Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title complexes, [RuCl(C9H21N3)(C12H12N2O2)]ClO4·2C2H3N, (I), and [Ru(C9H21N3)(C12H12N2O2)(H2O)](ClO4)2·2H2O, (II), display similar structures with the Ru atom in a distorted octa­hedral environment. In the crystal packing of the chloride complex, (I), the Ru complex mol­ecules are held together in pairs through C—H...Cl inter­actions of the 4,4′-dimeth­oxy-2,2′-bipyridine and chloride ligands. In the case of the aqua complex, (II), hydrogen bonding affords a tetra­meric hydrogen-bonded network. These two structures are the first examples of complexes with the {Ru(1,4,7-trimethyl-1,4,7-triaza­cyclo­nona­ne)} motif and an electron-rich substituted 2,2′-bipyridine ligand.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112015259/gz3210sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112015259/gz3210Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112015259/gz3210IIsup3.hkl
Contains datablock II

CCDC references: 879452; 879453

Comment top

Ruthenium(II)–tmtacn (tmtacn = 1,4,7-trimethyl-1,4,7-triazacyclononane) complexes containing aromatic diimine ligands such as 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen) are of considerable interest in catalysis, including a huge amount of reactions as epoxidation of alkenes, oxidation of alkanes, alcohols, aldehydes, and arenes, oxidative cleavage of CC and C—C bonds, cis-dihydroxylation of alkene, and amination of saturated C—H bonds (Chan et al., 2011). Tuning of the redox potential of the metal-centered processes is a key issue in the design of these catalysis reagents to facilitate access to high Ru oxidation states. In this sense, modification of the electronic properties of the co-ligands has become the preferable approach to work on this problematic.

The synthesis of [Ru(bpy)(tmtacn)(H2O)](ClO4)2 was reported several years ago Cheng et al. (1994). The preparation involves the reaction under reflux between stoichiometric amounts of Ru(tmtacn)Cl3 and bpy in water in the presence of Zn0. We followed this strategy to prepare and crystallize the analogue [Ru(tmtacn){4,4'-(MeO)2bpy}(H2O)](ClO4)2.2H2O, (II), bearing the electron-rich bpy derivative 4,4'-dimethoxy-2,2'-bipyridine [4,4'-(MeO)2bpy]. A serendipitous event, the accidental contamination of a crystallization flask with NaCl, allowed us to obtain and crystallize the chloro derivative [RuCl(tmtacn){4,4'-(MeO)2bpy}]ClO4.2CH3CN, (I).

Complex (I) crystallizes in the monoclinic C2/c space group, with one perchlorate anion as counter-ion and two acetonitrile solvent molecules, whereas complex (II) crystallizes in the triclinic P1 space group with two perchlorate anions as counter-ions and two water solvent molecules. With respect to the metal center coordination sphere, complexes (I) and (II) display similar structures (Figs. 1 and 2, respectively). The coordination geometry around the Ru atom in each case is distorted octahedral. As expected, the tmtacn ligand facially coordinates to the Ru atom with N5 trans to the chloride ligand in (I) and N3 trans to the O atom of the coordinated water ligand in (II). The bidentate 4,4'-(MeO)2bpy ligand completes the octahedral environment. In (I), the Ru—Cl distance of 2.4343 (11) Å is slightly longer than that observed in the only other chloro-containing RuII complex with an {Ru(tmtacn)} moiety reported in the literature, namely [RuCl(tmtacn)(CO)2]PF6 (Yang et al., 1995), which features an Ru—Cl distance of 2.410 (2) Å. In (II), the Ru—O distance of 2.149 (4) Å is shorter than that observed in the bipyridine parent compound [Ru(tmtacn)(bpy)(H2O)](ClO4)2 (Cheng et al., 1994), with an Ru—O distance of 2.168 (3) Å. As a consequence, the trans N atom of the tmtacn ligand exhibits a larger Ru—N distance than that observed in the previously published analogue [2.103 (4) Å versus. 2.087 (4) Å]. With respect to this tmtacn trans N atom in complex (I), the presence of the donor chloride ligand affords an even longer Ru—N bond length of 2.121 (3) Å. The remaining donor N atoms of the tmtacn ligand in both complexes exhibit similar Ru—N bond lengths that also agree with those observed in [Ru(tmtacn)(bpy)(H2O)]2+. A similar situation is observed for the Ru—N bond lengths of the coordinated 4,4'-(MeO)2bpy ligand. In the aqua complexes (II) and [Ru(tmtacn)(bpy)(H2O)]2+, the Ru—N bond lengths are statistically equivalent.

In both complexes, the planar 4,4'-(MeO)2bpy ligand appears tilted with respect to the plane containing this ligand N atoms and the Ru center, with dihedral angles of 16.85 (12) and 16.17 (18)° in (I) and (II), respectively. For the calculation of these angles, the plane containing the 12-membered ring (ten C and two N) of the 4,4'-(MeO)2bpy and the plane containing the Ru atom together with the 4,4'-(MeO)2bpy N atoms and the equatorial tmtacn ligand N atoms were considered. The tilting direction is toward the L ligand (aqua and chloride in this case) and it is most probably due to the steric hindrance caused by the methyl group from the tmtacn ligand. The same behavior is observed in related complexes (Cheng et al., 1994, 1996; Wong et al., 2009).

In the crystal packing of (I), the Ru complex cations are held together in pairs through Cl···H—C interactions involving the coordinated chloride ligand and the 4,4'-(MeO)2bpy ligand, with Cl···H—C contact distances of Cl1···H4(-x, y, -z+1/2) = 2.65 Å and Cl1···H7(-x, y, -z+1/2) = 2.77 Å. This affords an apparent stacking of the 4,4'-dimethoxy-2,2'-bipyridine ligands, with the shortest C···C contact being C4···C4(-x, y, -z+1/2) of 3.339 (5) Å (Fig. 3, and Tables 1 and 2). The perchlorate counter-ion and the acetonitrile solvent molecules are also involved in short-contact interactions.

Regarding the crystal packing of (II), no 4,4'-(MeO)2bpy stacking is observed. Instead, hydrogen-bonding interactions involving the O atoms of the coordinated water molecule, the O atoms of the 4,4'-(MeO)2bpy and the O atoms of the solvent water molecules afford a tetrameric hydrogen-bonded network scheme (Fig. 4). The hydrogen-bond interactions and distances are listed in Table 4.

Complexes (I) and (II) are the first examples of structurally characterized ruthenium fragments bearing the {Ru(tmtacn)(bpy)}2+ motif with an electron rich bpy-type ligand. Moreover, the chloro derivative is only the second reported structure of an RuII complex with the general motif {Ru(tmtacn)} and containing any Ru—Cl bond. Both appear to be promising ruthenium complexes to explore their high-oxidation-state derivatives and their potential catalysis capability.

Related literature top

For related literature, see: Chan et al. (2011); Cheng et al. (1994, 1996); Nardelli (1999); Neubold et al. (1989); Sheldrick (2008); Wong et al. (2009); Yang et al. (1995).

Experimental top

For the preparation of (I), [Ru(tmtacn)]Cl3.H2O (100.5 mg, 0.25 mmol; Neubold et al., 1989), 4,4'-dimethoxy-2,2'-bipyridine (81.3 mg, 0.38 mmol) and Zn/Hg (150 mg) were suspended in H2O (20 ml) and refluxed for 1 h under an Ar atmosphere. The reactants dissolved slowly to yield a pale-green solution which along the reaction time became deeply burgundy. At this point the insolubles were removed from the reaction mixture by filtration and the solution was concentrated on a rotary evaporator to less than 5 ml. Addition of NaClO4 (600 mg, 4.90 mmol) induced the precipitation of the product as a fine powder, which upon standing overnight in the refrigerator was collected by filtration, washed with chilled water and dried over silica gel. A small amount of a white material (most probably an excess of the ligand) was removed with diethyl ether. The deeply colored material was finally dissolved in water and allowed to evaporate slowly at room temperature to yield 153 mg (80%) of the product. The material obtained in this way was suitable for X-ray analysis.

For the preparation of (II), a solution of [Ru(tmtacn){4,4'-(MeO)2bpy}(H2O)](ClO4)2.2H2O in water originally intended to be used to grow large single crystals was accidentally contaminated with NaCl. Full evaporation of the solvent yielded a red material, which was suspended in acetonitrile and filtered to remove insoluble inorganic salts. Slow diffusion of diethyl ether yielded red single crystals that turned out to be compound (II).

Refinement top

In both structures, all the C-bound H atoms were clearly seen in a difference Fourier map but were repositioned at their expected locations and allowed to ride, with C—H = 0.93 (aromatic) and 0.97 Å (methylene and methyl). For the O—H and methyl H atoms, Uiso(H) = 1.5Ueq(parent atom), while Uiso(H) = 1.2Ueq(parent atom) for all other H atoms.

In (I), in order to make the acetonitrile solvent molecules refinement fully anisotropic, all their C and N atoms were subjected to a 'rigid bond' restraint (DELU instruction in SHELXTL; Sheldrick, 2008)), i.e. the components of the (anisotropic) displacement parameters in the direction of the corresponding bonds were restrained to be equal within an effective standard uncertainty of 0.02 Å. In addition, within this same set of atoms, those closer than 1.7 Å were restrained with an effective standard uncertainty of 0.04 Å to have the same Uij components (SIMU instruction).

In (II), coordinated water O atom H atoms were located in a difference Fourier map and accordingly positionated; while the H atoms of the water solvent molecules were not located in the difference map but were geometrically positionated using the CALC-OH algorithm (Nardelli, 1999) for further refinement. H atoms attached to O atoms were refined with restrained O—H distances of 0.84 (2) Å and the water H···H distances were restrained to 1.30 (4) Å.

The refinement of the H atoms of the water solvent molecules in (II) required the inclusion of some constraints to avoid convergence to a nonreasonable water molecules H···H intermolecular distances. The H···O intermolecular shortest contact distances were constrained to 2.30 (2) Å. In this way, refinement converged to a reasonable hydrogen-bonded network structure although no significant improvement in the overall statistics was achieved.

Computing details top

For both compounds, data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: DIAMOND (Crystal Impact, 1999).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot of cationic complex (I) with ellipsoids drawn at the 30% probability level. [This ellipsoid plot should be fully labelled]
[Figure 2] Fig. 2. Displacement ellipsoid plot of cationic complex (II) with ellipsoids drawn at the 30% probability level. [This ellipsoid plot should be fully labelled]
[Figure 3] Fig. 3. Displacement ellipsoid plot of the hydrogen-bond interaction network in complex (I), with ellipsoids drawn at the 30% probability level. Only H atoms involved in the Cl···H—C interactions are shown.
[Figure 4] Fig. 4. Displacement ellipsoid plot of the short contact pair interaction in complex (II), with ellipsoids drawn at the 30% probability level. Only water H atoms are shown.
(I) Chlorido(4,4'-dimethoxy-2,2'-bipyridine)(1,4,7-trimethyl-1,4,7- triazacyclononane)ruthenium(II) perchlorate acetonitrile disolvate top
Crystal data top
[RuCl(C9H21N3)(C12H12N2O2)]ClO4·2C2H3NF(000) = 2912
Mr = 705.60Dx = 1.510 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4271 reflections
a = 17.8073 (9) Åθ = 3.6–28.9°
b = 12.3587 (7) ŵ = 0.73 mm1
c = 28.5276 (18) ÅT = 298 K
β = 98.603 (6)°Block, red
V = 6207.6 (6) Å30.38 × 0.28 × 0.12 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
6674 independent reflections
Radiation source: fine-focus sealed tube3528 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 16.1158 pixels mm-1θmax = 27.0°, θmin = 3.6°
ω scansh = 2219
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1514
Tmin = 0.816, Tmax = 1.000l = 3636
13768 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 0.87 w = 1/[σ2(Fo2) + (0.0612P)2]
where P = (Fo2 + 2Fc2)/3
6674 reflections(Δ/σ)max = 0.001
372 parametersΔρmax = 0.59 e Å3
30 restraintsΔρmin = 0.42 e Å3
Crystal data top
[RuCl(C9H21N3)(C12H12N2O2)]ClO4·2C2H3NV = 6207.6 (6) Å3
Mr = 705.60Z = 8
Monoclinic, C2/cMo Kα radiation
a = 17.8073 (9) ŵ = 0.73 mm1
b = 12.3587 (7) ÅT = 298 K
c = 28.5276 (18) Å0.38 × 0.28 × 0.12 mm
β = 98.603 (6)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
6674 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
3528 reflections with I > 2σ(I)
Tmin = 0.816, Tmax = 1.000Rint = 0.051
13768 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04730 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 0.87Δρmax = 0.59 e Å3
6674 reflectionsΔρmin = 0.42 e Å3
372 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0616 (2)0.2894 (3)0.34915 (16)0.0531 (12)
H10.09990.25230.36840.064*
C20.0029 (3)0.2296 (3)0.32605 (16)0.0560 (12)
H20.00160.15500.33000.067*
C30.0539 (3)0.2815 (3)0.29696 (15)0.0515 (11)
C40.0511 (2)0.3937 (3)0.29453 (13)0.0455 (10)
H40.08990.43150.27600.055*
C50.0099 (2)0.4497 (3)0.31985 (13)0.0369 (9)
C60.0120 (2)0.5683 (3)0.32329 (13)0.0393 (10)
C70.0443 (2)0.6340 (3)0.29916 (13)0.0433 (10)
H70.08240.60450.27700.052*
C80.0431 (3)0.7438 (3)0.30847 (15)0.0507 (11)
C90.0132 (3)0.7828 (3)0.34251 (15)0.0555 (12)
H90.01390.85550.35100.067*
C100.0683 (2)0.7141 (3)0.36382 (15)0.0539 (12)
H100.10660.74300.38600.065*
C110.1165 (3)0.1208 (4)0.2679 (2)0.0952 (19)
H11A0.16280.09810.24880.143*
H11B0.11370.09030.29910.143*
H11C0.07390.09650.25370.143*
C120.1512 (3)0.7835 (4)0.25109 (18)0.0826 (17)
H12A0.18190.84440.23960.124*
H12B0.18220.73000.26330.124*
H12C0.12860.75290.22560.124*
C130.3192 (2)0.4378 (3)0.38647 (16)0.0539 (11)
H13A0.32170.45480.35360.065*
H13B0.36250.39270.39820.065*
C140.3227 (3)0.5407 (4)0.41482 (17)0.0630 (13)
H14A0.33170.52350.44840.076*
H14B0.36470.58460.40770.076*
C150.2267 (3)0.6424 (3)0.44868 (15)0.0586 (13)
H15A0.18610.69480.44150.070*
H15B0.26930.67830.46770.070*
C160.2001 (3)0.5504 (4)0.47651 (15)0.0613 (12)
H16A0.17420.57950.50140.074*
H16B0.24380.50980.49150.074*
C170.1716 (3)0.3608 (3)0.45568 (16)0.0602 (13)
H17A0.13230.31260.44040.072*
H17B0.17720.34770.48960.072*
C180.2452 (3)0.3352 (3)0.43826 (15)0.0550 (12)
H18A0.28680.36590.46010.066*
H18B0.25210.25740.43810.066*
C190.0691 (3)0.4899 (3)0.45520 (16)0.0593 (11)
H19A0.03590.44290.43490.089*
H19B0.05390.56370.44910.089*
H19C0.06640.47260.48770.089*
C200.2469 (3)0.2871 (3)0.35512 (16)0.0631 (13)
H20A0.20190.24460.35570.095*
H20B0.29090.24240.36360.095*
H20C0.24690.31570.32380.095*
C210.2634 (3)0.6967 (3)0.37392 (17)0.0642 (14)
H21A0.27820.67160.34480.096*
H21B0.30290.74120.39050.096*
H21C0.21750.73820.36710.096*
Cl10.18827 (6)0.51560 (8)0.29331 (4)0.0539 (3)
N10.06854 (19)0.3979 (2)0.34630 (11)0.0425 (8)
N20.07061 (18)0.6068 (2)0.35457 (11)0.0395 (8)
N30.25028 (19)0.6032 (3)0.40371 (12)0.0472 (9)
N40.24841 (19)0.3781 (2)0.38968 (12)0.0444 (8)
N50.14719 (19)0.4754 (2)0.44591 (11)0.0468 (8)
O10.11519 (19)0.2343 (2)0.27114 (12)0.0749 (10)
O20.09296 (18)0.8177 (2)0.28774 (11)0.0666 (9)
Ru10.159148 (17)0.49683 (2)0.373612 (10)0.03929 (12)
Cl20.38146 (8)0.51358 (9)0.08124 (5)0.0689 (4)
O30.4606 (3)0.5200 (3)0.08513 (19)0.1126 (15)
O40.3527 (3)0.4139 (3)0.06576 (16)0.1195 (17)
O50.3674 (4)0.5277 (4)0.1293 (2)0.153 (2)
O60.3457 (3)0.5964 (3)0.05493 (18)0.135 (2)
C220.3146 (6)0.0184 (5)0.3627 (4)0.176 (5)
H22A0.30330.01920.33310.264*
H22B0.26810.03950.37340.264*
H22C0.34420.08170.35860.264*
C230.3561 (6)0.0504 (7)0.3967 (4)0.112 (3)
N70.3883 (5)0.1126 (7)0.4209 (3)0.148 (3)
C240.4845 (4)0.6830 (6)0.0138 (2)0.122 (2)
H24A0.46000.73260.03710.183*
H24B0.44710.64980.00250.183*
H24C0.51030.62830.02920.183*
C250.5374 (4)0.7394 (5)0.0189 (3)0.094 (2)
N80.5795 (4)0.7861 (5)0.0441 (3)0.143 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.051 (3)0.037 (2)0.068 (3)0.001 (2)0.002 (2)0.004 (2)
C20.065 (3)0.034 (2)0.069 (3)0.013 (2)0.007 (3)0.002 (2)
C30.049 (3)0.052 (3)0.053 (3)0.012 (2)0.006 (2)0.008 (2)
C40.043 (3)0.053 (2)0.039 (2)0.003 (2)0.0003 (19)0.0036 (19)
C50.036 (2)0.041 (2)0.035 (2)0.0046 (19)0.0082 (18)0.0011 (17)
C60.046 (3)0.037 (2)0.033 (2)0.0012 (19)0.0015 (18)0.0023 (16)
C70.041 (3)0.046 (2)0.041 (2)0.003 (2)0.0015 (19)0.0035 (18)
C80.059 (3)0.044 (2)0.047 (3)0.006 (2)0.001 (2)0.0027 (19)
C90.062 (3)0.036 (2)0.063 (3)0.003 (2)0.007 (2)0.006 (2)
C100.052 (3)0.047 (2)0.056 (3)0.001 (2)0.012 (2)0.013 (2)
C110.098 (5)0.073 (3)0.111 (5)0.040 (3)0.004 (4)0.016 (3)
C120.092 (4)0.079 (3)0.068 (3)0.026 (3)0.018 (3)0.004 (3)
C130.044 (3)0.056 (3)0.061 (3)0.002 (2)0.002 (2)0.002 (2)
C140.046 (3)0.064 (3)0.072 (3)0.003 (2)0.011 (2)0.006 (2)
C150.068 (3)0.049 (2)0.051 (3)0.002 (2)0.016 (2)0.013 (2)
C160.060 (3)0.073 (3)0.048 (3)0.000 (3)0.001 (2)0.006 (2)
C170.064 (3)0.056 (3)0.058 (3)0.003 (2)0.003 (2)0.017 (2)
C180.061 (3)0.050 (2)0.050 (3)0.007 (2)0.006 (2)0.011 (2)
C190.048 (3)0.075 (3)0.057 (3)0.008 (3)0.016 (2)0.005 (2)
C200.065 (3)0.057 (3)0.065 (3)0.017 (2)0.005 (2)0.006 (2)
C210.065 (3)0.052 (2)0.071 (3)0.017 (2)0.004 (3)0.004 (2)
Cl10.0534 (6)0.0642 (7)0.0413 (5)0.0034 (5)0.0026 (4)0.0033 (5)
N10.044 (2)0.0386 (17)0.044 (2)0.0008 (16)0.0026 (16)0.0052 (15)
N20.040 (2)0.0362 (17)0.0403 (19)0.0010 (15)0.0014 (15)0.0001 (14)
N30.044 (2)0.0472 (19)0.048 (2)0.0034 (16)0.0017 (17)0.0044 (16)
N40.042 (2)0.0391 (17)0.049 (2)0.0006 (16)0.0014 (16)0.0027 (15)
N50.044 (2)0.054 (2)0.0394 (18)0.0021 (16)0.0038 (15)0.0037 (15)
O10.071 (2)0.062 (2)0.086 (2)0.0270 (18)0.0068 (19)0.0165 (17)
O20.067 (2)0.0535 (18)0.071 (2)0.0199 (16)0.0182 (17)0.0049 (15)
Ru10.03942 (18)0.03668 (18)0.03895 (17)0.00016 (16)0.00329 (12)0.00029 (15)
Cl20.0714 (9)0.0486 (7)0.0814 (9)0.0038 (6)0.0056 (7)0.0024 (6)
O30.073 (3)0.098 (3)0.162 (5)0.001 (2)0.002 (3)0.003 (3)
O40.128 (4)0.0465 (19)0.165 (4)0.002 (2)0.041 (3)0.009 (2)
O50.153 (5)0.179 (5)0.130 (5)0.009 (4)0.031 (4)0.021 (4)
O60.138 (4)0.060 (2)0.184 (5)0.016 (2)0.052 (3)0.033 (3)
C220.186 (10)0.087 (5)0.292 (13)0.020 (5)0.157 (9)0.037 (6)
C230.129 (9)0.091 (6)0.131 (8)0.050 (5)0.064 (6)0.051 (5)
N70.138 (7)0.194 (8)0.112 (6)0.067 (6)0.017 (5)0.039 (5)
C240.133 (7)0.127 (6)0.111 (6)0.024 (5)0.033 (4)0.012 (4)
C250.081 (5)0.077 (4)0.121 (6)0.024 (4)0.010 (4)0.028 (4)
N80.105 (5)0.107 (5)0.199 (8)0.006 (4)0.033 (5)0.027 (4)
Geometric parameters (Å, º) top
C1—N11.350 (5)C16—H16A0.9700
C1—C21.366 (5)C16—H16B0.9700
C1—H10.9300C17—N51.496 (5)
C2—C31.367 (6)C17—C181.504 (6)
C2—H20.9300C17—H17A0.9700
C3—O11.355 (5)C17—H17B0.9700
C3—C41.390 (5)C18—N41.493 (5)
C4—C51.395 (5)C18—H18A0.9700
C4—H40.9300C18—H18B0.9700
C5—N11.354 (5)C19—N51.465 (5)
C5—C61.469 (5)C19—H19A0.9600
C6—N21.355 (4)C19—H19B0.9600
C6—C71.390 (5)C19—H19C0.9600
C7—C81.381 (5)C20—N41.493 (5)
C7—H70.9300C20—H20A0.9600
C8—O21.347 (4)C20—H20B0.9600
C8—C91.376 (5)C20—H20C0.9600
C9—C101.369 (5)C21—N31.473 (5)
C9—H90.9300C21—H21A0.9600
C10—N21.354 (4)C21—H21B0.9600
C10—H100.9300C21—H21C0.9600
C11—O11.405 (5)Cl1—Ru12.4343 (11)
C11—H11A0.9600N1—Ru12.081 (3)
C11—H11B0.9600N2—Ru12.091 (3)
C11—H11C0.9600N3—Ru12.164 (3)
C12—O21.422 (5)N4—Ru12.161 (3)
C12—H12A0.9600N5—Ru12.121 (3)
C12—H12B0.9600Cl2—O61.369 (3)
C12—H12C0.9600Cl2—O41.381 (3)
C13—N41.474 (5)Cl2—O31.399 (4)
C13—C141.503 (6)Cl2—O51.440 (6)
C13—H13A0.9700C22—C231.413 (12)
C13—H13B0.9700C22—H22A0.9600
C14—N31.496 (5)C22—H22B0.9600
C14—H14A0.9700C22—H22C0.9600
C14—H14B0.9700C23—N71.129 (10)
C15—N31.489 (5)C24—C251.407 (9)
C15—C161.504 (6)C24—H24A0.9600
C15—H15A0.9700C24—H24B0.9600
C15—H15B0.9700C24—H24C0.9600
C16—N51.504 (5)C25—N81.120 (8)
C4···C4i3.339 (5)
N1—C1—C2125.3 (4)N5—C19—H19B109.5
N1—C1—H1117.3H19A—C19—H19B109.5
C2—C1—H1117.3N5—C19—H19C109.5
C1—C2—C3118.8 (4)H19A—C19—H19C109.5
C1—C2—H2120.6H19B—C19—H19C109.5
C3—C2—H2120.6N4—C20—H20A109.5
O1—C3—C2126.2 (4)N4—C20—H20B109.5
O1—C3—C4115.8 (4)H20A—C20—H20B109.5
C2—C3—C4118.0 (4)N4—C20—H20C109.5
C3—C4—C5120.0 (4)H20A—C20—H20C109.5
C3—C4—H4120.0H20B—C20—H20C109.5
C5—C4—H4120.0N3—C21—H21A109.5
N1—C5—C4122.0 (3)N3—C21—H21B109.5
N1—C5—C6115.2 (3)H21A—C21—H21B109.5
C4—C5—C6122.6 (4)N3—C21—H21C109.5
N2—C6—C7123.3 (3)H21A—C21—H21C109.5
N2—C6—C5113.8 (3)H21B—C21—H21C109.5
C7—C6—C5122.8 (3)C1—N1—C5115.7 (3)
C8—C7—C6119.3 (4)C1—N1—Ru1129.4 (3)
C8—C7—H7120.4C5—N1—Ru1114.9 (2)
C6—C7—H7120.4C10—N2—C6115.5 (3)
O2—C8—C9115.8 (3)C10—N2—Ru1129.0 (3)
O2—C8—C7126.2 (4)C6—N2—Ru1114.8 (2)
C9—C8—C7118.0 (4)C21—N3—C15109.4 (3)
C10—C9—C8119.6 (4)C21—N3—C14108.8 (4)
C10—C9—H9120.2C15—N3—C14109.3 (3)
C8—C9—H9120.2C21—N3—Ru1114.9 (2)
N2—C10—C9124.1 (4)C15—N3—Ru1104.4 (3)
N2—C10—H10117.9C14—N3—Ru1110.0 (2)
C9—C10—H10117.9C13—N4—C18112.8 (3)
O1—C11—H11A109.5C13—N4—C20105.5 (3)
O1—C11—H11B109.5C18—N4—C20110.3 (3)
H11A—C11—H11B109.5C13—N4—Ru1104.8 (2)
O1—C11—H11C109.5C18—N4—Ru1108.0 (3)
H11A—C11—H11C109.5C20—N4—Ru1115.5 (2)
H11B—C11—H11C109.5C19—N5—C17109.8 (3)
O2—C12—H12A109.5C19—N5—C16110.4 (3)
O2—C12—H12B109.5C17—N5—C16109.7 (3)
H12A—C12—H12B109.5C19—N5—Ru1113.4 (2)
O2—C12—H12C109.5C17—N5—Ru1103.3 (2)
H12A—C12—H12C109.5C16—N5—Ru1110.0 (3)
H12B—C12—H12C109.5C3—O1—C11118.0 (4)
N4—C13—C14110.9 (4)C8—O2—C12118.7 (3)
N4—C13—H13A109.5N1—Ru1—N276.86 (12)
C14—C13—H13A109.5N1—Ru1—N596.07 (12)
N4—C13—H13B109.5N2—Ru1—N598.76 (13)
C14—C13—H13B109.5N1—Ru1—N4100.65 (12)
H13A—C13—H13B108.0N2—Ru1—N4176.76 (11)
N3—C14—C13111.0 (3)N5—Ru1—N483.50 (13)
N3—C14—H14A109.4N1—Ru1—N3177.62 (13)
C13—C14—H14A109.4N2—Ru1—N3101.51 (12)
N3—C14—H14B109.4N5—Ru1—N382.44 (13)
C13—C14—H14B109.4N4—Ru1—N381.05 (12)
H14A—C14—H14B108.0N1—Ru1—Cl188.06 (9)
N3—C15—C16111.2 (3)N2—Ru1—Cl187.25 (9)
N3—C15—H15A109.4N5—Ru1—Cl1173.35 (9)
C16—C15—H15A109.4N4—Ru1—Cl190.62 (10)
N3—C15—H15B109.4N3—Ru1—Cl193.60 (10)
C16—C15—H15B109.4O6—Cl2—O4111.8 (3)
H15A—C15—H15B108.0O6—Cl2—O3112.4 (3)
C15—C16—N5112.3 (3)O4—Cl2—O3113.4 (3)
C15—C16—H16A109.1O6—Cl2—O5107.4 (3)
N5—C16—H16A109.1O4—Cl2—O5107.7 (3)
C15—C16—H16B109.1O3—Cl2—O5103.5 (3)
N5—C16—H16B109.1C23—C22—H22A109.5
H16A—C16—H16B107.9C23—C22—H22B109.5
N5—C17—C18112.3 (4)H22A—C22—H22B109.5
N5—C17—H17A109.1C23—C22—H22C109.5
C18—C17—H17A109.1H22A—C22—H22C109.5
N5—C17—H17B109.1H22B—C22—H22C109.5
C18—C17—H17B109.1N7—C23—C22173.7 (10)
H17A—C17—H17B107.9C25—C24—H24A109.5
N4—C18—C17112.9 (3)C25—C24—H24B109.5
N4—C18—H18A109.0H24A—C24—H24B109.5
C17—C18—H18A109.0C25—C24—H24C109.5
N4—C18—H18B109.0H24A—C24—H24C109.5
C17—C18—H18B109.0H24B—C24—H24C109.5
H18A—C18—H18B107.8N8—C25—C24178.3 (9)
N5—C19—H19A109.5
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4i—H4i···Cl10.932.653.562 (4)167
C7i—H7i···Cl10.932.773.695 (4)176
Symmetry code: (i) x, y, z+1/2.
(II) aqua(4,4'-dimethoxy-2,2'-bipyridine)(1,4,7-trimethyl-1,4,7- triazacyclononane)ruthenium(II) bis(perchlorate) dihydrate top
Crystal data top
[Ru(C9H21N3)(C12H12N2O2)(H2O)](ClO4)2·2H2OZ = 2
Mr = 741.54F(000) = 764
Triclinic, P1Dx = 1.656 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.1705 (6) ÅCell parameters from 4349 reflections
b = 10.3825 (11) Åθ = 3.5–29.0°
c = 18.1967 (15) ŵ = 0.78 mm1
α = 92.464 (7)°T = 298 K
β = 96.740 (7)°Plate, red
γ = 103.386 (8)°0.30 × 0.12 × 0.05 mm
V = 1487.4 (2) Å3
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
6429 independent reflections
Radiation source: fine-focus sealed tube4889 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
Detector resolution: 16.1 pixels mm-1θmax = 27.0°, θmin = 3.5°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1313
Tmin = 0.946, Tmax = 1.000l = 2323
18945 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0702P)2]
where P = (Fo2 + 2Fc2)/3
6429 reflections(Δ/σ)max = 0.001
397 parametersΔρmax = 1.17 e Å3
11 restraintsΔρmin = 1.00 e Å3
Crystal data top
[Ru(C9H21N3)(C12H12N2O2)(H2O)](ClO4)2·2H2Oγ = 103.386 (8)°
Mr = 741.54V = 1487.4 (2) Å3
Triclinic, P1Z = 2
a = 8.1705 (6) ÅMo Kα radiation
b = 10.3825 (11) ŵ = 0.78 mm1
c = 18.1967 (15) ÅT = 298 K
α = 92.464 (7)°0.30 × 0.12 × 0.05 mm
β = 96.740 (7)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
6429 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
4889 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 1.000Rint = 0.078
18945 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05311 restraints
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 1.17 e Å3
6429 reflectionsΔρmin = 1.00 e Å3
397 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4941 (6)0.0962 (5)0.3600 (2)0.0460 (11)
H10.44880.13490.39730.055*
C20.5790 (6)0.0016 (5)0.3792 (2)0.0478 (11)
H20.58800.02430.42750.057*
C30.6512 (5)0.0547 (4)0.3254 (2)0.0407 (10)
C40.6318 (5)0.0123 (4)0.2541 (2)0.0398 (10)
H40.67650.05010.21620.048*
C50.5477 (5)0.0841 (4)0.2396 (2)0.0335 (9)
C60.5457 (5)0.1498 (4)0.1693 (2)0.0360 (9)
C70.6255 (6)0.1133 (5)0.1121 (2)0.0428 (10)
H70.66980.03850.11430.051*
C80.6394 (6)0.1890 (5)0.0509 (2)0.0472 (12)
C90.5732 (6)0.2980 (5)0.0500 (2)0.0506 (12)
H90.58380.35260.01080.061*
C100.4904 (6)0.3260 (5)0.1081 (2)0.0507 (12)
H100.44380.39970.10620.061*
C110.7396 (9)0.2241 (7)0.0666 (3)0.088 (2)
H11A0.79700.18330.10080.133*
H11B0.80500.31230.05100.133*
H11C0.62990.22790.09060.133*
C120.7763 (7)0.1812 (5)0.4119 (3)0.0584 (14)
H12A0.84120.24750.41300.088*
H12B0.67140.21510.43120.088*
H12C0.83980.10320.44180.088*
C130.0079 (6)0.2969 (6)0.3046 (3)0.0696 (18)
H13A0.06400.21770.27730.084*
H13B0.05280.32210.34350.084*
C140.0349 (6)0.4015 (6)0.2552 (3)0.0670 (17)
H14A0.06250.48610.28410.080*
H14B0.06990.39600.22280.080*
C150.2914 (6)0.5298 (5)0.2137 (3)0.0540 (12)
H15A0.35650.53440.17220.065*
H15B0.22700.59730.20950.065*
C160.4090 (7)0.5586 (5)0.2832 (3)0.0600 (14)
H16A0.35390.59450.32090.072*
H16B0.50780.62650.27540.072*
C170.4356 (6)0.4262 (6)0.3899 (2)0.0562 (13)
H17A0.50420.37010.41240.067*
H17B0.47160.51290.41670.067*
C180.2560 (7)0.3690 (6)0.3979 (3)0.0591 (14)
H18A0.19700.44010.39770.071*
H18B0.25100.33180.44580.071*
C190.1040 (7)0.1352 (5)0.3716 (3)0.0578 (14)
H19A0.19950.10720.39580.087*
H19B0.04480.06980.33280.087*
H19C0.02880.14530.40710.087*
C200.0906 (7)0.3641 (6)0.1306 (3)0.0571 (14)
H20A0.17580.35870.09930.086*
H20B0.03420.43170.11500.086*
H20C0.00930.28020.12720.086*
C210.6517 (6)0.4625 (6)0.3095 (3)0.0664 (15)
H21A0.67430.47070.25910.100*
H21B0.69060.38870.32880.100*
H21C0.70990.54240.33890.100*
N10.4703 (4)0.1382 (4)0.29174 (17)0.0352 (8)
N20.4723 (4)0.2537 (3)0.16755 (17)0.0355 (8)
N30.4675 (4)0.4404 (4)0.31197 (18)0.0381 (8)
N40.1720 (4)0.3977 (4)0.20902 (18)0.0371 (8)
N50.1644 (4)0.2643 (4)0.33949 (18)0.0366 (8)
O10.1448 (4)0.0930 (3)0.19619 (17)0.0459 (7)
H1W0.133 (7)0.015 (2)0.206 (3)0.069*
H2W0.122 (7)0.084 (5)0.1511 (11)0.069*
O20.7198 (5)0.1467 (4)0.00285 (19)0.0712 (12)
O30.7410 (4)0.1479 (3)0.33649 (17)0.0516 (8)
Ru10.32092 (4)0.26530 (3)0.252483 (16)0.03299 (13)
Cl10.79058 (16)0.25418 (13)0.54157 (6)0.0509 (3)
O40.6236 (5)0.2729 (5)0.5282 (2)0.0890 (14)
O50.7854 (7)0.1170 (4)0.5450 (3)0.1066 (17)
O60.8800 (7)0.2996 (6)0.4840 (3)0.124 (2)
O70.8740 (7)0.3223 (6)0.6096 (2)0.1074 (18)
Cl20.78373 (16)0.69460 (13)0.11282 (7)0.0547 (3)
O80.7950 (7)0.6418 (6)0.0416 (2)0.1103 (18)
O90.8883 (6)0.6447 (4)0.1663 (2)0.0874 (13)
O100.8399 (7)0.8359 (4)0.1158 (3)0.1008 (15)
O110.6148 (6)0.6606 (6)0.1269 (3)0.1103 (18)
O120.1500 (6)0.8542 (5)0.2555 (2)0.0820 (12)
H5W0.066 (7)0.793 (6)0.238 (4)0.123*
H6W0.152 (9)0.850 (7)0.3009 (12)0.123*
O130.1485 (7)0.0813 (4)0.0462 (2)0.0847 (13)
H3W0.163 (8)0.156 (4)0.020 (4)0.127*
H4W0.228 (5)0.054 (3)0.034 (4)0.127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.059 (3)0.056 (3)0.033 (2)0.030 (2)0.013 (2)0.009 (2)
C20.056 (3)0.057 (3)0.038 (2)0.026 (2)0.010 (2)0.019 (2)
C30.040 (2)0.041 (2)0.045 (2)0.015 (2)0.0039 (19)0.012 (2)
C40.040 (2)0.045 (3)0.038 (2)0.018 (2)0.0078 (18)0.003 (2)
C50.033 (2)0.039 (2)0.031 (2)0.0113 (18)0.0081 (16)0.0081 (18)
C60.036 (2)0.041 (2)0.033 (2)0.0114 (19)0.0089 (17)0.0040 (19)
C70.052 (3)0.048 (3)0.037 (2)0.026 (2)0.0152 (19)0.011 (2)
C80.054 (3)0.067 (3)0.029 (2)0.025 (3)0.0184 (19)0.008 (2)
C90.062 (3)0.062 (3)0.039 (2)0.026 (3)0.021 (2)0.019 (2)
C100.066 (3)0.052 (3)0.045 (3)0.024 (3)0.025 (2)0.019 (2)
C110.117 (6)0.125 (6)0.056 (3)0.066 (5)0.058 (4)0.038 (4)
C120.060 (3)0.063 (3)0.056 (3)0.026 (3)0.005 (2)0.021 (3)
C130.048 (3)0.097 (5)0.088 (4)0.041 (3)0.042 (3)0.050 (4)
C140.053 (3)0.115 (5)0.056 (3)0.050 (3)0.028 (2)0.041 (3)
C150.060 (3)0.039 (3)0.070 (3)0.022 (2)0.013 (3)0.016 (2)
C160.066 (3)0.044 (3)0.067 (3)0.007 (3)0.002 (3)0.016 (3)
C170.064 (3)0.065 (3)0.036 (2)0.009 (3)0.005 (2)0.001 (2)
C180.074 (4)0.066 (4)0.042 (3)0.017 (3)0.025 (2)0.005 (3)
C190.073 (3)0.056 (3)0.061 (3)0.029 (3)0.038 (3)0.028 (3)
C200.065 (3)0.071 (4)0.044 (3)0.035 (3)0.000 (2)0.014 (3)
C210.041 (3)0.070 (4)0.087 (4)0.010 (3)0.012 (3)0.005 (3)
N10.0392 (19)0.042 (2)0.0302 (16)0.0185 (16)0.0090 (14)0.0092 (15)
N20.0425 (19)0.0386 (19)0.0308 (17)0.0158 (16)0.0120 (14)0.0093 (15)
N30.0365 (19)0.044 (2)0.0373 (18)0.0145 (17)0.0068 (14)0.0046 (16)
N40.0377 (19)0.048 (2)0.0332 (17)0.0189 (17)0.0121 (14)0.0136 (16)
N50.0395 (19)0.044 (2)0.0330 (17)0.0164 (17)0.0138 (15)0.0129 (16)
O10.057 (2)0.0408 (18)0.0399 (16)0.0102 (16)0.0068 (15)0.0079 (15)
O20.097 (3)0.094 (3)0.0526 (19)0.062 (3)0.045 (2)0.027 (2)
O30.058 (2)0.055 (2)0.0511 (18)0.0284 (17)0.0072 (15)0.0166 (17)
Ru10.0370 (2)0.0383 (2)0.02922 (19)0.01549 (16)0.01107 (14)0.00989 (14)
Cl10.0566 (7)0.0599 (8)0.0433 (6)0.0248 (6)0.0128 (5)0.0067 (6)
O40.070 (3)0.128 (4)0.084 (3)0.052 (3)0.008 (2)0.021 (3)
O50.104 (4)0.062 (3)0.154 (5)0.030 (3)0.005 (3)0.019 (3)
O60.132 (4)0.161 (5)0.094 (3)0.032 (4)0.069 (3)0.044 (4)
O70.128 (4)0.133 (4)0.070 (3)0.080 (4)0.029 (3)0.045 (3)
Cl20.0572 (7)0.0613 (8)0.0483 (6)0.0142 (6)0.0129 (5)0.0186 (6)
O80.130 (4)0.148 (5)0.058 (3)0.046 (4)0.014 (3)0.013 (3)
O90.106 (3)0.083 (3)0.078 (3)0.040 (3)0.010 (2)0.025 (2)
O100.121 (4)0.060 (3)0.125 (4)0.018 (3)0.027 (3)0.036 (3)
O110.063 (3)0.147 (5)0.130 (4)0.020 (3)0.040 (3)0.061 (4)
O120.102 (4)0.067 (3)0.071 (3)0.011 (2)0.001 (2)0.019 (2)
O130.129 (4)0.076 (3)0.050 (2)0.023 (3)0.015 (2)0.013 (2)
Geometric parameters (Å, º) top
C1—N11.341 (5)C16—H16A0.9700
C1—C21.363 (6)C16—H16B0.9700
C1—H10.9300C17—C181.477 (7)
C2—C31.376 (6)C17—N31.478 (5)
C2—H20.9300C17—H17A0.9700
C3—O31.351 (5)C17—H17B0.9700
C3—C41.392 (6)C18—N51.486 (6)
C4—C51.357 (6)C18—H18A0.9700
C4—H40.9300C18—H18B0.9700
C5—N11.369 (5)C19—N51.487 (5)
C5—C61.475 (5)C19—H19A0.9600
C6—N21.350 (5)C19—H19B0.9600
C6—C71.376 (5)C19—H19C0.9600
C7—C81.392 (6)C20—N41.492 (6)
C7—H70.9300C20—H20A0.9600
C8—O21.352 (5)C20—H20B0.9600
C8—C91.363 (6)C20—H20C0.9600
C9—C101.375 (6)C21—N31.475 (6)
C9—H90.9300C21—H21A0.9600
C10—N21.345 (5)C21—H21B0.9600
C10—H100.9300C21—H21C0.9600
C11—O21.443 (6)N1—Ru12.089 (3)
C11—H11A0.9600N2—Ru12.106 (3)
C11—H11B0.9600N3—Ru12.104 (4)
C11—H11C0.9600N4—Ru12.154 (3)
C12—O31.443 (5)N5—Ru12.148 (3)
C12—H12A0.9600O1—Ru12.151 (3)
C12—H12B0.9600O1—H1W0.822 (19)
C12—H12C0.9600O1—H2W0.817 (19)
C13—C141.434 (7)Cl1—O61.385 (4)
C13—N51.477 (6)Cl1—O71.414 (4)
C13—H13A0.9700Cl1—O41.417 (4)
C13—H13B0.9700Cl1—O51.420 (4)
C14—N41.484 (5)Cl2—O111.400 (4)
C14—H14A0.9700Cl2—O81.407 (4)
C14—H14B0.9700Cl2—O91.414 (4)
C15—C161.470 (7)Cl2—O101.429 (4)
C15—N41.479 (6)O12—H5W0.84 (2)
C15—H15A0.9700O12—H6W0.83 (2)
C15—H15B0.9700O13—H3W0.926 (15)
C16—N31.509 (6)O13—H4W0.82 (2)
N1—C1—C2125.5 (4)H18A—C18—H18B107.5
N1—C1—H1117.2N5—C19—H19A109.5
C2—C1—H1117.2N5—C19—H19B109.5
C1—C2—C3118.4 (4)H19A—C19—H19B109.5
C1—C2—H2120.8N5—C19—H19C109.5
C3—C2—H2120.8H19A—C19—H19C109.5
O3—C3—C2125.0 (4)H19B—C19—H19C109.5
O3—C3—C4117.1 (4)N4—C20—H20A109.5
C2—C3—C4117.9 (4)N4—C20—H20B109.5
C5—C4—C3120.2 (4)H20A—C20—H20B109.5
C5—C4—H4119.9N4—C20—H20C109.5
C3—C4—H4119.9H20A—C20—H20C109.5
C4—C5—N1122.7 (4)H20B—C20—H20C109.5
C4—C5—C6123.4 (4)N3—C21—H21A109.5
N1—C5—C6113.6 (3)N3—C21—H21B109.5
N2—C6—C7122.8 (4)H21A—C21—H21B109.5
N2—C6—C5115.5 (3)N3—C21—H21C109.5
C7—C6—C5121.6 (4)H21A—C21—H21C109.5
C6—C7—C8119.5 (4)H21B—C21—H21C109.5
C6—C7—H7120.2C1—N1—C5115.1 (3)
C8—C7—H7120.2C1—N1—Ru1129.2 (3)
O2—C8—C9125.8 (4)C5—N1—Ru1115.5 (2)
O2—C8—C7115.9 (4)C10—N2—C6116.1 (3)
C9—C8—C7118.3 (4)C10—N2—Ru1128.9 (3)
C8—C9—C10119.0 (4)C6—N2—Ru1114.5 (2)
C8—C9—H9120.5C21—N3—C17108.5 (4)
C10—C9—H9120.5C21—N3—C16108.8 (4)
N2—C10—C9124.2 (4)C17—N3—C16109.8 (4)
N2—C10—H10117.9C21—N3—Ru1114.4 (3)
C9—C10—H10117.9C17—N3—Ru1105.6 (3)
O2—C11—H11A109.5C16—N3—Ru1109.7 (3)
O2—C11—H11B109.5C15—N4—C14110.1 (4)
H11A—C11—H11B109.5C15—N4—C20108.6 (4)
O2—C11—H11C109.5C14—N4—C20107.3 (4)
H11A—C11—H11C109.5C15—N4—Ru1105.5 (3)
H11B—C11—H11C109.5C14—N4—Ru1109.9 (3)
O3—C12—H12A109.5C20—N4—Ru1115.4 (3)
O3—C12—H12B109.5C13—N5—C18110.5 (4)
H12A—C12—H12B109.5C13—N5—C19104.4 (4)
O3—C12—H12C109.5C18—N5—C19111.3 (3)
H12A—C12—H12C109.5C13—N5—Ru1105.4 (2)
H12B—C12—H12C109.5C18—N5—Ru1108.0 (3)
C14—C13—N5114.7 (4)C19—N5—Ru1116.9 (3)
C14—C13—H13A108.6Ru1—O1—H1W128 (4)
N5—C13—H13A108.6Ru1—O1—H2W122 (4)
C14—C13—H13B108.6H1W—O1—H2W101 (4)
N5—C13—H13B108.6C8—O2—C11117.6 (4)
H13A—C13—H13B107.6C3—O3—C12116.9 (4)
C13—C14—N4113.8 (4)N1—Ru1—N397.34 (13)
C13—C14—H14A108.8N1—Ru1—N276.74 (12)
N4—C14—H14A108.8N3—Ru1—N299.22 (13)
C13—C14—H14B108.8N1—Ru1—N5100.69 (12)
N4—C14—H14B108.8N3—Ru1—N583.39 (13)
H14A—C14—H14B107.7N2—Ru1—N5176.51 (13)
C16—C15—N4113.1 (4)N1—Ru1—O187.40 (13)
C16—C15—H15A109.0N3—Ru1—O1173.05 (12)
N4—C15—H15A109.0N2—Ru1—O186.79 (13)
C16—C15—H15B109.0N5—Ru1—O190.75 (13)
N4—C15—H15B109.0N1—Ru1—N4178.07 (11)
H15A—C15—H15B107.8N3—Ru1—N482.64 (13)
C15—C16—N3114.6 (4)N2—Ru1—N4101.36 (12)
C15—C16—H16A108.6N5—Ru1—N481.22 (12)
N3—C16—H16A108.6O1—Ru1—N492.79 (13)
C15—C16—H16B108.6O6—Cl1—O7110.2 (4)
N3—C16—H16B108.6O6—Cl1—O4109.9 (3)
H16A—C16—H16B107.6O7—Cl1—O4110.1 (3)
C18—C17—N3113.7 (4)O6—Cl1—O5107.7 (4)
C18—C17—H17A108.8O7—Cl1—O5108.9 (3)
N3—C17—H17A108.8O4—Cl1—O5110.0 (3)
C18—C17—H17B108.8O11—Cl2—O8109.6 (4)
N3—C17—H17B108.8O11—Cl2—O9110.4 (3)
H17A—C17—H17B107.7O8—Cl2—O9109.6 (3)
C17—C18—N5114.9 (4)O11—Cl2—O10109.0 (3)
C17—C18—H18A108.5O8—Cl2—O10109.0 (3)
N5—C18—H18A108.5O9—Cl2—O10109.3 (3)
C17—C18—H18B108.5H5W—O12—H6W103 (4)
N5—C18—H18B108.5H3W—O13—H4W98 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···O12i0.82 (3)1.96 (4)2.751 (6)161 (5)
O1—H2W···O130.82 (2)1.94 (2)2.729 (5)162 (6)
O13—H3W···O8ii0.93 (4)2.39 (4)3.314 (7)175 (5)
O13—H3W···O10ii0.93 (4)2.46 (5)3.112 (7)128 (4)
O13—H4W···O2iii0.81 (4)2.28 (4)2.936 (6)138 (3)
O12—H5W···O9iv0.84 (5)2.13 (5)2.945 (7)164 (5)
O12—H6W···O7v0.83 (2)2.46 (5)3.126 (7)138 (5)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x1, y, z; (v) x+1, y+1, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula[RuCl(C9H21N3)(C12H12N2O2)]ClO4·2C2H3N[Ru(C9H21N3)(C12H12N2O2)(H2O)](ClO4)2·2H2O
Mr705.60741.54
Crystal system, space groupMonoclinic, C2/cTriclinic, P1
Temperature (K)298298
a, b, c (Å)17.8073 (9), 12.3587 (7), 28.5276 (18)8.1705 (6), 10.3825 (11), 18.1967 (15)
α, β, γ (°)90, 98.603 (6), 9092.464 (7), 96.740 (7), 103.386 (8)
V3)6207.6 (6)1487.4 (2)
Z82
Radiation typeMo KαMo Kα
µ (mm1)0.730.78
Crystal size (mm)0.38 × 0.28 × 0.120.30 × 0.12 × 0.05
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.816, 1.0000.946, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13768, 6674, 3528 18945, 6429, 4889
Rint0.0510.078
(sin θ/λ)max1)0.6390.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.122, 0.87 0.053, 0.144, 1.03
No. of reflections66746429
No. of parameters372397
No. of restraints3011
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.421.17, 1.00

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999), DIAMOND (Crystal Impact, 1999).

Selected interatomic distances (Å) for (I) top
Cl1—Ru12.4343 (11)N3—Ru12.164 (3)
N1—Ru12.081 (3)N4—Ru12.161 (3)
N2—Ru12.091 (3)N5—Ru12.121 (3)
C4···C4i3.339 (5)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C4i—H4i···Cl10.932.653.562 (4)167
C7i—H7i···Cl10.932.773.695 (4)176
Symmetry code: (i) x, y, z+1/2.
Selected bond lengths (Å) for (II) top
N1—Ru12.089 (3)N4—Ru12.154 (3)
N2—Ru12.106 (3)N5—Ru12.148 (3)
N3—Ru12.104 (4)O1—Ru12.151 (3)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···O12i0.82 (3)1.96 (4)2.751 (6)161 (5)
O1—H2W···O130.82 (2)1.94 (2)2.729 (5)162 (6)
O13—H3W···O8ii0.93 (4)2.39 (4)3.314 (7)175 (5)
O13—H3W···O10ii0.93 (4)2.46 (5)3.112 (7)128 (4)
O13—H4W···O2iii0.81 (4)2.28 (4)2.936 (6)138 (3)
O12—H5W···O9iv0.84 (5)2.13 (5)2.945 (7)164 (5)
O12—H6W···O7v0.83 (2)2.46 (5)3.126 (7)138 (5)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x1, y, z; (v) x+1, y+1, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds