Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, C17H21NO3S, the S atom is in a distorted tetrahedral geometry and the N atom exhibits sp2 character. The antiperiplanar conformation is observed for the N and hydroxyl-O atoms and the torsion angle around the N—C linkage is −136.3 (2)°. The mol­ecules are linked by O—H...O intermolecular hydrogen bonds to form an infinite one-dimensional chains along the c axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270198017429/ha1248sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270198017429/ha1248Isup2.hkl
Contains datablock I

CCDC reference: 142767

Comment top

The title compound is an N-tosyl derivative of (-)ephedrine. Generally ephedrine and its derivatives are used as sympathomimetic agents for allergic disorders, central nervous system stimulation, prophylaxis and treatment of hypotension and hypersensitive carotid sinusitis. The structure determination of the title compound, (I), was carried out in order to elucidate the molecular conformation and packing arrangements.

Scheme I

The S atom is in a distorted tetrahedral geometry with the maximum and minimum bond angles around this atom being 119.8 (1) and 106.4 (1)°, respectively. The sum of the bond angles around the N1 atom [354.6 (2)°] indicates the sp2 character of this atom; the deviation of N1 from the S1—C8—C9 plane is 0.206 (2) Å. The S—N, S—O and C—S distances agree with those values reported for the toluenesulfonylamino derivatives (Urtiaga et al., 1994; Arriortua et al., 1995).

The N1—C9—C11—O3, torsion angle [164.6 (2)°] charaterizes the antiperiplanar conformation for the N1 and O3 atoms. The conformation observed across the S1—N1—C9—C11 linkage is -anti-clinal [torsion angle −136.3 (2)°]. The two phenyl ring planes form a dihedral angle of 59.3 (1)° between them (see Fig. 1).

In the solid state, the molecules translated along the c direction are linked through O3—H3B···O2i intermolecular hydrogen bonds (Table 2) to form infinite one-dimensional chains. Along the chain, the phenyl rings are stacked without any π-π interactions.

Experimental top

Ephedrine (1 g, 6.05 mmol), p-toluenesulfonyl chloride (1.73 g, 9.07 mmol) and tetra-n-butylammonium hydrogen sulfate (0.410 g, 1.21 mmol) in 50 ml of dry benzene was stirred with 10 ml of 50% NaOH at room temperature for 1 h. After completion of the reaction, the organic layer was separated, washed with water and dried over MgSO4. After removal of the solvent, it gave a solid which was recrystallized from methyl alcohol. (yield 80%, m.p. 397–399 K).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 1997) PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The structure of title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme.
(1R,2S)-(2-N-methyl-N-4-toluenesulfonyl)amino-1-phenyl-1-propanol top
Crystal data top
C17H21NO3SF(000) = 340
Mr = 319.41Dx = 1.294 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2y1Cell parameters from 4453 reflections
a = 6.0272 (2) Åθ = 2.8–33.1°
b = 18.6624 (8) ŵ = 0.21 mm1
c = 7.3642 (3) ÅT = 293 K
β = 98.148 (1)°Parallelepiped, colourless
V = 819.98 (6) Å30.50 × 0.34 × 0.26 mm
Z = 2
Data collection top
Siemens SMART CCD area detector
diffractometer
3379 independent reflections
Radiation source: fine-focus sealed tube3038 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 8.33 pixels mm-1θmax = 27.5°, θmin = 2.8°
ω scansh = 77
Absorption correction: empirical (using intensity measurements)
SADABS (Sheldrick, 1996)
k = 2424
Tmin = 0.903, Tmax = 0.948l = 09
5485 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0586P)2 + 0.0071P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3379 reflectionsΔρmax = 0.40 e Å3
199 parametersΔρmin = 0.34 e Å3
1 restraintAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.13 (7)
Crystal data top
C17H21NO3SV = 819.98 (6) Å3
Mr = 319.41Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.0272 (2) ŵ = 0.21 mm1
b = 18.6624 (8) ÅT = 293 K
c = 7.3642 (3) Å0.50 × 0.34 × 0.26 mm
β = 98.148 (1)°
Data collection top
Siemens SMART CCD area detector
diffractometer
3379 independent reflections
Absorption correction: empirical (using intensity measurements)
SADABS (Sheldrick, 1996)
3038 reflections with I > 2σ(I)
Tmin = 0.903, Tmax = 0.948Rint = 0.027
5485 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.104Δρmax = 0.40 e Å3
S = 1.06Δρmin = 0.34 e Å3
3379 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
199 parametersAbsolute structure parameter: 0.13 (7)
1 restraint
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 10 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was −35°. Crystal decay was monitored by repeating thirty initial frames at the end of data collection and analysing the intensity of duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.71634 (9)0.52841 (3)0.16550 (6)0.03538 (14)
N10.6812 (3)0.53064 (12)0.38077 (19)0.0332 (3)
O10.5257 (4)0.49339 (10)0.0678 (2)0.0560 (5)
O20.9365 (3)0.50049 (10)0.1579 (2)0.0492 (4)
O31.0979 (3)0.50374 (11)0.7841 (2)0.0617 (6)
H3B1.09220.50420.89470.093*
C10.7120 (4)0.61742 (11)0.0817 (3)0.0341 (5)
C20.9060 (4)0.65819 (14)0.1082 (3)0.0457 (6)
H2A1.03950.63870.16620.055*
C30.8984 (6)0.72823 (15)0.0473 (4)0.0578 (7)
H3A1.02850.75570.06500.069*
C40.7016 (6)0.75878 (14)0.0397 (3)0.0549 (7)
C50.5118 (6)0.71686 (16)0.0663 (4)0.0581 (7)
H5A0.37910.73620.12620.070*
C60.5137 (5)0.64620 (15)0.0058 (3)0.0463 (6)
H6A0.38360.61880.02380.056*
C70.6968 (9)0.83623 (17)0.1010 (5)0.0926 (13)
H7A0.84370.85660.07140.139*0.50
H7B0.59270.86250.03930.139*0.50
H7C0.65100.83870.23110.139*0.50
H7D0.54790.84860.15650.139*0.50
H7E0.79890.84270.18850.139*0.50
H7F0.74060.86660.00320.139*0.50
C80.4563 (5)0.54798 (18)0.4198 (4)0.0591 (8)
H8A0.45520.54770.55000.089*
H8B0.35190.51300.36310.089*
H8C0.41410.59460.37190.089*
C90.8738 (4)0.54664 (11)0.5219 (3)0.0337 (5)
H9A1.01010.53740.46730.040*
C100.8826 (6)0.62448 (14)0.5843 (4)0.0595 (8)
H10A0.88040.65530.47970.089*
H10B1.01780.63260.66770.089*
H10C0.75520.63470.64490.089*
C110.8771 (4)0.49567 (13)0.6867 (3)0.0396 (5)
H11A0.76860.51260.76430.048*
C120.8253 (4)0.41887 (13)0.6347 (3)0.0387 (5)
C130.6351 (5)0.38624 (15)0.6823 (4)0.0522 (6)
H13A0.54020.41180.74760.063*
C140.5852 (6)0.31557 (16)0.6332 (4)0.0613 (8)
H14A0.45870.29380.66750.074*
C150.7223 (6)0.27767 (15)0.5340 (4)0.0630 (8)
H15A0.68730.23060.49940.076*
C160.9115 (6)0.30947 (15)0.4861 (4)0.0618 (8)
H16A1.00470.28360.41970.074*
C170.9643 (5)0.37935 (15)0.5355 (4)0.0516 (6)
H17B1.09300.40030.50260.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0435 (3)0.0380 (2)0.0233 (2)0.0017 (3)0.00025 (16)0.0016 (2)
N10.0292 (8)0.0437 (8)0.0267 (6)0.0019 (9)0.0037 (6)0.0023 (8)
O10.0702 (13)0.0519 (10)0.0397 (8)0.0153 (9)0.0142 (8)0.0032 (7)
O20.0612 (12)0.0588 (9)0.0293 (7)0.0238 (9)0.0118 (7)0.0017 (6)
O30.0586 (12)0.0873 (14)0.0333 (8)0.0071 (10)0.0142 (7)0.0011 (8)
C10.0379 (12)0.0407 (11)0.0237 (9)0.0027 (9)0.0044 (8)0.0045 (8)
C20.0404 (14)0.0582 (15)0.0371 (11)0.0044 (11)0.0007 (9)0.0048 (10)
C30.076 (2)0.0558 (16)0.0424 (13)0.0187 (15)0.0119 (12)0.0002 (11)
C40.089 (2)0.0414 (13)0.0384 (12)0.0064 (14)0.0223 (13)0.0007 (10)
C50.0650 (19)0.0614 (17)0.0484 (14)0.0228 (15)0.0103 (13)0.0140 (12)
C60.0402 (13)0.0574 (15)0.0404 (12)0.0045 (11)0.0031 (9)0.0080 (10)
C70.165 (4)0.0467 (17)0.072 (2)0.012 (2)0.037 (2)0.0089 (15)
C80.0387 (14)0.086 (2)0.0552 (14)0.0092 (13)0.0138 (11)0.0106 (13)
C90.0334 (11)0.0430 (12)0.0252 (9)0.0039 (8)0.0056 (7)0.0026 (7)
C100.094 (2)0.0464 (14)0.0378 (13)0.0163 (15)0.0085 (14)0.0067 (11)
C110.0462 (14)0.0505 (12)0.0220 (8)0.0013 (11)0.0043 (8)0.0009 (9)
C120.0461 (14)0.0442 (12)0.0254 (10)0.0048 (10)0.0041 (9)0.0103 (9)
C130.0533 (16)0.0621 (16)0.0424 (13)0.0019 (13)0.0113 (11)0.0046 (11)
C140.065 (2)0.0617 (17)0.0564 (16)0.0144 (14)0.0045 (14)0.0138 (13)
C150.089 (2)0.0410 (14)0.0569 (16)0.0043 (14)0.0019 (15)0.0045 (12)
C160.075 (2)0.0485 (15)0.0647 (17)0.0131 (14)0.0193 (15)0.0051 (12)
C170.0554 (17)0.0483 (14)0.0532 (14)0.0079 (12)0.0158 (12)0.0073 (11)
Geometric parameters (Å, º) top
S1—O11.425 (2)C7—H7F0.9600
S1—O21.434 (2)C8—H8A0.9600
S1—N11.629 (1)C8—H8B0.9600
S1—C11.771 (2)C8—H8C0.9600
N1—C81.461 (3)C9—C101.522 (3)
N1—C91.475 (3)C9—C111.540 (3)
O3—C111.427 (3)C9—H9A0.9800
O3—H3B0.8200C10—H10A0.9600
C1—C61.383 (3)C10—H10B0.9600
C1—C21.386 (3)C10—H10C0.9600
C2—C31.381 (4)C11—C121.505 (3)
C2—H2A0.9300C11—H11A0.9800
C3—C41.388 (4)C12—C131.386 (4)
C3—H3A0.9300C12—C171.398 (3)
C4—C51.377 (5)C13—C141.389 (4)
C4—C71.513 (4)C13—H13A0.9300
C5—C61.391 (4)C14—C151.374 (5)
C5—H5A0.9300C14—H14A0.9300
C6—H6A0.9300C15—C161.375 (4)
C7—H7A0.9600C15—H15A0.9300
C7—H7B0.9600C16—C171.379 (4)
C7—H7C0.9600C16—H16A0.9300
C7—H7D0.9600C17—H17B0.9300
C7—H7E0.9600
O1—S1—O2119.9 (1)H7C—C7—H7F141.1
O1—S1—N1107.2 (1)H7D—C7—H7F109.5
O2—S1—N1107.2 (1)H7E—C7—H7F109.5
O1—S1—C1106.4 (1)N1—C8—H8A109.5
O2—S1—C1107.2 (1)N1—C8—H8B109.5
N1—S1—C1108.5 (1)H8A—C8—H8B109.5
C8—N1—C9118.4 (2)N1—C8—H8C109.5
C8—N1—S1116.7 (2)H8A—C8—H8C109.5
C9—N1—S1119.5 (1)H8B—C8—H8C109.5
C11—O3—H3B109.5N1—C9—C10113.3 (2)
C6—C1—C2120.6 (2)N1—C9—C11110.56 (18)
C6—C1—S1119.72 (18)C10—C9—C11110.83 (17)
C2—C1—S1119.69 (17)N1—C9—H9A107.3
C3—C2—C1119.1 (2)C10—C9—H9A107.3
C3—C2—H2A120.5C11—C9—H9A107.3
C1—C2—H2A120.5C9—C10—H10A109.5
C2—C3—C4121.7 (3)C9—C10—H10B109.5
C2—C3—H3A119.1H10A—C10—H10B109.5
C4—C3—H3A119.1C9—C10—H10C109.5
C5—C4—C3118.1 (2)H10A—C10—H10C109.5
C5—C4—C7121.3 (3)H10B—C10—H10C109.5
C3—C4—C7120.6 (3)O3—C11—C12111.9 (2)
C4—C5—C6121.6 (3)O3—C11—C9103.75 (18)
C4—C5—H5A119.2C12—C11—C9114.15 (16)
C6—C5—H5A119.2O3—C11—H11A108.9
C1—C6—C5119.0 (3)C12—C11—H11A108.9
C1—C6—H6A120.5C9—C11—H11A108.9
C5—C6—H6A120.5C13—C12—C17118.6 (3)
C4—C7—H7A109.5C13—C12—C11120.2 (2)
C4—C7—H7B109.5C17—C12—C11121.2 (2)
H7A—C7—H7B109.5C12—C13—C14120.5 (3)
C4—C7—H7C109.5C12—C13—H13A119.8
H7A—C7—H7C109.5C14—C13—H13A119.8
H7B—C7—H7C109.5C15—C14—C13120.2 (3)
C4—C7—H7D109.5C15—C14—H14A119.9
H7A—C7—H7D141.1C13—C14—H14A119.9
H7B—C7—H7D56.3C14—C15—C16119.8 (3)
H7C—C7—H7D56.3C14—C15—H15A120.1
C4—C7—H7E109.5C16—C15—H15A120.1
H7A—C7—H7E56.3C15—C16—C17120.6 (3)
H7B—C7—H7E141.1C15—C16—H16A119.7
H7C—C7—H7E56.3C17—C16—H16A119.7
H7D—C7—H7E109.5C16—C17—C12120.3 (3)
C4—C7—H7F109.5C16—C17—H17B119.9
H7A—C7—H7F56.3C12—C17—H17B119.9
H7B—C7—H7F56.3
O1—S1—N1—C841.8 (2)C4—C5—C6—C10.6 (4)
O2—S1—N1—C8171.7 (2)C8—N1—C9—C1054.8 (3)
C1—S1—N1—C872.8 (2)S1—N1—C9—C1098.6 (2)
O1—S1—N1—C9164.4 (2)C8—N1—C9—C1170.4 (3)
O2—S1—N1—C934.5 (2)S1—N1—C9—C11136.3 (2)
C1—S1—N1—C981.0 (2)N1—C9—C11—O3164.6 (2)
O1—S1—C1—C620.8 (2)C10—C9—C11—O368.9 (3)
O2—S1—C1—C6150.15 (18)N1—C9—C11—C1242.5 (3)
N1—S1—C1—C694.36 (19)C10—C9—C11—C12169.0 (2)
O1—S1—C1—C2160.79 (19)O3—C11—C12—C13126.5 (2)
O2—S1—C1—C231.4 (2)C9—C11—C12—C13116.0 (2)
N1—S1—C1—C284.08 (19)O3—C11—C12—C1754.6 (3)
C6—C1—C2—C30.5 (3)C9—C11—C12—C1762.9 (3)
S1—C1—C2—C3177.94 (18)C17—C12—C13—C140.4 (4)
C1—C2—C3—C40.0 (4)C11—C12—C13—C14179.4 (2)
C2—C3—C4—C50.8 (4)C12—C13—C14—C151.1 (4)
C2—C3—C4—C7178.5 (3)C13—C14—C15—C161.1 (5)
C3—C4—C5—C61.1 (4)C14—C15—C16—C170.5 (5)
C7—C4—C5—C6178.2 (3)C15—C16—C17—C120.2 (4)
C2—C1—C6—C50.2 (3)C13—C12—C17—C160.2 (4)
S1—C1—C6—C5178.24 (19)C11—C12—C17—C16178.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O2i0.822.273.047 (2)158
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC17H21NO3S
Mr319.41
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)6.0272 (2), 18.6624 (8), 7.3642 (3)
β (°) 98.148 (1)
V3)819.98 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.50 × 0.34 × 0.26
Data collection
DiffractometerSiemens SMART CCD area detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
SADABS (Sheldrick, 1996)
Tmin, Tmax0.903, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
5485, 3379, 3038
Rint0.027
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.104, 1.06
No. of reflections3379
No. of parameters199
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.34
Absolute structureFlack H D (1983), Acta Cryst. A39, 876-881
Absolute structure parameter0.13 (7)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXTL (Sheldrick, 1997) PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
S1—O11.425 (2)N1—C91.475 (3)
S1—O21.434 (2)O3—C111.427 (3)
S1—N11.629 (1)C9—C111.540 (3)
S1—C11.771 (2)C11—C121.505 (3)
N1—C81.461 (3)
O1—S1—O2119.9 (1)N1—S1—C1108.5 (1)
O1—S1—N1107.2 (1)C8—N1—C9118.4 (2)
O2—S1—N1107.2 (1)C8—N1—S1116.7 (2)
O1—S1—C1106.4 (1)C9—N1—S1119.5 (1)
O2—S1—C1107.2 (1)
O1—S1—N1—C9164.4 (2)S1—N1—C9—C1098.6 (2)
C1—S1—N1—C981.0 (2)S1—N1—C9—C11136.3 (2)
O1—S1—C1—C620.8 (2)N1—C9—C11—O3164.6 (2)
O2—S1—C1—C231.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O2i0.822.273.047 (2)158
Symmetry code: (i) x, y, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds