Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the nonplanar title compound, C18H14O4, the dihedral angle between the isochromene and benzene ring systems is 83.32 (6)°. The crystal structure is stabilized by intra- and inter­molecular C—H...O inter­actions, the latter resulting in centrosymmetric dimers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807021447/hb2399sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807021447/hb2399Isup2.hkl
Contains datablock I

CCDC reference: 651391

Key indicators

  • Single-crystal X-ray study
  • T = 200 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.042
  • wR factor = 0.098
  • Data-to-parameter ratio = 17.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ?
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

As a part of our systematic studies on the reactions of anhydrides with compounds containing activated double bonds (Burdzhiev & Stanoeva 2006; Kandinska et al., 2006) we focused our attention on the reactions of homophthalic anhydride with carbonyl compounds (Bogdanov & Palamareva 2004; Bogdanov et al., 2007). The title compound (I) was synthesized while searching for new antibiotics with an isocoumarin core. In this paper, we report our X-ray crystallographic studies of (I).

A displacement ellipsoid plot with the atomic numbering scheme of the title compound (I) is shown in Fig. 1. The bond lengths and angles observed in (I) are normal (Allen et al., 1987). The isochromene system (C1—C9/O1/O2) of the molecule is planar. The dihedral angle between the benzene ring C2—C7 and the fused pyran ring in the isochromene system is 3.56 (6)°. The average deviation of these atoms from the mean plane of the coumarin system is -0.066 (1) Å for atom C1; this value is in agreement with those found in analogous coumarin derivatives (Dobson & Gerkin, 1996; Kokila et al., 1996). The isochromene and benzene ring rings are nearly perpendicular to each other [dihedral angle = 83.32 (6)°].

In the crystal structure of (I), there are two acute intramolecular C—H···O interactions (Table 1). An intermolecular C—H···O bond results in inversion dimers (Fig. 2).

Related literature top

For related literature, see: Bogdanov et al. (2007); Burdzhiev & Stanoeva (2006); Dobson & Gerkin (1996); Kokila et al. (1996); Bogdanov & Palamareva (2004); Kandinska et al. (2006).

For related literature, see: Allen et al. (1987).

Experimental top

Compound (I) was synthesized by the reaction between homophthalic anhydride and paraformaldehyde in boiling pyridine and subsequent treatment of the isolated carboxylic acid with ether solution of diazomethane. After working up the reaction mixture, compound crystallized as colourless prisms from ethyl acetate (yield 0.2 g, 80%; m.p. 375–376 K). Analysis, calculated for C18H14O4: C 73.46, H 4.79%; found: C 73.31, H 4.46%. The product was characterized by 1H NMR, MS and IR spectra. Single crystals of (I) were obtained by slow evaporation of a solution of in a chloroform–ethyl acetate mixture (3:1 v/v) at room temperature.

IR (CHCl3) 1600 cm-1(ArH), 1650 cm-1 (CC), 1710 cm-1 (CO), 1715 cm-1 (CO). The mass spectrum was recorded on Trace DSQ (Termo-Finnigan) instrument with EI (70 eV), equipped with quadruple EI mass analyzer. MS: m/z (%) 294 (4), 262 (73), 234 (100), 219 (6), 206 (20), 178 (61), 145 (3), 133 (7), 117 (17), 89 (74). The 1H NMR spectrum of (I) was obtained on a Bruker Avance DRX250 spectrometer at 250.13 MHz in CDCl3 at 293 K. 1H NMR (250 MHz, CDCl3) δ = 3.64 (s, 3H, OCH3), 4.08 (s, 2H, -CH2-), 5.98 (s, 1H, H-vinyl), 7.10–7.45 (m, 5H, Ph—H), 7.60 (dt, 1H, J= 1.3 and 7.5 Hz, Ph—H), 7.92 (dd, 1H, J= 1.5 and 7.5 Hz, Ph—H), 8.18 (dd, 1H, J= 1.5 and 7.8 Hz, Ph—H).

Refinement top

The H atoms were placed in idealized positions (C—H = 0.93–0.97 Å) and treated as riding atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

As a part of our systematic studies on the reactions of anhydrides with compounds containing activated double bonds (Burdzhiev & Stanoeva 2006; Kandinska et al., 2006) we focused our attention on the reactions of homophthalic anhydride with carbonyl compounds (Bogdanov & Palamareva 2004; Bogdanov et al., 2007). The title compound (I) was synthesized while searching for new antibiotics with an isocoumarin core. In this paper, we report our X-ray crystallographic studies of (I).

A displacement ellipsoid plot with the atomic numbering scheme of the title compound (I) is shown in Fig. 1. The bond lengths and angles observed in (I) are normal (Allen et al., 1987). The isochromene system (C1—C9/O1/O2) of the molecule is planar. The dihedral angle between the benzene ring C2—C7 and the fused pyran ring in the isochromene system is 3.56 (6)°. The average deviation of these atoms from the mean plane of the coumarin system is -0.066 (1) Å for atom C1; this value is in agreement with those found in analogous coumarin derivatives (Dobson & Gerkin, 1996; Kokila et al., 1996). The isochromene and benzene ring rings are nearly perpendicular to each other [dihedral angle = 83.32 (6)°].

In the crystal structure of (I), there are two acute intramolecular C—H···O interactions (Table 1). An intermolecular C—H···O bond results in inversion dimers (Fig. 2).

For related literature, see: Bogdanov et al. (2007); Burdzhiev & Stanoeva (2006); Dobson & Gerkin (1996); Kokila et al. (1996); Bogdanov & Palamareva (2004); Kandinska et al. (2006).

For related literature, see: Allen et al. (1987).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: EVALCCD (Duisenberg et al., 2003); data reduction: SADABS (Sheldrick, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. View of (I) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. The intra molecular C—H···O interactions are shown as dashed lines.
[Figure 2] Fig. 2. View of the hydrogen bonding diagram of (I). Dashed lines show intermolecular C—H···O hydrogen bonding interactions. For clarity, H atoms not involved in this type hydrogen bonding have been omitted.
Methyl 2-[(1-oxo-1H-isochromen-3-yl)methyl]benzoate top
Crystal data top
C18H14O4Z = 2
Mr = 294.29F(000) = 308
Triclinic, P1Dx = 1.371 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1628 (7) ÅCell parameters from 121 reflections
b = 8.8981 (8) Åθ = 6–20°
c = 11.0236 (9) ŵ = 0.10 mm1
α = 105.048 (7)°T = 200 K
β = 108.266 (6)°Prism, colourless
γ = 97.981 (7)°0.21 × 0.20 × 0.15 mm
V = 712.78 (12) Å3
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3545 independent reflections
Radiation source: fine-focus sealed tube2478 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 9 pixels mm-1θmax = 28.5°, θmin = 3.7°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
k = 1111
Tmin = 0.980, Tmax = 0.986l = 1414
16802 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0417P)2 + 0.1587P]
where P = (Fo2 + 2Fc2)/3
3545 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C18H14O4γ = 97.981 (7)°
Mr = 294.29V = 712.78 (12) Å3
Triclinic, P1Z = 2
a = 8.1628 (7) ÅMo Kα radiation
b = 8.8981 (8) ŵ = 0.10 mm1
c = 11.0236 (9) ÅT = 200 K
α = 105.048 (7)°0.21 × 0.20 × 0.15 mm
β = 108.266 (6)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3545 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
2478 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.986Rint = 0.046
16802 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.01Δρmax = 0.22 e Å3
3545 reflectionsΔρmin = 0.20 e Å3
200 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.18577 (13)0.16525 (13)0.44383 (11)0.0383 (3)
O20.46676 (11)0.29825 (11)0.53778 (9)0.0263 (3)
O30.71541 (13)0.62739 (13)0.86170 (11)0.0389 (3)
O40.96272 (13)0.79415 (13)1.02380 (11)0.0402 (3)
C10.33053 (16)0.17680 (16)0.52388 (13)0.0254 (4)
C20.37572 (16)0.07659 (15)0.60971 (12)0.0222 (3)
C30.24074 (17)0.03931 (16)0.60986 (14)0.0286 (4)
C40.28196 (18)0.13486 (16)0.68940 (15)0.0312 (4)
C50.45829 (19)0.11968 (17)0.76684 (15)0.0329 (4)
C60.59279 (17)0.00575 (16)0.76802 (14)0.0294 (4)
C70.55308 (16)0.09646 (14)0.69088 (12)0.0214 (3)
C80.68633 (16)0.22290 (15)0.69299 (13)0.0232 (3)
C90.64026 (16)0.32037 (15)0.62138 (12)0.0217 (3)
C100.75531 (17)0.46250 (16)0.61556 (13)0.0262 (4)
C110.94433 (16)0.50474 (15)0.71511 (13)0.0233 (4)
C121.07127 (18)0.44492 (16)0.66982 (15)0.0296 (4)
C131.24714 (19)0.47860 (17)0.75392 (16)0.0338 (4)
C141.30077 (18)0.57203 (17)0.88678 (15)0.0311 (4)
C151.17855 (17)0.63349 (16)0.93482 (14)0.0285 (4)
C161.00054 (16)0.60148 (15)0.85036 (13)0.0237 (4)
C170.87454 (17)0.67161 (16)0.90832 (14)0.0268 (4)
C180.8566 (2)0.8684 (2)1.09349 (17)0.0446 (5)
H30.123200.051500.556100.0340*
H40.192000.209700.691500.0370*
H50.485900.186900.818400.0390*
H60.710200.003200.820200.0350*
H80.805100.236500.744600.0280*
H10A0.704000.554000.633800.0320*
H10B0.756800.440600.525100.0320*
H121.036600.380600.580500.0360*
H131.329200.438100.720700.0410*
H141.418600.593700.943900.0370*
H151.215000.697001.024600.0340*
H18A0.782300.918701.038600.0670*
H18B0.933400.947501.177500.0670*
H18C0.783700.788201.110600.0670*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0211 (5)0.0427 (6)0.0448 (6)0.0025 (4)0.0005 (4)0.0207 (5)
O20.0201 (4)0.0266 (5)0.0291 (5)0.0018 (4)0.0039 (4)0.0123 (4)
O30.0216 (5)0.0437 (6)0.0452 (6)0.0064 (4)0.0110 (5)0.0064 (5)
O40.0287 (5)0.0463 (7)0.0345 (6)0.0084 (5)0.0111 (4)0.0040 (5)
C10.0190 (6)0.0251 (6)0.0280 (7)0.0024 (5)0.0064 (5)0.0061 (5)
C20.0213 (6)0.0205 (6)0.0222 (6)0.0027 (5)0.0082 (5)0.0035 (5)
C30.0194 (6)0.0265 (7)0.0350 (8)0.0001 (5)0.0086 (6)0.0064 (6)
C40.0279 (7)0.0251 (7)0.0393 (8)0.0026 (6)0.0151 (6)0.0095 (6)
C50.0351 (8)0.0273 (7)0.0362 (8)0.0015 (6)0.0108 (6)0.0160 (6)
C60.0228 (7)0.0300 (7)0.0318 (7)0.0024 (5)0.0043 (6)0.0134 (6)
C70.0208 (6)0.0194 (6)0.0211 (6)0.0015 (5)0.0073 (5)0.0040 (5)
C80.0166 (6)0.0249 (6)0.0241 (6)0.0011 (5)0.0033 (5)0.0085 (5)
C90.0183 (6)0.0233 (6)0.0200 (6)0.0018 (5)0.0060 (5)0.0041 (5)
C100.0248 (7)0.0264 (7)0.0242 (7)0.0003 (5)0.0049 (5)0.0111 (5)
C110.0229 (6)0.0191 (6)0.0271 (7)0.0015 (5)0.0080 (5)0.0108 (5)
C120.0318 (7)0.0247 (7)0.0320 (7)0.0016 (6)0.0152 (6)0.0070 (6)
C130.0286 (7)0.0296 (7)0.0488 (9)0.0081 (6)0.0218 (7)0.0117 (7)
C140.0195 (6)0.0323 (7)0.0412 (8)0.0049 (5)0.0081 (6)0.0159 (6)
C150.0238 (7)0.0299 (7)0.0280 (7)0.0031 (5)0.0058 (5)0.0093 (6)
C160.0206 (6)0.0227 (6)0.0284 (7)0.0020 (5)0.0088 (5)0.0109 (5)
C170.0243 (7)0.0287 (7)0.0274 (7)0.0052 (5)0.0085 (5)0.0110 (6)
C180.0415 (9)0.0511 (10)0.0397 (9)0.0175 (8)0.0191 (7)0.0039 (8)
Geometric parameters (Å, º) top
O1—C11.2046 (18)C12—C131.383 (2)
O2—C11.3789 (18)C13—C141.376 (2)
O2—C91.3799 (16)C14—C151.381 (2)
O3—C171.2003 (19)C15—C161.400 (2)
O4—C171.3470 (18)C16—C171.496 (2)
O4—C181.446 (2)C3—H30.9300
C1—C21.4619 (19)C4—H40.9300
C2—C31.401 (2)C5—H50.9300
C2—C71.4009 (19)C6—H60.9300
C3—C41.374 (2)C8—H80.9300
C4—C51.391 (2)C10—H10A0.9700
C5—C61.381 (2)C10—H10B0.9700
C6—C71.4021 (19)C12—H120.9300
C7—C81.4423 (19)C13—H130.9300
C8—C91.3330 (19)C14—H140.9300
C9—C101.495 (2)C15—H150.9300
C10—C111.5131 (19)C18—H18A0.9600
C11—C121.395 (2)C18—H18B0.9600
C11—C161.4034 (18)C18—H18C0.9600
O1···C3i3.3178 (19)C3···H18Bvii3.1000
O2···C10ii3.4198 (18)C4···H18Bvii3.0300
O3···C93.1009 (17)C4···H10Bvi3.0100
O3···C102.8706 (18)C6···H15v2.9200
O1···H3i2.5800C7···H15v3.0200
O1···H32.6200C8···H15v2.8200
O1···H12iii2.7800C11···H82.6400
O2···H10Aii2.7200C12···H4x3.0200
O2···H13iii2.7200C13···H5x3.1000
O3···H5iv2.6800C13···H4x3.0800
O3···H10A2.3900C14···H5x2.8500
O3···H14iii2.8500C17···H10A2.7400
O3···H18A2.6700H3···O12.6200
O3···H18C2.5800H3···O1i2.5800
O4···H152.3400H3···H3i2.4400
O4···H6v2.7400H4···C12viii3.0200
O4···H8v2.7700H4···C13viii3.0800
C1···C13iii3.487 (2)H5···O3xi2.6800
C1···C6vi3.471 (2)H5···C13viii3.1000
C1···C7vi3.3885 (19)H5···C14viii2.8500
C2···C7vi3.5348 (18)H6···H82.5400
C2···C8vi3.5272 (18)H6···O4v2.7400
C3···C9vi3.551 (2)H8···C112.6400
C3···O1i3.3178 (19)H8···H62.5400
C3···C8vi3.585 (2)H8···O4v2.7700
C4···C18vii3.482 (2)H8···H15v2.5200
C5···C14viii3.591 (2)H10A···O32.3900
C6···C1vi3.471 (2)H10A···C172.7400
C7···C1vi3.3885 (19)H10A···O2ii2.7200
C7···C2vi3.5348 (18)H10B···H122.3500
C8···C123.589 (2)H10B···C4vi3.0100
C8···C3vi3.585 (2)H12···O1ix2.7800
C8···C2vi3.5272 (18)H12···H10B2.3500
C8···C163.566 (2)H13···O2ix2.7200
C9···O33.1009 (17)H13···C1ix2.7400
C9···C3vi3.551 (2)H14···O3ix2.8500
C9···C173.5841 (19)H14···H14xii2.5900
C10···O32.8706 (18)H15···O42.3400
C10···O2ii3.4198 (18)H15···C6v2.9200
C12···C83.589 (2)H15···C7v3.0200
C13···C1ix3.487 (2)H15···C8v2.8200
C14···C5x3.591 (2)H15···H8v2.5200
C16···C83.566 (2)H18A···O32.6700
C17···C93.5841 (19)H18B···C3vii3.1000
C18···C4vii3.482 (2)H18B···C4vii3.0300
C1···H13iii2.7400H18C···O32.5800
C1—O2—C9122.79 (11)O3—C17—C16126.23 (13)
C17—O4—C18116.75 (12)O4—C17—C16111.11 (12)
O1—C1—O2116.89 (13)C2—C3—H3120.00
O1—C1—C2126.47 (14)C4—C3—H3120.00
O2—C1—C2116.63 (11)C3—C4—H4120.00
C1—C2—C3119.58 (12)C5—C4—H4120.00
C1—C2—C7120.00 (12)C4—C5—H5120.00
C3—C2—C7120.41 (12)C6—C5—H5120.00
C2—C3—C4120.03 (13)C5—C6—H6120.00
C3—C4—C5119.95 (14)C7—C6—H6120.00
C4—C5—C6120.68 (14)C7—C8—H8120.00
C5—C6—C7120.28 (13)C9—C8—H8120.00
C2—C7—C6118.58 (12)C9—C10—H10A109.00
C2—C7—C8118.48 (12)C9—C10—H10B109.00
C6—C7—C8122.93 (12)C11—C10—H10A109.00
C7—C8—C9120.42 (13)C11—C10—H10B109.00
O2—C9—C8121.38 (13)H10A—C10—H10B108.00
O2—C9—C10109.93 (11)C11—C12—H12119.00
C8—C9—C10128.69 (13)C13—C12—H12119.00
C9—C10—C11113.11 (11)C12—C13—H13120.00
C10—C11—C12118.16 (12)C14—C13—H13120.00
C10—C11—C16124.07 (12)C13—C14—H14120.00
C12—C11—C16117.76 (13)C15—C14—H14120.00
C11—C12—C13121.88 (14)C14—C15—H15120.00
C12—C13—C14120.00 (15)C16—C15—H15120.00
C13—C14—C15119.60 (14)O4—C18—H18A109.00
C14—C15—C16120.92 (13)O4—C18—H18B109.00
C11—C16—C15119.83 (13)O4—C18—H18C109.00
C11—C16—C17121.77 (12)H18A—C18—H18B110.00
C15—C16—C17118.40 (12)H18A—C18—H18C109.00
O3—C17—O4122.66 (14)H18B—C18—H18C110.00
C9—O2—C1—O1177.05 (12)C6—C7—C8—C9177.53 (13)
C9—O2—C1—C24.02 (18)C7—C8—C9—C10176.46 (13)
C1—O2—C9—C80.80 (19)C7—C8—C9—O23.7 (2)
C1—O2—C9—C10179.31 (11)O2—C9—C10—C11174.24 (11)
C18—O4—C17—C16177.43 (13)C8—C9—C10—C115.9 (2)
C18—O4—C17—O32.2 (2)C9—C10—C11—C1685.15 (17)
O1—C1—C2—C34.7 (2)C9—C10—C11—C1295.29 (15)
O1—C1—C2—C7175.15 (14)C10—C11—C16—C15179.86 (13)
O2—C1—C2—C3174.12 (12)C10—C11—C16—C170.3 (2)
O2—C1—C2—C76.03 (18)C12—C11—C16—C150.6 (2)
C3—C2—C7—C62.30 (19)C12—C11—C16—C17179.84 (13)
C1—C2—C7—C6177.54 (12)C16—C11—C12—C130.0 (2)
C1—C2—C7—C83.44 (18)C10—C11—C12—C13179.57 (14)
C3—C2—C7—C8176.72 (12)C11—C12—C13—C140.8 (2)
C1—C2—C3—C4179.53 (13)C12—C13—C14—C150.9 (2)
C7—C2—C3—C40.3 (2)C13—C14—C15—C160.3 (2)
C2—C3—C4—C51.9 (2)C14—C15—C16—C17179.95 (14)
C3—C4—C5—C62.0 (2)C14—C15—C16—C110.5 (2)
C4—C5—C6—C70.0 (2)C11—C16—C17—O318.3 (2)
C5—C6—C7—C8176.83 (13)C15—C16—C17—O418.30 (19)
C5—C6—C7—C22.2 (2)C11—C16—C17—O4162.11 (13)
C2—C7—C8—C91.45 (19)C15—C16—C17—O3161.25 (15)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1; (iii) x1, y, z; (iv) x, y+1, z; (v) x+2, y+1, z+2; (vi) x+1, y, z+1; (vii) x+1, y+1, z+2; (viii) x1, y1, z; (ix) x+1, y, z; (x) x+1, y+1, z; (xi) x, y1, z; (xii) x+3, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O30.972.392.8706 (18)110
C15—H15···O40.932.342.6766 (19)101
C3—H3···O1i0.932.583.3178 (19)136
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC18H14O4
Mr294.29
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)8.1628 (7), 8.8981 (8), 11.0236 (9)
α, β, γ (°)105.048 (7), 108.266 (6), 97.981 (7)
V3)712.78 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.21 × 0.20 × 0.15
Data collection
DiffractometerBruker–Nonius KappaCCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.980, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
16802, 3545, 2478
Rint0.046
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.098, 1.01
No. of reflections3545
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.20

Computer programs: COLLECT (Nonius, 1999), EVALCCD (Duisenberg et al., 2003), SADABS (Sheldrick, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O30.972.392.8706 (18)110
C15—H15···O40.932.342.6766 (19)101
C3—H3···O1i0.932.583.3178 (19)136
Symmetry code: (i) x, y, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds