Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [Cu(C8H4O4)(C14H8N4)(H2O)]·C4H9NO·H2O, the CuII atom is five-coordinated by three O atoms from two benzene-1,3-dicarboxyl­ate (1,3-bdc) ligands and one water mol­ecule, and two N atoms from one chelating pyrazino[2,3-f][1,10]phenanthroline (L) ligand in a distorted square-pyramidal geometry. The CuII atoms are bridged by the 1,3-bdc ligands to form a one-dimensional helical chain structure. A network of O—H...O hydrogen bonds completes the structure. There are two half-mol­ecules of 1,3-bdc in the asymmetric unit; both complete mol­ecules are generated by twofold rotation symmetry, with two C atoms lying on the rotation axis in each case.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807023082/hb2408sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807023082/hb2408Isup2.hkl
Contains datablock I

CCDC reference: 650689

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.068
  • wR factor = 0.184
  • Data-to-parameter ratio = 15.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.52 PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.68 Ratio PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 7 PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 4
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.11 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 7
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Recently, helical structures have received intense interest in coordination chemistry (Cai et al., 2006). It is well known that a bidentate organic acid ligand may be useful in the formation of helical chains in the presence of 2,2'-bipyridine (bipy) or 1,10-phenanthroline (phen). The N atoms from the bipy or phen ligand may occupy two coordination positions of central metals (Ren & Zhao, 2006). The additional coordination positions are available for the bidentate carboxylate ligands, leading to the formation of a helix (Yang et al., 2005).

We therefore selected benzene-1,3-dicarboxylic acid (1,3-bdcH2) as a bridging ligand and pyrazino[2,3-f][1,10]phenanthroline (L) as a secondary ligand, forming a the title compound, (I), a new helical Cu(II) coordination polymer, [Cu(1,3-bdc)(L)(H2O].DMA.H2O (DMA = N,N-dimethylacetamide), which is reported here.

Selected bond lengths and angles for (I) are given in Table 1. In (I) each CuII atom is five-coordinated by three O atoms from two monodentate 1,3-bdc ligands and one water molecule, and two N atoms from one chelating L ligand in a distorted square-pyramidal coordination sphere (Fig. 1). Two carboxylate O atoms (O2, O3) and two N atoms (N1, N2) form the equatorial plane, whereas the water molecule occupies the axial position with Cu1—O1w distance of 2.324 (4) Å.

The 1,3-bdc ligands linked the CuII atoms to form a one-dimensional helical chain structure (Fig. 2). The helical chain is decorated with L ligands, alternately at each side. Finally, O—H···O H-bonds complete the structure of (I) (Table 2).

Related literature top

One related helical coordination polymer, [Cu(1,4-bdc)(L)(H2O)], where 1,4-bdc is the benzene-1,4-dicarboxylate dianion, has been reported. In this compound, the CuII atom is five-coordinated and exhibits a distorted square-pyramidal coordination environment. The CuII atoms are bridged by the 1,4-bdc ligands to form a one-dimensional helical chain structure (Zhang et al., 2007).

For related literature, see: Cai et al. (2006); Dickeson & Summers (1970); Ren & Zhao (2006); Yang et al. (2005).

Experimental top

The L ligand was synthesized according to the literature method (Dickeson & Summers, 1970). A N,N-dimethylacetamide solution (15 ml) of L (121 mg, 0.5 mmol) was mixed with an aqueous solution (6 ml) of ClCl2.2H2O (86 mg, 0.5 mmol) with stirring at 385 K. Then the 1,3-bdcH2 was added to the mixture with stirring. The resulting solution was filtered, the filtrate was allowed to stand in air at room temperature for two weeks, and blue crystals of (I) were obtained (yield 29% based on Cu).

Refinement top

All H atoms on C atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding, with Uiso(H)=1.2Ueq(carrier). The water H-atoms were located in a difference Fourier map, and were refined with distance restraints of O–H = 0.85 (1) Å; Uiso was allowed to refine freely.

Structure description top

Recently, helical structures have received intense interest in coordination chemistry (Cai et al., 2006). It is well known that a bidentate organic acid ligand may be useful in the formation of helical chains in the presence of 2,2'-bipyridine (bipy) or 1,10-phenanthroline (phen). The N atoms from the bipy or phen ligand may occupy two coordination positions of central metals (Ren & Zhao, 2006). The additional coordination positions are available for the bidentate carboxylate ligands, leading to the formation of a helix (Yang et al., 2005).

We therefore selected benzene-1,3-dicarboxylic acid (1,3-bdcH2) as a bridging ligand and pyrazino[2,3-f][1,10]phenanthroline (L) as a secondary ligand, forming a the title compound, (I), a new helical Cu(II) coordination polymer, [Cu(1,3-bdc)(L)(H2O].DMA.H2O (DMA = N,N-dimethylacetamide), which is reported here.

Selected bond lengths and angles for (I) are given in Table 1. In (I) each CuII atom is five-coordinated by three O atoms from two monodentate 1,3-bdc ligands and one water molecule, and two N atoms from one chelating L ligand in a distorted square-pyramidal coordination sphere (Fig. 1). Two carboxylate O atoms (O2, O3) and two N atoms (N1, N2) form the equatorial plane, whereas the water molecule occupies the axial position with Cu1—O1w distance of 2.324 (4) Å.

The 1,3-bdc ligands linked the CuII atoms to form a one-dimensional helical chain structure (Fig. 2). The helical chain is decorated with L ligands, alternately at each side. Finally, O—H···O H-bonds complete the structure of (I) (Table 2).

One related helical coordination polymer, [Cu(1,4-bdc)(L)(H2O)], where 1,4-bdc is the benzene-1,4-dicarboxylate dianion, has been reported. In this compound, the CuII atom is five-coordinated and exhibits a distorted square-pyramidal coordination environment. The CuII atoms are bridged by the 1,4-bdc ligands to form a one-dimensional helical chain structure (Zhang et al., 2007).

For related literature, see: Cai et al. (2006); Dickeson & Summers (1970); Ren & Zhao (2006); Yang et al. (2005).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The structure of (I), with displacement ellipsoids drawn at the 30% probability level (arbitrary spheres for the H atoms). Symmetry codes: (i) 1 - x, y, 3/2 - z; (ii) -x, y, 3/2 - z.
[Figure 2] Fig. 2. View of part of the helical chain structure of (I) with DMA and uncoordinated water molecules omitted for clarity.
catena-Poly[[[aqua(pyrazino[2,3-f][1,10]phenanthroline)copper(II)]-µ- benzene-1,3-dicarboxylato] N,N-dimethylacetamide monohydrate] top
Crystal data top
[Cu(C8H4O4)(C14H8N4)(H2O)]·C4H9NO·H2OF(000) = 1204
Mr = 583.05Dx = 1.516 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 17473 reflections
a = 14.829 (3) Åθ = 3.2–27.5°
b = 7.2111 (14) ŵ = 0.91 mm1
c = 23.976 (5) ÅT = 293 K
β = 95.00 (3)°Block, blue
V = 2554.1 (9) Å30.33 × 0.31 × 0.30 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5813 independent reflections
Radiation source: rotating anode4102 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1918
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 99
Tmin = 0.733, Tmax = 0.766l = 3131
23862 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0676P)2 + 7.6293P]
where P = (Fo2 + 2Fc2)/3
5813 reflections(Δ/σ)max < 0.001
373 parametersΔρmax = 1.09 e Å3
7 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Cu(C8H4O4)(C14H8N4)(H2O)]·C4H9NO·H2OV = 2554.1 (9) Å3
Mr = 583.05Z = 4
Monoclinic, P2/cMo Kα radiation
a = 14.829 (3) ŵ = 0.91 mm1
b = 7.2111 (14) ÅT = 293 K
c = 23.976 (5) Å0.33 × 0.31 × 0.30 mm
β = 95.00 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5813 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4102 reflections with I > 2σ(I)
Tmin = 0.733, Tmax = 0.766Rint = 0.061
23862 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0687 restraints
wR(F2) = 0.184H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 1.09 e Å3
5813 reflectionsΔρmin = 0.43 e Å3
373 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4129 (3)0.2052 (8)0.5417 (2)0.0440 (12)
H10.43760.15900.57590.053*
C20.4719 (3)0.2530 (8)0.5017 (2)0.0497 (13)
H20.53420.24290.50970.060*
C30.4370 (3)0.3140 (7)0.4510 (2)0.0440 (11)
H30.47520.34320.42350.053*
C40.3426 (3)0.3333 (6)0.43985 (18)0.0357 (10)
C50.2887 (3)0.2852 (6)0.48253 (17)0.0314 (9)
C60.1916 (3)0.2943 (6)0.47436 (17)0.0297 (9)
C70.0563 (3)0.2370 (7)0.5113 (2)0.0424 (11)
H70.02460.19830.54110.051*
C80.0072 (3)0.2930 (8)0.4617 (2)0.0475 (12)
H80.05580.29090.45870.057*
C90.0525 (3)0.3505 (7)0.4178 (2)0.0422 (11)
H90.02080.38790.38450.051*
C100.1472 (3)0.3528 (6)0.42319 (18)0.0339 (9)
C110.2981 (3)0.3891 (6)0.38611 (18)0.0376 (10)
C120.2044 (3)0.4006 (6)0.37806 (17)0.0346 (10)
C130.2132 (4)0.4844 (7)0.2878 (2)0.0522 (14)
H130.18630.51860.25280.063*
C140.3063 (5)0.4713 (8)0.2957 (2)0.0570 (15)
H140.33950.49410.26520.068*
C150.3677 (3)0.1853 (8)0.67698 (17)0.0414 (12)
C160.4361 (3)0.0762 (7)0.71521 (17)0.0361 (10)
C170.50000.1725 (9)0.75000.0340 (13)
H170.50000.30150.75000.041*
C180.4360 (3)0.1149 (8)0.7155 (2)0.0456 (12)
H180.39310.17980.69250.055*
C190.50000.2104 (12)0.75000.058 (2)
H190.50000.33940.75000.070*
C200.0931 (3)0.2029 (7)0.66650 (17)0.0352 (10)
C210.0441 (3)0.0973 (6)0.70954 (16)0.0319 (9)
C220.00000.1949 (9)0.75000.0318 (13)
H220.00000.32390.75000.038*
C230.0432 (3)0.0947 (7)0.71019 (19)0.0407 (11)
H230.07210.15970.68340.049*
C240.00000.1916 (10)0.75000.0461 (17)
H240.00000.32060.75000.055*
C250.2265 (4)0.0370 (9)0.3096 (2)0.0595 (16)
H25A0.24790.07770.29530.089*
H25B0.16400.02430.31650.089*
H25C0.23260.13380.28270.089*
C260.3805 (4)0.0846 (9)0.3637 (2)0.0552 (14)
H26A0.39960.00770.33430.083*
H26B0.40140.20910.35890.083*
H26C0.40550.03760.39920.083*
C270.2456 (5)0.1394 (8)0.4071 (3)0.0586 (15)
C280.1422 (3)0.1422 (8)0.4065 (3)0.0530 (13)
H28A0.11740.22150.37680.080*
H28B0.11910.01880.40050.080*
H28C0.12530.18800.44170.080*
N10.1455 (2)0.2367 (5)0.51787 (14)0.0328 (8)
N20.3234 (2)0.2223 (6)0.53358 (15)0.0347 (8)
N30.3510 (3)0.4285 (6)0.34392 (18)0.0497 (11)
N40.1615 (3)0.4498 (6)0.32826 (16)0.0465 (10)
N50.2799 (3)0.0837 (7)0.36185 (19)0.0558 (12)
O10.3691 (3)0.3545 (6)0.67766 (17)0.0612 (11)
O20.3140 (2)0.0834 (6)0.64574 (14)0.0533 (10)
O1W0.2181 (3)0.1484 (5)0.55112 (14)0.0475 (9)
HW110.241 (4)0.181 (7)0.5213 (13)0.064 (19)*
HW120.234 (3)0.239 (5)0.5731 (15)0.044 (15)*
O30.1262 (2)0.1001 (6)0.63021 (13)0.0490 (9)
O2W0.2320 (3)0.5306 (7)0.61437 (18)0.0654 (12)
HW210.186 (3)0.510 (12)0.632 (3)0.11 (3)*
HW220.276 (3)0.545 (7)0.640 (3)0.14 (4)*
O40.0964 (3)0.3738 (5)0.66852 (15)0.0518 (9)
O50.2951 (3)0.1872 (6)0.45047 (14)0.0563 (10)
Cu10.22665 (4)0.15296 (9)0.58553 (2)0.03622 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.035 (2)0.057 (3)0.039 (2)0.001 (2)0.004 (2)0.000 (2)
C20.031 (2)0.066 (4)0.052 (3)0.003 (2)0.003 (2)0.001 (3)
C30.042 (3)0.046 (3)0.046 (3)0.007 (2)0.016 (2)0.001 (2)
C40.038 (2)0.035 (2)0.034 (2)0.005 (2)0.0055 (18)0.0019 (19)
C50.033 (2)0.033 (2)0.029 (2)0.0013 (18)0.0036 (17)0.0034 (17)
C60.035 (2)0.026 (2)0.0284 (19)0.0021 (17)0.0013 (17)0.0028 (16)
C70.034 (2)0.054 (3)0.040 (2)0.000 (2)0.006 (2)0.005 (2)
C80.027 (2)0.062 (3)0.053 (3)0.003 (2)0.000 (2)0.002 (3)
C90.041 (2)0.044 (3)0.039 (2)0.007 (2)0.006 (2)0.001 (2)
C100.041 (2)0.030 (2)0.031 (2)0.0021 (19)0.0005 (18)0.0013 (18)
C110.050 (3)0.032 (2)0.031 (2)0.002 (2)0.010 (2)0.0023 (18)
C120.047 (3)0.029 (2)0.028 (2)0.0007 (19)0.0039 (18)0.0008 (17)
C130.082 (4)0.044 (3)0.029 (2)0.007 (3)0.002 (2)0.010 (2)
C140.090 (5)0.045 (3)0.039 (3)0.005 (3)0.023 (3)0.009 (2)
C150.038 (2)0.065 (4)0.0213 (19)0.000 (2)0.0000 (18)0.001 (2)
C160.032 (2)0.050 (3)0.026 (2)0.002 (2)0.0028 (17)0.0013 (19)
C170.035 (3)0.042 (4)0.026 (3)0.0000.005 (2)0.000
C180.041 (3)0.052 (3)0.042 (3)0.008 (2)0.007 (2)0.006 (2)
C190.049 (4)0.053 (5)0.071 (5)0.0000.004 (4)0.000
C200.031 (2)0.050 (3)0.0251 (19)0.002 (2)0.0021 (17)0.0001 (19)
C210.030 (2)0.043 (2)0.0222 (18)0.0035 (18)0.0014 (16)0.0005 (17)
C220.033 (3)0.040 (3)0.023 (3)0.0000.002 (2)0.000
C230.047 (3)0.044 (3)0.032 (2)0.005 (2)0.008 (2)0.008 (2)
C240.062 (5)0.030 (4)0.047 (4)0.0000.007 (3)0.000
C250.080 (4)0.052 (3)0.044 (3)0.000 (3)0.014 (3)0.010 (3)
C260.044 (3)0.069 (4)0.055 (3)0.003 (3)0.017 (2)0.012 (3)
C270.073 (4)0.045 (3)0.061 (3)0.003 (3)0.017 (3)0.014 (3)
C280.037 (3)0.055 (3)0.068 (3)0.001 (2)0.010 (2)0.009 (3)
N10.0294 (18)0.040 (2)0.0293 (17)0.0012 (16)0.0047 (14)0.0005 (15)
N20.0292 (18)0.045 (2)0.0298 (17)0.0003 (16)0.0007 (14)0.0038 (16)
N30.059 (3)0.050 (3)0.042 (2)0.002 (2)0.016 (2)0.008 (2)
N40.060 (3)0.046 (2)0.033 (2)0.007 (2)0.0010 (19)0.0024 (18)
N50.060 (3)0.062 (3)0.046 (2)0.000 (2)0.004 (2)0.000 (2)
O10.065 (3)0.056 (3)0.059 (2)0.015 (2)0.018 (2)0.006 (2)
O20.052 (2)0.068 (3)0.0364 (17)0.0087 (19)0.0164 (16)0.0066 (17)
O1W0.060 (2)0.050 (2)0.0331 (17)0.0020 (18)0.0091 (16)0.0023 (16)
O30.050 (2)0.069 (2)0.0303 (16)0.0023 (18)0.0203 (15)0.0047 (16)
O2W0.061 (3)0.076 (3)0.060 (2)0.001 (2)0.008 (2)0.033 (2)
O40.059 (2)0.047 (2)0.052 (2)0.0009 (18)0.0232 (18)0.0075 (17)
O50.060 (2)0.075 (3)0.0345 (17)0.006 (2)0.0035 (16)0.0069 (18)
Cu10.0312 (3)0.0564 (4)0.0209 (2)0.0002 (3)0.00140 (19)0.0004 (2)
Geometric parameters (Å, º) top
C1—N21.331 (6)C18—H180.9300
C1—C21.397 (7)C19—C18i1.387 (7)
C1—H10.9300C19—H190.9300
C2—C31.351 (7)C20—O41.234 (6)
C2—H20.9300C20—O31.274 (6)
C3—C41.408 (7)C20—C211.518 (6)
C3—H30.9300C21—C231.385 (7)
C4—C51.396 (6)C21—C221.405 (5)
C4—C111.453 (6)C22—C21ii1.405 (5)
C5—N21.363 (5)C22—H220.9300
C5—C61.437 (6)C23—C241.384 (6)
C6—N11.361 (5)C23—H230.9300
C6—C101.406 (6)C24—C23ii1.384 (6)
C7—N11.318 (6)C24—H240.9300
C7—C81.400 (7)C25—N51.462 (7)
C7—H70.9300C25—H25A0.9600
C8—C91.362 (7)C25—H25B0.9600
C8—H80.9300C25—H25C0.9600
C9—C101.399 (7)C26—N51.489 (7)
C9—H90.9300C26—H26A0.9600
C10—C121.473 (6)C26—H26B0.9600
C11—N31.363 (6)C26—H26C0.9600
C11—C121.388 (7)C27—O51.267 (7)
C12—N41.351 (6)C27—N51.302 (7)
C13—N41.311 (7)C27—C281.531 (8)
C13—C141.381 (9)C28—H28A0.9600
C13—H130.9300C28—H28B0.9600
C14—N31.318 (7)C28—H28C0.9600
C14—H140.9300Cu1—N12.026 (4)
C15—O11.221 (7)Cu1—N22.043 (4)
C15—O21.277 (6)Cu1—O21.920 (3)
C15—C161.525 (7)Cu1—O31.947 (3)
C16—C181.378 (7)Cu1—O1W2.324 (4)
C16—C171.392 (6)O1W—HW110.85 (4)
C17—C16i1.392 (6)O1W—HW120.86 (4)
C17—H170.9300O2W—HW210.85 (5)
C18—C191.387 (7)O2W—HW220.86 (6)
N2—C1—C2123.5 (5)C23—C21—C22119.2 (4)
N2—C1—H1118.3C23—C21—C20121.0 (4)
C2—C1—H1118.3C22—C21—C20119.8 (4)
C3—C2—C1119.0 (5)C21—C22—C21ii119.9 (6)
C3—C2—H2120.5C21—C22—H22120.1
C1—C2—H2120.5C21ii—C22—H22120.1
C2—C3—C4119.9 (4)C24—C23—C21121.2 (5)
C2—C3—H3120.0C24—C23—H23119.4
C4—C3—H3120.0C21—C23—H23119.4
C5—C4—C3117.3 (4)C23ii—C24—C23119.4 (6)
C5—C4—C11118.3 (4)C23ii—C24—H24120.3
C3—C4—C11124.3 (4)C23—C24—H24120.3
N2—C5—C4123.0 (4)N5—C25—H25A109.5
N2—C5—C6115.6 (4)N5—C25—H25B109.5
C4—C5—C6121.3 (4)H25A—C25—H25B109.5
N1—C6—C10122.2 (4)N5—C25—H25C109.5
N1—C6—C5116.5 (4)H25A—C25—H25C109.5
C10—C6—C5121.3 (4)H25B—C25—H25C109.5
N1—C7—C8123.0 (4)N5—C26—H26A109.5
N1—C7—H7118.5N5—C26—H26B109.5
C8—C7—H7118.5H26A—C26—H26B109.5
C9—C8—C7119.3 (4)N5—C26—H26C109.5
C9—C8—H8120.3H26A—C26—H26C109.5
C7—C8—H8120.3H26B—C26—H26C109.5
C8—C9—C10119.4 (4)O5—C27—N5121.8 (6)
C8—C9—H9120.3O5—C27—C28120.8 (5)
C10—C9—H9120.3N5—C27—C28117.3 (6)
C9—C10—C6117.9 (4)C27—C28—H28A109.5
C9—C10—C12124.9 (4)C27—C28—H28B109.5
C6—C10—C12117.1 (4)H28A—C28—H28B109.5
N3—C11—C12121.2 (4)C27—C28—H28C109.5
N3—C11—C4118.0 (4)H28A—C28—H28C109.5
C12—C11—C4120.8 (4)H28B—C28—H28C109.5
N4—C12—C11121.8 (4)C7—N1—C6118.3 (4)
N4—C12—C10117.0 (4)C7—N1—Cu1128.0 (3)
C11—C12—C10121.1 (4)C6—N1—Cu1113.7 (3)
N4—C13—C14121.8 (5)C1—N2—C5117.2 (4)
N4—C13—H13119.1C1—N2—Cu1129.2 (3)
C14—C13—H13119.1C5—N2—Cu1113.5 (3)
N3—C14—C13123.8 (5)C14—N3—C11115.0 (5)
N3—C14—H14118.1C13—N4—C12116.3 (5)
C13—C14—H14118.1C27—N5—C25124.3 (6)
O1—C15—O2126.3 (5)C27—N5—C26115.9 (5)
O1—C15—C16119.9 (4)C25—N5—C26119.6 (5)
O2—C15—C16113.8 (5)C15—O2—Cu1129.5 (4)
C18—C16—C17119.8 (5)Cu1—O1W—HW11123 (4)
C18—C16—C15121.2 (4)Cu1—O1W—HW12119 (3)
C17—C16—C15119.0 (5)HW11—O1W—HW12101 (3)
C16—C17—C16i120.2 (6)C20—O3—Cu1128.4 (3)
C16—C17—H17119.9HW21—O2W—HW22105 (3)
C16i—C17—H17119.9O2—Cu1—O391.92 (16)
C16—C18—C19119.9 (5)O2—Cu1—N1174.00 (16)
C16—C18—H18120.0O3—Cu1—N193.99 (15)
C19—C18—H18120.0O2—Cu1—N293.37 (16)
C18i—C19—C18120.4 (8)O3—Cu1—N2174.49 (15)
C18i—C19—H19119.8N1—Cu1—N280.69 (14)
C18—C19—H19119.8O2—Cu1—O1W92.00 (16)
O4—C20—O3126.3 (4)O3—Cu1—O1W89.51 (15)
O4—C20—C21119.6 (4)N1—Cu1—O1W89.09 (14)
O3—C20—C21114.1 (4)N2—Cu1—O1W91.83 (14)
N2—C1—C2—C32.4 (9)C22—C21—C23—C240.2 (6)
C1—C2—C3—C41.7 (8)C20—C21—C23—C24178.8 (3)
C2—C3—C4—C50.7 (7)C21—C23—C24—C23ii0.1 (3)
C2—C3—C4—C11177.0 (5)C8—C7—N1—C60.3 (7)
C3—C4—C5—N20.2 (7)C8—C7—N1—Cu1177.9 (4)
C11—C4—C5—N2176.7 (4)C10—C6—N1—C70.2 (6)
C3—C4—C5—C6177.9 (4)C5—C6—N1—C7177.8 (4)
C11—C4—C5—C61.4 (7)C10—C6—N1—Cu1178.2 (3)
N2—C5—C6—N11.0 (6)C5—C6—N1—Cu10.7 (5)
C4—C5—C6—N1177.2 (4)C2—C1—N2—C51.9 (8)
N2—C5—C6—C10178.6 (4)C2—C1—N2—Cu1177.8 (4)
C4—C5—C6—C100.3 (7)C4—C5—N2—C10.8 (7)
N1—C7—C8—C90.1 (8)C6—C5—N2—C1177.4 (4)
C7—C8—C9—C100.1 (8)C4—C5—N2—Cu1177.4 (3)
C8—C9—C10—C60.2 (7)C6—C5—N2—Cu10.8 (5)
C8—C9—C10—C12176.0 (5)C13—C14—N3—C112.7 (8)
N1—C6—C10—C90.0 (7)C12—C11—N3—C142.1 (7)
C5—C6—C10—C9177.4 (4)C4—C11—N3—C14177.5 (5)
N1—C6—C10—C12176.2 (4)C14—C13—N4—C120.1 (8)
C5—C6—C10—C121.2 (6)C11—C12—N4—C130.6 (7)
C5—C4—C11—N3177.4 (4)C10—C12—N4—C13177.2 (4)
C3—C4—C11—N31.2 (7)O5—C27—N5—C25176.3 (5)
C5—C4—C11—C122.2 (7)C28—C27—N5—C254.6 (8)
C3—C4—C11—C12178.4 (5)O5—C27—N5—C261.5 (8)
N3—C11—C12—N40.5 (7)C28—C27—N5—C26179.4 (5)
C4—C11—C12—N4179.1 (4)O1—C15—O2—Cu16.5 (8)
N3—C11—C12—C10178.2 (4)C16—C15—O2—Cu1172.2 (3)
C4—C11—C12—C101.3 (7)O4—C20—O3—Cu125.4 (7)
C9—C10—C12—N41.6 (7)C21—C20—O3—Cu1156.0 (3)
C6—C10—C12—N4177.5 (4)C15—O2—Cu1—O3107.8 (4)
C9—C10—C12—C11176.2 (5)C15—O2—Cu1—N270.6 (4)
C6—C10—C12—C110.4 (6)C15—O2—Cu1—O1W162.6 (4)
N4—C13—C14—N31.8 (9)C20—O3—Cu1—O282.1 (4)
O1—C15—C16—C18179.8 (5)C20—O3—Cu1—N196.8 (4)
O2—C15—C16—C181.4 (6)C20—O3—Cu1—O1W174.1 (4)
O1—C15—C16—C170.7 (6)C7—N1—Cu1—O33.4 (4)
O2—C15—C16—C17178.0 (4)C6—N1—Cu1—O3178.4 (3)
C18—C16—C17—C16i0.3 (3)C7—N1—Cu1—N2178.1 (4)
C15—C16—C17—C16i179.2 (4)C6—N1—Cu1—N20.2 (3)
C17—C16—C18—C190.5 (7)C7—N1—Cu1—O1W86.1 (4)
C15—C16—C18—C19178.9 (4)C6—N1—Cu1—O1W92.2 (3)
C16—C18—C19—C18i0.3 (3)C1—N2—Cu1—O24.4 (5)
O4—C20—C21—C23176.6 (5)C5—N2—Cu1—O2179.4 (3)
O3—C20—C21—C234.6 (6)C1—N2—Cu1—N1176.4 (5)
O4—C20—C21—C222.4 (6)C5—N2—Cu1—N10.3 (3)
O3—C20—C21—C22176.4 (3)C1—N2—Cu1—O1W87.7 (4)
C23—C21—C22—C21ii0.1 (3)C5—N2—Cu1—O1W88.4 (3)
C20—C21—C22—C21ii178.9 (4)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—HW12···O2Wiii0.86 (4)1.93 (2)2.765 (6)162 (5)
O1W—HW11···O50.85 (4)1.94 (2)2.772 (5)165 (5)
O2W—HW22···O10.86 (6)2.10 (4)2.740 (6)131 (4)
O2W—HW21···O40.85 (4)1.92 (4)2.732 (6)159 (9)
Symmetry code: (iii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cu(C8H4O4)(C14H8N4)(H2O)]·C4H9NO·H2O
Mr583.05
Crystal system, space groupMonoclinic, P2/c
Temperature (K)293
a, b, c (Å)14.829 (3), 7.2111 (14), 23.976 (5)
β (°) 95.00 (3)
V3)2554.1 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.91
Crystal size (mm)0.33 × 0.31 × 0.30
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.733, 0.766
No. of measured, independent and
observed [I > 2σ(I)] reflections
23862, 5813, 4102
Rint0.061
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.184, 1.07
No. of reflections5813
No. of parameters373
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.09, 0.43

Computer programs: PROCESS-AUTO (Rigaku, 1998), PROCESS-AUTO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1990), SHELXL97.

Selected bond lengths (Å) top
Cu1—N12.026 (4)Cu1—O31.947 (3)
Cu1—N22.043 (4)Cu1—O1W2.324 (4)
Cu1—O21.920 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—HW12···O2Wi0.86 (4)1.93 (2)2.765 (6)162 (5)
O1W—HW11···O50.85 (4)1.94 (2)2.772 (5)165 (5)
O2W—HW22···O10.86 (6)2.10 (4)2.740 (6)131 (4)
O2W—HW21···O40.85 (4)1.92 (4)2.732 (6)159 (9)
Symmetry code: (i) x, y1, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds