Download citation
Download citation
link to html
The pyrimidine ring of the title compound, C11H16N2O5S·H2O, is planar to within 0.026 (1) Å and makes an angle of 77.73 (8)° with the mean plane of the thiosugar ring. In terms of standard nucleoside nomenclature, this ring has a C1'-exo,C2'-endo conformation. The O5'-C5'-C4'-C3' torsion angle is -167.4 (2)° and the glycosidic S4'-C1'-N1-C2 torsion angle is -101.8 (2)° (anti).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199012548/ha1268sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199012548/ha1268Isup2.hkl
Contains datablock I

CCDC reference: 140973

Comment top

5-Substituted 2'-deoxy-4'-thiouridines possess significant antiviral activity (Dyson et al., 1991; Rahim et al., 1996). In order to provide data for structure–activity relationships, the crystal structure of the title compound, (I), synthesized by Macculloch (1998), is presented here. \sch

Bond lengths in (I) are normal. The C1'—S4' and C4'—S4' bonds are 1.847 (2) and 1.837 (2) Å, respectively, slightly longer than the mean length of 1.818 Å measured in a 6-aza-2'-deoxy-4'-thiouridine (Basnak et al., 1998), but in good agreement with the values found in 4'-thiothymidine (Koole et al., 1992; Uenischi et al., 1993) and 5-(2-bromovinyl)-2'-deoxy-4'-thiouridine (Koole et al., 1992) which were in the range 1.83–1.85 Å. The thiosugar has the C1'-exo,C2'-endo (1T2) conformation (south), a pseudo-rotation phase angle (P) of 135.7° and a degree of pucker of 49.9°. These two atoms are displaced by 0.648 (5) and 0.134 (6) Å, respectively, on opposite sides of the C3'/C4'/S4' plane. This appears to be an unusual conformation for sugar rings of this type. The conformation about C4'—C5' is trans [O5'—C5'—C4—C3' −167.4 (2)°]. The glycosidic torsion angle, defined as S4'—C1'—N1—C2 (IUPAC-IUB Joint Commission on Biochemical Nomenclature, 1983) is −101.8 (2)°, similar to that found in the crystal structure of the sulfone of 4'-thiothymidine (−99.8°; Hancox et al., 1994) and in some 6-aza-2'-deoxyuridines (Basnak et al., 1998), but different from the angles between −121 and −146° found in other thiouridines (Bobek et al., 1975; Koole et al., 1992; Uenische et al., 1993). The steeper inclination of the pyrimidine ring with respect to the sugar ring in both the sulfoxide and the sulfone is presumably due to steric interactions between these O atoms and the pyrimidine ring, specifically, C6 and H6; O4''···C6 is 3.142 (3) Å and O4''···H6 is 2.77 Å in the title compound. In the 6-aza-nucleosides, repulsion between the N atom in the 6-position of the pyrimidine ring and the 4'-O or 4'-S atom of the sugar may affect the glycosidic torsion angle in a similar manner.

In the crystal (Fig. 1), nucleoside and water molecules are linked through a three-dimensional network of hydrogen bonds. Atoms N3, O3' and O5' each donate a proton, forming bonds with, repectively, the water molecule, the O5' atom and the O2 atom of neighbouring nucleoside molecules. The water molecule, in turn, forms hydrogen bonds with O5' and the sulfone O atom of two different molecules (Table 2). All H atoms attached to electronegative atoms take part in hydrogen bonding consistent with the principle of maximum hydrogen bonding (Robertson, 1953).

Experimental top

The title compound was recrystallized was from MeOH–H2O solution.

Refinement top

H atoms were placed in calculated positions, except for those bonded to O3' and O5', and those of the water molecule, which were located from difference maps and refined with isotropic displacement parameters.

Computing details top

Data collection: R-AXIS II Software (Rigaku, 1994); cell refinement: R-AXIS II Software; data reduction: TEXSAN (Molecular Structure Corporation, 1993); program(s) used to solve structure: TEXSAN; program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL93.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids (ORTEPII; Johnson, 1976).
5-Ethyl-4'-thio-2'-deoxyuridine sulfoxide monohydrate top
Crystal data top
C11H16N2O5S·H2ODx = 1.541 Mg m3
Mr = 306.33Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 7338 reflections (post-refined using complete data set) reflections
a = 9.343 (4) Åθ = 1.9–25.2°
b = 21.922 (8) ŵ = 0.27 mm1
c = 6.447 (3) ÅT = 293 K
V = 1320.5 (10) Å3Rod, colourless
Z = 40.40 × 0.25 × 0.25 mm
F(000) = 648
Data collection top
Rigaku R-AXIS II area-detector
diffractometer
2169 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.040
Graphite monochromatorθmax = 25.2°, θmin = 1.9°
image–plate scansh = 1011
7338 measured reflectionsk = 2626
2184 independent reflectionsl = 77
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0329P)2 + 0.5503P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.19 e Å3
2184 reflectionsΔρmin = 0.16 e Å3
197 parametersAbsolute structure: Flack (1983)
0 restraintsAbsolute structure parameter: 0.00 (8)
Primary atom site location: structure-invariant direct methods
Crystal data top
C11H16N2O5S·H2OV = 1320.5 (10) Å3
Mr = 306.33Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.343 (4) ŵ = 0.27 mm1
b = 21.922 (8) ÅT = 293 K
c = 6.447 (3) Å0.40 × 0.25 × 0.25 mm
Data collection top
Rigaku R-AXIS II area-detector
diffractometer
2169 reflections with I > 2σ(I)
7338 measured reflectionsRint = 0.040
2184 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.077Δρmax = 0.19 e Å3
S = 1.07Δρmin = 0.16 e Å3
2184 reflectionsAbsolute structure: Flack (1983)
197 parametersAbsolute structure parameter: 0.00 (8)
0 restraints
Special details top

Experimental. Image plates were scanned in 5° frames covering 180° of rotation about one setting, with crystal–detector distance 80 mm and exposure time 10 min per frame. Reflections with I < σ(I) were discarded. Data includes 1062 Friedel pairs.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for reflections with I > σ(I). Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F. The observed criterion of F2 > 2σ(F2) is used only for calculating the R factor for observed reflections etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S4'0.76997 (6)0.21012 (2)0.88146 (8)0.0330 (2)
O20.5095 (2)0.09395 (7)0.6681 (3)0.0392 (4)
O3'0.6729 (2)0.29336 (9)0.4086 (3)0.0507 (5)
O4''0.9216 (2)0.19426 (7)0.9345 (3)0.0426 (4)
O40.7933 (2)0.07456 (6)0.6420 (3)0.0465 (4)
O5'0.8258 (2)0.34256 (8)1.0481 (3)0.0519 (5)
O61.0463 (2)0.08973 (8)1.1273 (3)0.0490 (5)
N10.7522 (2)0.10763 (7)0.6403 (3)0.0276 (4)
N30.6552 (2)0.01055 (8)0.6500 (3)0.0325 (4)
H30.5809 (2)0.01258 (8)0.6501 (3)0.039*
C1'0.7333 (2)0.17334 (8)0.6293 (3)0.0281 (4)
H1'0.6335 (2)0.18165 (8)0.5919 (3)0.034*
C2'0.8290 (3)0.20670 (9)0.4770 (3)0.0353 (5)
H2'10.9289 (3)0.19742 (9)0.5031 (3)0.042*
H2'20.8060 (3)0.19530 (9)0.3355 (3)0.042*
C20.6309 (2)0.07208 (9)0.6550 (3)0.0296 (5)
C3'0.7990 (3)0.27402 (9)0.5133 (3)0.0323 (5)
H3'0.8810 (3)0.29851 (9)0.4679 (3)0.039*
C40.7880 (3)0.01865 (9)0.6448 (3)0.0331 (5)
C4'0.7719 (2)0.28406 (8)0.7473 (3)0.0309 (5)
H4'0.6767 (2)0.30234 (8)0.7626 (3)0.037*
C50.9105 (2)0.02172 (8)0.6404 (4)0.0293 (4)
C5'0.8783 (3)0.32623 (9)0.8484 (4)0.0403 (6)
H5'10.8910 (3)0.36250 (9)0.7643 (4)0.048*
H5'20.9702 (3)0.30601 (9)0.8615 (4)0.048*
C60.8875 (2)0.08200 (8)0.6356 (4)0.0294 (4)
H60.9663 (2)0.10788 (8)0.6287 (4)0.035*
C71.0574 (2)0.00692 (9)0.6384 (4)0.0396 (6)
H7A1.0612 (2)0.03610 (9)0.5254 (4)0.047*
H7B1.0699 (2)0.02948 (9)0.7665 (4)0.047*
C81.1815 (3)0.03652 (11)0.6152 (5)0.0466 (6)
H8A1.2697 (3)0.01406 (11)0.6187 (5)0.070*
H8B1.1737 (3)0.05767 (11)0.4853 (5)0.070*
H8C1.1801 (3)0.06551 (11)0.7268 (5)0.070*
HO3'0.712 (4)0.3023 (18)0.284 (7)0.103 (14)*
HO5'0.904 (5)0.3614 (19)1.131 (7)0.132 (16)*
HW10.979 (4)0.1159 (14)1.095 (5)0.071 (10)*
HW21.134 (4)0.0980 (15)1.073 (6)0.085 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S4'0.0446 (3)0.0242 (2)0.0303 (3)0.0034 (2)0.0068 (2)0.0020 (2)
O20.0291 (9)0.0394 (8)0.0492 (11)0.0012 (7)0.0044 (7)0.0036 (7)
O3'0.0542 (12)0.0524 (10)0.0454 (11)0.0168 (8)0.0110 (9)0.0092 (9)
O4''0.0527 (11)0.0344 (8)0.0406 (10)0.0026 (7)0.0148 (8)0.0046 (7)
O40.0595 (12)0.0237 (7)0.0564 (10)0.0034 (7)0.0006 (10)0.0001 (7)
O5'0.0664 (13)0.0479 (10)0.0414 (10)0.0187 (9)0.0010 (9)0.0130 (8)
O60.0455 (12)0.0380 (9)0.0636 (13)0.0046 (8)0.0082 (11)0.0097 (9)
N10.0265 (9)0.0220 (7)0.0344 (9)0.0000 (6)0.0024 (8)0.0032 (6)
N30.0355 (10)0.0270 (8)0.0349 (11)0.0071 (7)0.0011 (8)0.0018 (8)
C1'0.0251 (11)0.0241 (9)0.0353 (11)0.0007 (7)0.0004 (10)0.0006 (8)
C2'0.0463 (14)0.0309 (10)0.0288 (11)0.0053 (10)0.0037 (9)0.0019 (9)
C20.0324 (13)0.0290 (10)0.0273 (12)0.0036 (8)0.0014 (9)0.0023 (8)
C3'0.0318 (13)0.0292 (10)0.0360 (12)0.0002 (8)0.0017 (10)0.0055 (8)
C40.0460 (14)0.0257 (10)0.0276 (11)0.0025 (8)0.0023 (11)0.0002 (8)
C4'0.0320 (12)0.0239 (9)0.0368 (12)0.0003 (8)0.0006 (9)0.0027 (8)
C50.0331 (12)0.0241 (9)0.0305 (11)0.0024 (8)0.0050 (10)0.0025 (8)
C5'0.0451 (14)0.0304 (10)0.0456 (14)0.0080 (9)0.0009 (12)0.0040 (10)
C60.0285 (12)0.0255 (9)0.0342 (11)0.0002 (8)0.0027 (10)0.0048 (9)
C70.0399 (13)0.0285 (10)0.0503 (15)0.0091 (9)0.0072 (12)0.0056 (10)
C80.0367 (14)0.0449 (13)0.058 (2)0.0079 (10)0.0005 (13)0.0047 (12)
Geometric parameters (Å, º) top
S4'—O4''1.498 (2)N3—C21.368 (3)
S4'—C4'1.837 (2)N3—C41.396 (3)
S4'—C1'1.847 (2)C1'—C2'1.516 (3)
O2—C21.234 (3)C2'—C3'1.520 (3)
O3'—C3'1.423 (3)C3'—C4'1.546 (3)
O4—C41.227 (3)C4—C51.447 (3)
O5'—C5'1.423 (3)C4'—C5'1.506 (3)
N1—C21.379 (3)C5—C61.339 (3)
N1—C61.383 (3)C5—C71.509 (3)
N1—C1'1.453 (2)C7—C81.508 (3)
O4''—S4'—C4'107.64 (10)O3'—C3'—C4'106.5 (2)
O4''—S4'—C1'105.97 (9)C2'—C3'—C4'108.6 (2)
C4'—S4'—C1'88.44 (9)O4—C4—N3119.6 (2)
C2—N1—C6121.5 (2)O4—C4—C5125.4 (2)
C2—N1—C1'117.6 (2)N3—C4—C5115.0 (2)
C6—N1—C1'120.9 (2)C5'—C4'—C3'113.7 (2)
C2—N3—C4126.9 (2)C5'—C4'—S4'110.1 (2)
N1—C1'—C2'116.0 (2)C3'—C4'—S4'109.59 (13)
N1—C1'—S4'111.53 (14)C6—C5—C4118.5 (2)
C2'—C1'—S4'104.47 (14)C6—C5—C7123.8 (2)
C1'—C2'—C3'105.0 (2)C4—C5—C7117.7 (2)
O2—C2—N3122.5 (2)O5'—C5'—C4'108.6 (2)
O2—C2—N1122.7 (2)C5—C6—N1123.1 (2)
N3—C2—N1114.8 (2)C8—C7—C5115.9 (2)
O3'—C3'—C2'111.6 (2)
C2—N1—C1'—C2'138.8 (2)O3'—C3'—C4'—C5'121.2 (2)
C6—N1—C1'—C2'41.0 (3)C2'—C3'—C4'—C5'118.4 (2)
C2—N1—C1'—S4'101.8 (2)O3'—C3'—C4'—S4'115.1 (2)
C6—N1—C1'—S4'78.4 (2)C2'—C3'—C4'—S4'5.3 (2)
O4''—S4'—C1'—N159.2 (2)O4''—S4'—C4'—C5'40.0 (2)
C4'—S4'—C1'—N1167.13 (15)C1'—S4'—C4'—C5'146.3 (2)
O4''—S4'—C1'—C2'66.78 (15)O4''—S4'—C4'—C3'85.7 (2)
C4'—S4'—C1'—C2'41.13 (15)C1'—S4'—C4'—C3'20.6 (2)
N1—C1'—C2'—C3'174.1 (2)O4—C4—C5—C6177.3 (2)
S4'—C1'—C2'—C3'50.9 (2)N3—C4—C5—C61.9 (3)
C4—N3—C2—O2176.9 (2)O4—C4—C5—C71.9 (3)
C4—N3—C2—N14.2 (3)N3—C4—C5—C7179.0 (2)
C6—N1—C2—O2176.9 (2)C3'—C4'—C5'—O5'167.4 (2)
C1'—N1—C2—O23.3 (3)S4'—C4'—C5'—O5'69.2 (2)
C6—N1—C2—N34.2 (3)C4—C5—C6—N11.8 (4)
C1'—N1—C2—N3175.6 (2)C7—C5—C6—N1179.1 (2)
C1'—C2'—C3'—O3'81.4 (2)C2—N1—C6—C51.4 (3)
C1'—C2'—C3'—C4'35.7 (2)C1'—N1—C6—C5178.4 (2)
C2—N3—C4—O4179.5 (2)C6—C5—C7—C84.1 (4)
C2—N3—C4—C51.3 (3)C4—C5—C7—C8174.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O6i0.862.072.898 (3)161
O3—HO3···O5ii0.90 (2)2.06 (2)2.934 (2)164 (2)
O5—HO5···O2iii1.00 (2)1.90 (3)2.869 (2)164 (3)
O6—HW1···O40.87 (3)2.08 (2)2.855 (3)148 (2)
O6—HW2···O5iii0.91 (3)2.35 (2)3.210 (3)158 (2)
Symmetry codes: (i) x3/2, y, z+1/2; (ii) x, y, z+1; (iii) x1/2, y1/2, z2.

Experimental details

Crystal data
Chemical formulaC11H16N2O5S·H2O
Mr306.33
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)9.343 (4), 21.922 (8), 6.447 (3)
V3)1320.5 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.40 × 0.25 × 0.25
Data collection
DiffractometerRigaku R-AXIS II area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7338, 2184, 2169
Rint0.040
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.077, 1.07
No. of reflections2184
No. of parameters197
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.16
Absolute structureFlack (1983)
Absolute structure parameter0.00 (8)

Computer programs: R-AXIS II Software (Rigaku, 1994), R-AXIS II Software, TEXSAN (Molecular Structure Corporation, 1993), TEXSAN, SHELXL93 (Sheldrick, 1993), ORTEPII (Johnson, 1976), SHELXL93.

Selected geometric parameters (Å, º) top
S4'—O4''1.498 (2)O5'—C5'1.423 (3)
S4'—C4'1.837 (2)N1—C21.379 (3)
S4'—C1'1.847 (2)N1—C61.383 (3)
O2—C21.234 (3)N1—C1'1.453 (2)
O3'—C3'1.423 (3)N3—C21.368 (3)
O4—C41.227 (3)N3—C41.396 (3)
O4''—S4'—C4'107.64 (10)C2'—C1'—S4'104.47 (14)
O4''—S4'—C1'105.97 (9)C1'—C2'—C3'105.0 (2)
C4'—S4'—C1'88.44 (9)O3'—C3'—C2'111.6 (2)
C2—N1—C6121.5 (2)O3'—C3'—C4'106.5 (2)
C2—N1—C1'117.6 (2)C2'—C3'—C4'108.6 (2)
C6—N1—C1'120.9 (2)C5'—C4'—C3'113.7 (2)
N1—C1'—C2'116.0 (2)C5'—C4'—S4'110.1 (2)
N1—C1'—S4'111.53 (14)C3'—C4'—S4'109.59 (13)
C2—N1—C1'—C2'138.8 (2)C1'—C2'—C3'—C4'35.7 (2)
C6—N1—C1'—C2'41.0 (3)C2'—C3'—C4'—S4'5.3 (2)
C2—N1—C1'—S4'101.8 (2)C1'—S4'—C4'—C3'20.6 (2)
C6—N1—C1'—S4'78.4 (2)C3'—C4'—C5'—O5'167.4 (2)
C4'—S4'—C1'—C2'41.13 (15)S4'—C4'—C5'—O5'69.2 (2)
S4'—C1'—C2'—C3'50.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O6i0.862.072.898 (3)161
O3'—HO3'···O5'ii0.90 (2)2.06 (2)2.934 (2)164 (2)
O5'—HO5'···O2iii1.00 (2)1.90 (3)2.869 (2)164 (3)
O6—HW1···O4''0.87 (3)2.08 (2)2.855 (3)148 (2)
O6—HW2···O5'iii0.91 (3)2.35 (2)3.210 (3)158 (2)
Symmetry codes: (i) x3/2, y, z+1/2; (ii) x, y, z+1; (iii) x1/2, y1/2, z2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds