120.2
C42—C43—C38120.2 (3)C17—C16—C15120.8 (3)
C42—C43—H43119.9C17—C16—H16119.6
C38—C43—H43119.9C15—C16—H16119.6
C42—C41—C40119.6 (3)C6—C5—C4120.4 (4)
C42—C41—H41120.2C6—C5—H5119.8
C40—C41—H41120.2C4—C5—H5119.8
C35—C36—C37120.6 (3)C5—C6—C7120.6 (4)
C35—C36—H36119.7C5—C6—Cl2120.1 (4)
C37—C36—H36119.7C7—C6—Cl2119.2 (4)
C25—C20—C21118.6 (3)C22—C23—C24120.1 (4)
C25—C20—P1117.7 (2)C22—C23—H23119.9
C21—C20—P1123.7 (2)C24—C23—H23119.9
C34—C35—C36119.8 (3)C10—C11—C12119.8 (3)
C34—C35—H35120.1C10—C11—H11120.1
C36—C35—H35120.1C12—C11—H11120.1
S1—Ni—P2—C2678.94 (17)C26—P2—C38—C3948.7 (3)
S2—Ni—P2—C2685.25 (10)C32—P2—C38—C39156.6 (2)
P1—Ni—P2—C2694.30 (10)Ni—P2—C38—C3980.7 (3)
S1—Ni—P2—C38155.86 (16)C13—C8—C9—C100.9 (4)
S2—Ni—P2—C38149.54 (12)P1—C8—C9—C10173.6 (2)
P1—Ni—P2—C3830.90 (12)C39—C38—C43—C420.1 (5)
S1—Ni—P2—C3235.17 (19)P2—C38—C43—C42179.3 (3)
S2—Ni—P2—C3228.86 (11)C32—C37—C36—C350.6 (5)
P1—Ni—P2—C32151.58 (10)C24—C25—C20—C210.1 (4)
S2—Ni—S1—C11.55 (9)C24—C25—C20—P1179.3 (2)
P1—Ni—S1—C1178.34 (9)C14—P1—C20—C25163.2 (2)
P2—Ni—S1—C14.93 (18)C8—P1—C20—C2588.1 (2)
S1—Ni—S2—C11.56 (10)Ni—P1—C20—C2535.1 (3)
P1—Ni—S2—C11.09 (19)C14—P1—C20—C2116.1 (3)
P2—Ni—S2—C1176.99 (10)C8—P1—C20—C2192.6 (3)
S1—Ni—P1—C14103.14 (10)Ni—P1—C20—C21144.2 (2)
S2—Ni—P1—C14103.59 (18)C37—C36—C35—C340.6 (5)
P2—Ni—P1—C1478.38 (10)C25—C20—C21—C220.6 (5)
S1—Ni—P1—C815.26 (11)P1—C20—C21—C22178.7 (3)
S2—Ni—P1—C814.8 (2)C36—C35—C34—C330.5 (5)
P2—Ni—P1—C8163.23 (11)C35—C34—C33—C321.6 (4)
S1—Ni—P1—C20132.72 (10)C37—C32—C33—C341.6 (4)
S2—Ni—P1—C20132.27 (17)P2—C32—C33—C34176.0 (2)
P2—Ni—P1—C2045.76 (11)C38—C39—C40—C410.2 (5)
O2—S3—N—C1160.7 (2)C42—C41—C40—C390.1 (6)
O1—S3—N—C130.4 (3)C9—C8—C13—C120.1 (5)
C2—S3—N—C185.1 (3)P1—C8—C13—C12172.5 (3)
C38—P2—C26—C27159.0 (2)C8—C13—C12—C110.9 (6)
C32—P2—C26—C2792.9 (2)C30—C29—C28—C271.5 (5)
Ni—P2—C26—C2724.0 (3)C26—C27—C28—C291.4 (5)
C38—P2—C26—C3126.1 (3)C27—C26—C31—C300.8 (5)
C32—P2—C26—C3182.1 (3)P2—C26—C31—C30175.8 (3)
Ni—P2—C26—C31161.0 (2)C8—C9—C10—C111.2 (5)
C8—P1—C14—C15146.1 (2)C20—C25—C24—C230.4 (5)
C20—P1—C14—C15105.8 (2)C15—C14—C19—C180.8 (5)
Ni—P1—C14—C1522.5 (3)P1—C14—C19—C18179.8 (3)
C8—P1—C14—C1933.3 (3)C2—C3—C4—C52.5 (6)
C20—P1—C14—C1974.8 (3)Cl1—C3—C4—C5177.4 (3)
Ni—P1—C14—C19156.9 (2)C4—C3—C2—C72.9 (5)
C31—C26—C27—C280.2 (4)Cl1—C3—C2—C7176.9 (2)
P2—C26—C27—C28175.0 (2)C4—C3—C2—S3175.2 (3)
S3—N—C1—S2178.96 (15)Cl1—C3—C2—S35.0 (4)
S3—N—C1—S10.3 (4)O2—S3—C2—C7132.2 (3)
Ni—S2—C1—N177.4 (2)O1—S3—C2—C76.4 (3)
Ni—S2—C1—S12.01 (12)N—S3—C2—C7114.3 (2)
Ni—S1—C1—N177.3 (3)O2—S3—C2—C345.9 (3)
Ni—S1—C1—S22.02 (12)O1—S3—C2—C3171.8 (3)
C19—C14—C15—C162.2 (5)N—S3—C2—C367.6 (3)
P1—C14—C15—C16178.4 (2)C40—C41—C42—C430.1 (6)
C14—P1—C8—C13143.4 (3)C38—C43—C42—C410.2 (5)
C20—P1—C8—C1332.3 (3)C28—C29—C30—C310.6 (5)
Ni—P1—C8—C1392.1 (2)C26—C31—C30—C290.6 (5)
C14—P1—C8—C944.1 (3)C20—C21—C22—C230.7 (6)
C20—P1—C8—C9155.2 (2)C16—C17—C18—C190.8 (6)
Ni—P1—C8—C980.4 (2)C14—C19—C18—C170.6 (6)
C36—C37—C32—C330.5 (4)C3—C2—C7—C61.3 (5)
C36—C37—C32—P2174.8 (2)S3—C2—C7—C6176.9 (3)
C26—P2—C32—C370.5 (3)C18—C17—C16—C150.6 (6)
C38—P2—C32—C37108.4 (2)C14—C15—C16—C172.1 (5)
Ni—P2—C32—C37119.9 (2)C3—C4—C5—C60.5 (6)
C26—P2—C32—C33174.7 (2)C4—C5—C6—C71.1 (6)
C38—P2—C32—C3377.4 (2)C4—C5—C6—Cl2178.8 (3)
Ni—P2—C32—C3354.4 (2)C2—C7—C6—C50.7 (6)
C40—C39—C38—C430.1 (5)C2—C7—C6—Cl2179.3 (3)
C40—C39—C38—P2179.1 (3)C21—C22—C23—C240.2 (6)
C26—P2—C38—C43132.1 (3)C25—C24—C23—C220.3 (6)
C32—P2—C38—C4324.2 (3)C9—C10—C11—C120.4 (6)
Ni—P2—C38—C4398.5 (2)C13—C12—C11—C100.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C36—H36···S1i0.932.83.641 (3)151
C34—H34···O1ii0.932.573.194 (5)125
C41—H41···O2iii0.932.483.197 (4)134
Symmetry codes: (i) x1/2, y1/2, z; (ii) x, y1/2, z+1/2; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ni(C7H3Cl2NO2S3)(C18H15P)2]
Mr883.43
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)18.4654 (3), 15.2416 (2), 28.8619 (5)
V3)8123.0 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.20 × 0.18 × 0.03
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.844, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
41274, 9277, 5597
Rint0.063
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.124, 1.02
No. of reflections9277
No. of parameters487
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.38

Computer programs: COLLECT (Enraf–Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Ni—S12.2027 (8)Ni—P12.2227 (8)
Ni—S22.2147 (8)Ni—P22.2564 (8)
S1—Ni—S277.09 (3)S2—Ni—P290.00 (3)
S1—Ni—P189.89 (3)P1—Ni—P2103.02 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C36—H36···S1i0.932.83.641 (3)151
C34—H34···O1ii0.932.573.194 (5)125
C41—H41···O2iii0.932.483.197 (4)134
Symmetry codes: (i) x1/2, y1/2, z; (ii) x, y1/2, z+1/2; (iii) x, y+1/2, z1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds