Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structure of the title compound, trinickel(II) tellurium(VI) hexa­oxide, has been reinvestigated [Newnham & Meagher (1967). Mater. Res. Bull. 2, 549-554] and confirmed to much higher precision. The structure is of the corundum (Al2O3) type, with Ni and Te replacing Al in an ordered manner. All the metal atoms occupy special positions with site symmetry 3.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536806043042/hb2175sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536806043042/hb2175Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 292 K
  • Mean [sigma](i-O) = 0.006 Å
  • R factor = 0.024
  • wR factor = 0.059
  • Data-to-parameter ratio = 15.6

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT112_ALERT_2_A ADDSYM Detects Additional (Pseudo) Symm. Elem... n
Author Response: The n glides would give rise to a C centring and 335 reflexes, some as strong as above 60 sigma, breake this symmetry.
PLAT112_ALERT_2_A ADDSYM Detects Additional (Pseudo) Symm. Elem...          n
Author Response: The n glides would give rise to a C centring and 335 reflexes, some as strong as above 60 sigma, breake this symmetry.
PLAT112_ALERT_2_A ADDSYM Detects Additional (Pseudo) Symm. Elem...          n
Author Response: The n glides would give rise to a C centring and 335 reflexes, some as strong as above 60 sigma, breake this symmetry.
PLAT113_ALERT_2_A ADDSYM Suggests Possible Pseudo/New Spacegroup .       R-3c
Author Response: The c centring is not possible due to the present 335 reflexes that breaks this symmetry. The centrosymmetry can not exist as two of the Ni atoms can not relate and merge into a single one.

Alert level B PLAT111_ALERT_2_B ADDSYM Detects (Pseudo) Centre of Symmetry ..... 100 PerFi
Alert level C PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 3.77 PLAT850_ALERT_2_C Check Flack Parameter Exact Value 0.00 and su .. 0.02
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 32.87 From the CIF: _reflns_number_total 514 Count of symmetry unique reflns 269 Completeness (_total/calc) 191.08% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 245 Fraction of Friedel pairs measured 0.911 Are heavy atom types Z>Si present yes
4 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 7 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97.

Trinickel(II) tellurium(VI) hexaoxide top
Crystal data top
Ni3TeO6Dx = 6.399 Mg m3
Mr = 399.73Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 2232 reflections
Hall symbol: R 3θ = 4.4–32.9°
a = 5.1087 (8) ŵ = 20.31 mm1
c = 13.767 (2) ÅT = 292 K
V = 311.17 (8) Å3Prism, green
Z = 30.09 × 0.06 × 0.04 mm
F(000) = 552
Data collection top
Oxford Xcalibur
diffractometer
514 independent reflections
Radiation source: fine-focus sealed tube, Oxford diffraction Xcalibur3506 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
ω scansθmax = 32.9°, θmin = 4.4°
Absorption correction: numerical
[X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)]
h = 77
Tmin = 0.500, Tmax = 1.000k = 77
2232 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.028P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.024(Δ/σ)max < 0.001
wR(F2) = 0.059Δρmax = 3.46 e Å3
S = 1.08Δρmin = 0.92 e Å3
514 reflectionsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
33 parametersExtinction coefficient: 0.0070 (8)
1 restraintAbsolute structure: Flack (1983), with 245 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.000 (17)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Te10.33330.66670.37517 (8)0.00413 (17)
Ni10.33330.66670.17325 (6)0.0040 (3)
Ni21.00001.00000.2144 (3)0.0093 (5)
Ni30.66670.33330.34602 (9)0.0064 (3)
O10.6298 (12)0.6699 (11)0.2845 (3)0.0041 (9)
O20.0070 (10)0.6347 (13)0.4453 (4)0.0066 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te10.00376 (19)0.00376 (19)0.0049 (3)0.00188 (9)0.0000.000
Ni10.0046 (4)0.0046 (4)0.0027 (6)0.00231 (18)0.0000.000
Ni20.0049 (3)0.0049 (3)0.0182 (13)0.00244 (14)0.0000.000
Ni30.0041 (4)0.0041 (4)0.0111 (8)0.00205 (18)0.0000.000
O10.0015 (17)0.006 (2)0.0038 (16)0.0007 (16)0.0004 (12)0.0005 (13)
O20.007 (2)0.006 (2)0.0068 (15)0.0036 (17)0.0021 (14)0.0032 (14)
Geometric parameters (Å, º) top
Te1—O2i1.923 (5)Ni2—O1vi2.040 (6)
Te1—O21.923 (5)Ni2—O12.040 (6)
Te1—O2ii1.923 (5)Ni2—O1vii2.040 (6)
Te1—O1i1.956 (5)Ni2—O2iv2.139 (7)
Te1—O1ii1.956 (5)Ni2—O2viii2.139 (7)
Te1—O11.956 (5)Ni2—O2ix2.139 (7)
Ni1—O2iii2.032 (6)Ni3—O1x2.008 (6)
Ni1—O2iv2.032 (6)Ni3—O1xi2.008 (6)
Ni1—O2v2.032 (6)Ni3—O12.008 (6)
Ni1—O1ii2.148 (5)Ni3—O2xii2.110 (5)
Ni1—O12.148 (5)Ni3—O2xiii2.110 (5)
Ni1—O1i2.148 (5)Ni3—O2ii2.110 (5)
O2i—Te1—O297.00 (16)O1vi—Ni2—O2viii87.9 (3)
O2i—Te1—O2ii97.00 (16)O1—Ni2—O2viii166.9 (3)
O2—Te1—O2ii97.00 (16)O1vii—Ni2—O2viii89.9 (2)
O2i—Te1—O1i169.85 (18)O2iv—Ni2—O2viii81.2 (3)
O2—Te1—O1i86.8 (2)O1vi—Ni2—O2ix166.9 (3)
O2ii—Te1—O1i91.8 (2)O1—Ni2—O2ix89.9 (2)
O2i—Te1—O1ii86.8 (2)O1vii—Ni2—O2ix87.9 (3)
O2—Te1—O1ii91.8 (2)O2iv—Ni2—O2ix81.2 (3)
O2ii—Te1—O1ii169.85 (18)O2viii—Ni2—O2ix81.2 (3)
O1i—Te1—O1ii83.6 (2)O1x—Ni3—O1xi103.49 (17)
O2i—Te1—O191.8 (2)O1x—Ni3—O1103.49 (17)
O2—Te1—O1169.85 (18)O1xi—Ni3—O1103.49 (17)
O2ii—Te1—O186.8 (2)O1x—Ni3—O2xii162.8 (3)
O1i—Te1—O183.6 (2)O1xi—Ni3—O2xii80.65 (12)
O1ii—Te1—O183.6 (2)O1—Ni3—O2xii91.52 (18)
O2iii—Ni1—O2iv103.96 (18)O1x—Ni3—O2xiii80.65 (12)
O2iii—Ni1—O2v103.96 (18)O1xi—Ni3—O2xiii91.52 (17)
O2iv—Ni1—O2v103.96 (18)O1—Ni3—O2xiii162.8 (3)
O2iii—Ni1—O1ii87.87 (13)O2xii—Ni3—O2xiii82.6 (2)
O2iv—Ni1—O1ii89.53 (19)O1x—Ni3—O2ii91.52 (18)
O2v—Ni1—O1ii159.0 (3)O1xi—Ni3—O2ii162.8 (3)
O2iii—Ni1—O1159.0 (3)O1—Ni3—O2ii80.65 (12)
O2iv—Ni1—O187.87 (13)O2xii—Ni3—O2ii82.6 (2)
O2v—Ni1—O189.53 (19)O2xiii—Ni3—O2ii82.6 (2)
O1ii—Ni1—O174.8 (2)Te1—O1—Ni397.3 (2)
O2iii—Ni1—O1i89.53 (19)Te1—O1—Ni2134.6 (3)
O2iv—Ni1—O1i159.0 (3)Te1—O1—Ni185.1 (3)
O2v—Ni1—O1i87.87 (13)Ni3—O1—Ni2117.5 (3)
O1ii—Ni1—O1i74.8 (2)Ni3—O1—Ni1131.4 (2)
O1—Ni1—O1i74.8 (2)Ni2—O1—Ni191.6 (3)
O1vi—Ni2—O199.5 (2)Te1—O2—Ni1xiv122.0 (3)
O1vi—Ni2—O1vii99.5 (2)Te1—O2—Ni3xv95.0 (2)
O1—Ni2—O1vii99.5 (2)Te1—O2—Ni2xvi137.6 (3)
O1vi—Ni2—O2iv89.90 (19)Ni1xiv—O2—Ni3xv125.7 (2)
O1—Ni2—O2iv87.9 (3)Ni1xiv—O2—Ni2xvi92.1 (3)
O1vii—Ni2—O2iv166.9 (3)Ni3xv—O2—Ni2xvi81.65 (18)
Symmetry codes: (i) x+y, x+1, z; (ii) y+1, xy+1, z; (iii) x+y2/3, x+2/3, z1/3; (iv) y+4/3, xy+5/3, z1/3; (v) x+1/3, y1/3, z1/3; (vi) x+y+1, x+2, z; (vii) y+2, xy+1, z; (viii) x+4/3, y+2/3, z1/3; (ix) x+y+1/3, x+2/3, z1/3; (x) y+1, xy, z; (xi) x+y+1, x+1, z; (xii) x+1, y, z; (xiii) x+y, x, z; (xiv) x1/3, y+1/3, z+1/3; (xv) x1, y, z; (xvi) x4/3, y2/3, z+1/3.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds