Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, C23H21N3O4, the central pyrazoline ring shows a slight envelope distortion from planarity. The aromatic ring substituents at the 1 and 5 positions of the central ring exhibit a gauche conformation. In the crystal structure, the mol­ecules are linked by weak C—H...O and C—H...N inter­actions. The O atoms of the nitro group are disordered over two sites in approximately the ratio 2:1.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807030504/hb2376sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807030504/hb2376Isup2.hkl
Contains datablock I

CCDC reference: 657686

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.002 Å
  • Disorder in main residue
  • R factor = 0.040
  • wR factor = 0.113
  • Data-to-parameter ratio = 12.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT142_ALERT_4_C su on b - Axis Small or Missing (x 100000) ..... 10 Ang. PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 3 PLAT213_ALERT_2_C Atom O1A has ADP max/min Ratio ............. 3.30 prola PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N3 PLAT301_ALERT_3_C Main Residue Disorder ......................... 6.00 Perc. PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 4.40 Deg. O1A -N3 -O1B 1.555 1.555 1.555
Alert level G PLAT793_ALERT_1_G Check the Absolute Configuration of C11 = ... R
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Five- and six-membered heterocyclic compounds are important constituents that often exist in biologically active natural products and synthetic compounds of medicinal interest (Gilchrist, 1998). In this series, 1,3,5–trisubstituted pyrazolines, prepared from phenylhydrazine and chalcone derivatives (Nakamichi et al., 2002) have been used as antitumour (Taylor et al., 1992) agents. Here we report the structure of the title compound, (I), a new derivative of pyrazoline.

In the pyrazoline ring (Fig. 1), the C12N2 [1.287 (3) Å] and N1—N2 [1.382 (3) Å] bond lengths are shorter than those found in similar structures reported by Rurack et al. (2000) and Ge (2006). [CN = 1.291 (2) Å, 1.293 (3)Å and N—N = 1.394 (3) Å, 1.384 (2)Å respectively]. The C3—C11—N1—C18 torsion angle in (I) of 85.48 (16)° indicates a gauche conformation for the substituents. The pyrazoline ring shows a slightly distorted envelope conformation with C9 deviating by 0.036 (3)Å from the plane of C10, C11, N1 and N2. The dihedral angle between the pyrazoline ring and the 3–phenyl ring is 4.6 (1)°, marking their near co-planarity with a maximum deviation of 0.068 (3)Å for atom C(17). The 5–phenyl ring is almost perpendicular to the pyrazoline ring as the dihedral angle between them is 75.4 (1)°.

The molecular packing is stabilized by weak C—H···O and C—H···N interactions (Table 1, Fig. 2).

Related literature top

For related literature, see: Gilchrist (1998); Nakamichi et al. (2002); Rurack et al. (2000); Taylor et al. (1992); Ge (2006).

Experimental top

A mixture of 1-aryl-3-(3,4-dimethoxy -6-nitrophenyl) -2-propene-1-ones (0.01 mol) and phenylhydrazine (0.01 mol) in glacial acetic acid (5 ml) was taken in a conical flask and irradiated in a microwave oven for 5 minutes. The resultant solution was poured into a beaker containing crushed ice and the solid separated was collected by filtration, washed with water, dried and recrystallized from formacetic acid. Red blocks of (I) were grown from ethanol by slow evaporation at room temperature.

Refinement top

The O atoms of the nitro group are disordered over two sites in a 0.68 (2):0.32 (2) ratio (sum constrained to unity). All the H atoms were fixed geometrically (C—H = 0.93=0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier).

Structure description top

Five- and six-membered heterocyclic compounds are important constituents that often exist in biologically active natural products and synthetic compounds of medicinal interest (Gilchrist, 1998). In this series, 1,3,5–trisubstituted pyrazolines, prepared from phenylhydrazine and chalcone derivatives (Nakamichi et al., 2002) have been used as antitumour (Taylor et al., 1992) agents. Here we report the structure of the title compound, (I), a new derivative of pyrazoline.

In the pyrazoline ring (Fig. 1), the C12N2 [1.287 (3) Å] and N1—N2 [1.382 (3) Å] bond lengths are shorter than those found in similar structures reported by Rurack et al. (2000) and Ge (2006). [CN = 1.291 (2) Å, 1.293 (3)Å and N—N = 1.394 (3) Å, 1.384 (2)Å respectively]. The C3—C11—N1—C18 torsion angle in (I) of 85.48 (16)° indicates a gauche conformation for the substituents. The pyrazoline ring shows a slightly distorted envelope conformation with C9 deviating by 0.036 (3)Å from the plane of C10, C11, N1 and N2. The dihedral angle between the pyrazoline ring and the 3–phenyl ring is 4.6 (1)°, marking their near co-planarity with a maximum deviation of 0.068 (3)Å for atom C(17). The 5–phenyl ring is almost perpendicular to the pyrazoline ring as the dihedral angle between them is 75.4 (1)°.

The molecular packing is stabilized by weak C—H···O and C—H···N interactions (Table 1, Fig. 2).

For related literature, see: Gilchrist (1998); Nakamichi et al. (2002); Rurack et al. (2000); Taylor et al. (1992); Ge (2006).

Computing details top

Data collection: APEX (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. Hydrogen bonding interactions in (I) shown as dashed lines.
5-(4,5-Dimethoxy-2-nitrophenyl)-1,3-diphenyl-2-pyrazoline top
Crystal data top
C23H21N3O4F(000) = 1696
Mr = 403.43Dx = 1.292 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 55 reflections
a = 36.0919 (7) Åθ = 5–11°
b = 13.4372 (1) ŵ = 0.09 mm1
c = 8.8190 (2) ÅT = 296 K
β = 104.099 (1)°Block, red
V = 4148.15 (13) Å30.35 × 0.30 × 0.20 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
Rint = 0.033
ω scansθmax = 25.3°, θmin = 1.2°
9555 measured reflectionsh = 4231
3721 independent reflectionsk = 1616
2605 reflections with I > 2σ(I)l = 710
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0637P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.114(Δ/σ)max < 0.001
S = 0.99Δρmax = 0.10 e Å3
3721 reflectionsΔρmin = 0.16 e Å3
292 parameters
Crystal data top
C23H21N3O4V = 4148.15 (13) Å3
Mr = 403.43Z = 8
Monoclinic, C2/cMo Kα radiation
a = 36.0919 (7) ŵ = 0.09 mm1
b = 13.4372 (1) ÅT = 296 K
c = 8.8190 (2) Å0.35 × 0.30 × 0.20 mm
β = 104.099 (1)°
Data collection top
Bruker SMART CCD
diffractometer
2605 reflections with I > 2σ(I)
9555 measured reflectionsRint = 0.033
3721 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 0.99Δρmax = 0.10 e Å3
3721 reflectionsΔρmin = 0.16 e Å3
292 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.04766 (4)0.15292 (14)0.6636 (2)0.0745 (5)
H10.03410.09730.6180.089*
C20.08305 (4)0.14080 (11)0.77009 (19)0.0653 (4)
C30.10437 (4)0.22122 (10)0.84411 (16)0.0522 (4)
C40.08773 (4)0.31481 (11)0.80876 (17)0.0559 (4)
H40.10050.37020.85920.067*
C50.05307 (4)0.32859 (12)0.70193 (18)0.0627 (4)
C60.03303 (4)0.24523 (13)0.62634 (19)0.0674 (4)
C70.02062 (5)0.1837 (2)0.4375 (3)0.1142 (8)
H7A0.00450.14790.38450.171*
H7B0.04280.20740.36240.171*
H7C0.02840.14030.51050.171*
C80.05319 (6)0.50507 (15)0.7358 (3)0.1170 (8)
H8A0.05430.50010.84530.175*
H8B0.03820.5620.69280.175*
H8C0.07860.51220.72160.175*
C90.17542 (4)0.21164 (10)0.85409 (18)0.0570 (4)
H9A0.1920.15430.88120.068*
H9B0.16390.2110.74260.068*
C100.19683 (4)0.30695 (10)0.90319 (16)0.0500 (3)
C110.14472 (4)0.21363 (10)0.94876 (17)0.0528 (4)
H110.1470.15441.01520.063*
C120.22849 (4)0.34477 (11)0.84239 (16)0.0528 (4)
C130.24274 (4)0.28957 (13)0.73612 (19)0.0665 (4)
H130.23150.22890.70050.08*
C140.27354 (5)0.32351 (14)0.6821 (2)0.0749 (5)
H140.28290.28530.61170.09*
C150.29022 (5)0.41318 (14)0.7324 (2)0.0753 (5)
H150.31080.4360.69620.09*
C160.27623 (5)0.46919 (13)0.8368 (2)0.0729 (5)
H160.28740.53030.87020.087*
C170.24589 (4)0.43598 (12)0.89252 (18)0.0618 (4)
H170.2370.47440.96380.074*
C180.14669 (4)0.31886 (10)1.18989 (16)0.0489 (3)
C190.16297 (4)0.39793 (11)1.28447 (17)0.0588 (4)
H190.17950.44131.25120.071*
C200.15472 (5)0.41225 (13)1.42746 (18)0.0712 (5)
H200.16590.46511.49030.085*
C210.13019 (5)0.34949 (13)1.4787 (2)0.0769 (5)
H210.12450.36011.57480.092*
C220.11419 (5)0.27102 (14)1.3861 (2)0.0749 (5)
H220.09780.22791.42060.09*
C230.12210 (4)0.25515 (12)1.24222 (19)0.0640 (4)
H230.1110.20181.18050.077*
N10.15523 (3)0.30319 (9)1.04577 (13)0.0530 (3)
N20.18567 (3)0.35337 (8)1.01177 (13)0.0512 (3)
N30.09614 (6)0.03865 (13)0.8015 (3)0.1039 (6)
O1A0.1226 (6)0.0251 (11)0.856 (2)0.217 (11)0.32 (2)
O2A0.0810 (7)0.0219 (9)0.692 (3)0.150 (9)0.32 (2)
O1B0.13056 (17)0.0181 (4)0.8620 (6)0.0994 (18)0.68 (2)
O2B0.07079 (11)0.0280 (3)0.7954 (18)0.133 (3)0.68 (2)
O30.00013 (3)0.26599 (10)0.51909 (15)0.0943 (4)
O40.03612 (3)0.41708 (9)0.65777 (15)0.0895 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0562 (9)0.0791 (12)0.0831 (12)0.0132 (9)0.0070 (8)0.0252 (9)
C20.0544 (9)0.0571 (10)0.0805 (11)0.0057 (7)0.0090 (8)0.0163 (8)
C30.0465 (7)0.0560 (9)0.0544 (8)0.0053 (7)0.0128 (6)0.0076 (6)
C40.0499 (8)0.0585 (9)0.0583 (9)0.0052 (7)0.0116 (7)0.0080 (7)
C50.0521 (9)0.0721 (10)0.0634 (9)0.0034 (8)0.0128 (7)0.0007 (8)
C60.0439 (8)0.0927 (13)0.0627 (9)0.0030 (8)0.0078 (7)0.0117 (9)
C70.0633 (11)0.171 (2)0.0927 (15)0.0215 (13)0.0106 (10)0.0300 (15)
C80.1029 (16)0.0712 (13)0.158 (2)0.0177 (12)0.0050 (15)0.0059 (14)
C90.0481 (8)0.0579 (9)0.0623 (9)0.0015 (6)0.0082 (7)0.0064 (7)
C100.0467 (7)0.0532 (8)0.0468 (8)0.0045 (6)0.0048 (6)0.0021 (6)
C110.0497 (7)0.0487 (8)0.0570 (8)0.0034 (6)0.0069 (6)0.0037 (6)
C120.0458 (7)0.0607 (9)0.0486 (8)0.0045 (6)0.0051 (6)0.0070 (7)
C130.0605 (9)0.0757 (11)0.0636 (10)0.0038 (8)0.0158 (8)0.0013 (8)
C140.0638 (10)0.0997 (13)0.0652 (10)0.0148 (10)0.0236 (8)0.0080 (9)
C150.0552 (9)0.0993 (14)0.0731 (11)0.0025 (9)0.0192 (8)0.0248 (10)
C160.0645 (10)0.0762 (11)0.0779 (11)0.0064 (8)0.0171 (9)0.0142 (9)
C170.0572 (9)0.0654 (10)0.0624 (9)0.0007 (7)0.0138 (7)0.0054 (7)
C180.0444 (7)0.0515 (8)0.0492 (8)0.0016 (6)0.0084 (6)0.0038 (6)
C190.0679 (9)0.0545 (9)0.0550 (8)0.0081 (7)0.0165 (7)0.0002 (7)
C200.0940 (12)0.0650 (10)0.0565 (9)0.0043 (9)0.0218 (9)0.0042 (8)
C210.0960 (13)0.0823 (12)0.0604 (10)0.0022 (10)0.0344 (9)0.0049 (9)
C220.0743 (11)0.0834 (12)0.0750 (11)0.0091 (9)0.0334 (9)0.0107 (9)
C230.0586 (9)0.0666 (10)0.0681 (10)0.0126 (7)0.0181 (8)0.0028 (8)
N10.0488 (6)0.0571 (7)0.0529 (7)0.0123 (5)0.0121 (5)0.0067 (5)
N20.0488 (6)0.0538 (7)0.0490 (6)0.0051 (5)0.0081 (5)0.0020 (5)
N30.0774 (12)0.0602 (11)0.1527 (17)0.0077 (10)0.0133 (11)0.0300 (11)
O1A0.116 (9)0.062 (5)0.39 (2)0.029 (6)0.092 (11)0.055 (7)
O2A0.157 (9)0.057 (4)0.189 (14)0.003 (4)0.046 (10)0.039 (6)
O1B0.059 (2)0.067 (2)0.159 (4)0.0116 (14)0.001 (2)0.0281 (18)
O2B0.100 (2)0.0738 (17)0.202 (7)0.0342 (14)0.010 (3)0.005 (2)
O30.0558 (7)0.1252 (11)0.0873 (9)0.0017 (7)0.0105 (6)0.0107 (8)
O40.0699 (7)0.0812 (9)0.1052 (10)0.0147 (7)0.0018 (7)0.0063 (7)
Geometric parameters (Å, º) top
C1—C61.357 (2)C12—C171.399 (2)
C1—C21.399 (2)C13—C141.389 (2)
C1—H10.93C13—H130.93
C2—C31.3933 (19)C14—C151.371 (2)
C2—N31.456 (2)C14—H140.93
C3—C41.396 (2)C15—C161.377 (2)
C3—C111.5258 (19)C15—H150.93
C4—C51.383 (2)C16—C171.379 (2)
C4—H40.93C16—H160.93
C5—O41.3505 (19)C17—H170.93
C5—C61.410 (2)C18—C191.3897 (19)
C6—O31.361 (2)C18—C231.3902 (19)
C7—O31.424 (2)C18—N11.3949 (17)
C7—H7A0.96C19—C201.378 (2)
C7—H7B0.96C19—H190.93
C7—H7C0.96C20—C211.376 (2)
C8—O41.430 (2)C20—H200.93
C8—H8A0.96C21—C221.372 (2)
C8—H8B0.96C21—H210.93
C8—H8C0.96C22—C231.384 (2)
C9—C101.5040 (19)C22—H220.93
C9—C111.541 (2)C23—H230.93
C9—H9A0.97N1—N21.3829 (15)
C9—H9B0.97N3—O1A0.98 (2)
C10—N21.2867 (17)N3—O1B1.257 (7)
C10—C121.467 (2)N3—O2B1.272 (4)
C11—N11.4717 (17)N3—O2A1.282 (10)
C11—H110.98O2A—O2B1.07 (3)
C12—C131.388 (2)
C6—C1—C2120.45 (15)C14—C13—H13119.5
C6—C1—H1119.8C15—C14—C13120.18 (16)
C2—C1—H1119.8C15—C14—H14119.9
C3—C2—C1122.30 (15)C13—C14—H14119.9
C3—C2—N3121.69 (14)C14—C15—C16119.55 (16)
C1—C2—N3116.00 (14)C14—C15—H15120.2
C2—C3—C4115.82 (13)C16—C15—H15120.2
C2—C3—C11124.64 (13)C15—C16—C17120.90 (17)
C4—C3—C11119.39 (12)C15—C16—H16119.5
C5—C4—C3122.78 (13)C17—C16—H16119.5
C5—C4—H4118.6C16—C17—C12120.35 (15)
C3—C4—H4118.6C16—C17—H17119.8
O4—C5—C4125.83 (14)C12—C17—H17119.8
O4—C5—C6114.77 (14)C19—C18—C23118.84 (13)
C4—C5—C6119.38 (15)C19—C18—N1120.48 (12)
C1—C6—O3125.44 (15)C23—C18—N1120.68 (13)
C1—C6—C5119.17 (14)C20—C19—C18120.12 (14)
O3—C6—C5115.39 (15)C20—C19—H19119.9
O3—C7—H7A109.5C18—C19—H19119.9
O3—C7—H7B109.5C21—C20—C19120.98 (16)
H7A—C7—H7B109.5C21—C20—H20119.5
O3—C7—H7C109.5C19—C20—H20119.5
H7A—C7—H7C109.5C22—C21—C20119.12 (15)
H7B—C7—H7C109.5C22—C21—H21120.4
O4—C8—H8A109.5C20—C21—H21120.4
O4—C8—H8B109.5C21—C22—C23120.89 (15)
H8A—C8—H8B109.5C21—C22—H22119.6
O4—C8—H8C109.5C23—C22—H22119.6
H8A—C8—H8C109.5C22—C23—C18120.04 (15)
H8B—C8—H8C109.5C22—C23—H23120
C10—C9—C11102.46 (11)C18—C23—H23120
C10—C9—H9A111.3N2—N1—C18119.19 (11)
C11—C9—H9A111.3N2—N1—C11112.24 (10)
C10—C9—H9B111.3C18—N1—C11124.77 (11)
C11—C9—H9B111.3C10—N2—N1109.52 (11)
H9A—C9—H9B109.2O1A—N3—O1B4.4 (13)
N2—C10—C12121.14 (13)O1A—N3—O2B119.9 (10)
N2—C10—C9113.28 (12)O1B—N3—O2B119.3 (4)
C12—C10—C9125.54 (13)O1A—N3—O2A116.1 (10)
N1—C11—C3111.70 (11)O1B—N3—O2A112.2 (8)
N1—C11—C9102.22 (10)O2B—N3—O2A49.5 (12)
C3—C11—C9112.31 (12)O1A—N3—C2120.1 (9)
N1—C11—H11110.1O1B—N3—C2121.9 (3)
C3—C11—H11110.1O2B—N3—C2117.3 (2)
C9—C11—H11110.1O2A—N3—C2113.3 (6)
C13—C12—C17118.03 (14)O2B—O2A—N364.7 (11)
C13—C12—C10120.76 (14)O2A—O2B—N365.7 (5)
C17—C12—C10121.19 (13)C6—O3—C7116.90 (16)
C12—C13—C14120.99 (16)C5—O4—C8118.52 (14)
C12—C13—H13119.5
C6—C1—C2—C31.2 (3)N1—C18—C19—C20179.27 (13)
C6—C1—C2—N3179.87 (17)C18—C19—C20—C210.4 (2)
C1—C2—C3—C41.7 (2)C19—C20—C21—C220.8 (3)
N3—C2—C3—C4177.18 (15)C20—C21—C22—C230.7 (3)
C1—C2—C3—C11173.75 (14)C21—C22—C23—C180.3 (3)
N3—C2—C3—C117.3 (3)C19—C18—C23—C220.0 (2)
C2—C3—C4—C52.8 (2)N1—C18—C23—C22179.35 (14)
C11—C3—C4—C5172.92 (13)C19—C18—N1—N213.30 (19)
C3—C4—C5—O4177.22 (14)C23—C18—N1—N2165.99 (12)
C3—C4—C5—C61.0 (2)C19—C18—N1—C11169.58 (13)
C2—C1—C6—O3176.69 (16)C23—C18—N1—C119.7 (2)
C2—C1—C6—C53.0 (3)C3—C11—N1—N2116.82 (12)
O4—C5—C6—C1179.59 (15)C9—C11—N1—N23.46 (14)
C4—C5—C6—C12.0 (2)C3—C11—N1—C1885.48 (16)
O4—C5—C6—O30.7 (2)C9—C11—N1—C18154.24 (12)
C4—C5—C6—O3177.77 (14)C12—C10—N2—N1179.09 (11)
C11—C9—C10—N25.23 (15)C9—C10—N2—N13.25 (16)
C11—C9—C10—C12177.23 (12)C18—N1—N2—C10158.75 (11)
C2—C3—C11—N1163.01 (14)C11—N1—N2—C100.33 (15)
C4—C3—C11—N121.66 (18)C3—C2—N3—O1A14.5 (15)
C2—C3—C11—C982.81 (18)C1—C2—N3—O1A166.5 (15)
C4—C3—C11—C992.52 (15)C3—C2—N3—O1B19.2 (4)
C10—C9—C11—N14.77 (13)C1—C2—N3—O1B161.9 (3)
C10—C9—C11—C3115.09 (12)C3—C2—N3—O2B147.0 (8)
N2—C10—C12—C13173.82 (13)C1—C2—N3—O2B31.9 (9)
C9—C10—C12—C133.5 (2)C3—C2—N3—O2A158 (2)
N2—C10—C12—C174.5 (2)C1—C2—N3—O2A23 (2)
C9—C10—C12—C17178.15 (13)O1A—N3—O2A—O2B108.2 (15)
C17—C12—C13—C140.5 (2)O1B—N3—O2A—O2B110.4 (10)
C10—C12—C13—C14177.84 (13)C2—N3—O2A—O2B106.8 (8)
C12—C13—C14—C150.6 (2)O1A—N3—O2B—O2A100.1 (14)
C13—C14—C15—C160.1 (2)O1B—N3—O2B—O2A95.1 (9)
C14—C15—C16—C170.5 (2)C2—N3—O2B—O2A98.3 (7)
C15—C16—C17—C120.6 (2)C1—C6—O3—C71.3 (3)
C13—C12—C17—C160.1 (2)C5—C6—O3—C7178.40 (16)
C10—C12—C17—C16178.44 (13)C4—C5—O4—C85.7 (3)
C23—C18—C19—C200.0 (2)C6—C5—O4—C8175.99 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O1Bi0.932.553.467 (6)170
C20—H20···N2ii0.932.543.364 (2)149
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC23H21N3O4
Mr403.43
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)36.0919 (7), 13.4372 (1), 8.8190 (2)
β (°) 104.099 (1)
V3)4148.15 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9555, 3721, 2605
Rint0.033
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.114, 0.99
No. of reflections3721
No. of parameters292
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.10, 0.16

Computer programs: APEX (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O1Bi0.932.553.467 (6)170
C20—H20···N2ii0.932.543.364 (2)149
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x, y+1, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds