Download citation
Download citation
link to html
The new ether-bridged dipyridyl ligand 1,2-bis­[4-(pyridin-3-yl)phen­oxy]ethane (L) has been used to synthesize three isostructural centrosymmetric binuclear HgII macrocycles, namely bis­{μ-1,2-bis­[4-(pyridin-3-yl)phen­oxy]ethane-κ2N:N′}­bis­[dichloridomercury(II)], [Hg2Cl4(C24H20N2O2)2], and the bromido, [Hg2Br4(C24H20N2O2)2], and iodido, [Hg2I4(C24H20N2O2)2], analogues. The Hg atoms adopt a highly distorted tetra­hedral coordination environment consisting of two halides and two pyridine N-donor atoms from two bridging ligands. In the solid state, the macrocycles form two-dimensional sheets in the bc plane through noncovalent Hg...X and X...X (X = Cl, Br and I) inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112019075/gz3208sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112019075/gz3208Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112019075/gz3208IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112019075/gz3208IIIsup4.hkl
Contains datablock III

CCDC references: 889369; 889370; 889371

Comment top

Numerous supramolecular compounds designed and constructed through crystal engineering have attracted significant attention because of their fascinating structural topologies (Chae et al., 2001) and functional applications (Wang et al., 2011). It is well known that the selection of appropriate ligands as building blocks is a key point in the design and synthesis of functional supramolecular compounds. Compared with rigid ligands, flexible ligands can adopt different conformations under varying conditions resulting in potentially novel topologies (Chuang et al., 2010). N-donor ligands, such as those containing pyridyl groups, are good candidates for the assembly of versatile structures (Fujita et al., 2007). Recently, our group has reported several compounds generated from flexible ether-bridged ligands containing dicyanomethylene groups (Dong et al., 2007), carboxylic acid groups (Jiang et al., 2009) and terminal indoline-2,3-dione groups (Fang et al., 2011) and terminal imidazole groups (Yuan et al., 2011). There are few reports on flexible ether-bridged dipyridyl ligands. In order to investigate further the influence of factors such as the terminal groups of the ligand and the coordinated metal ions on the topologies and properties of supramolecular compounds, we studied the design and synthesis of a new flexible ether-bridged dipyridyl ligand 1,2-bis[4-(pyridin-3-yl)phenoxy]ethane (L). Three new macrocycles have been synthesized based on L and the inorganic salts HgX2 (X = Cl, Br and I), viz. [Hg2Cl4L2], (I), [Hg2Br4L2], (II), and [Hg2I4L2], (III). The X-ray crystal structures show that they are isostructural. We report the intermolecular interactions in the lattices of the three compounds.

The three isostructural compounds crystallize in the triclinic space group P1. The unit cells have been chosen in a similar fashion in order to facilitate the structural comparison. The unit cell of (III) became nonstandard (cell setting I, but b > c > a). As shown in Fig. 1, each compound contains macrocycles comprised of two ligands bridging two HgX2 moieties. The HgII centre lies in a highly distorted tetrahedral coordination environment defined by two N-atom donors from two pyridine ligands and two coordinated X- (X = Cl, Br and I). The corresponding metal–ligand interatomic bond distances and the bond angles exhibit some differences in (I), (II) and (III) (Tables 1–3), but are comparable to those of reported related HgII complexes (Masciocchi et al., 2009). The diameters of the cavities in the middle of the macrocycles are 3.269 (7), 3.811 (7) and 2.770 (6) Å for the Cl, Br and I derivatives, respectively.

The flexible L ligand can adopt different conformations under different conditions. In our previous study, the flexible ether-bridged organic ligand with terminal indoline-2,3-dione groups adopts a trans conformation about its central core in the free state, but a gauche conformation after coordinating to the AgI centre (Fang et al., 2011). Here in (I), the O1—C12—C13—O2 torsion angle of the central ether group is 108.5 (1)° (Fig. 1a). In (II), the torsion angle has changed to 109.9 (1)° (Fig. 1b), and in (III), the corresponding torsion angle is 77.9 (7)° (Fig. 1c). The sign of the torsion angle in (III) is opposite to that in (I) and (II), indicating a difference of some 150° between these torsion angles in the structures, so the ethylene bridge is oriented quite differently in (III) to the corresponding bridges in (I) and (II), as can be seen in Fig. 1. Additionally, the dihedral angle between the terminal N1-pyridine plane and the adjacent C6-benzene plane is 24.7 (2)° in (I) and 21.2 (2)° in (II). In contrast, the terminal N2-pyridine plane and the adjacent C17-benzene plane are nearly coplanar, with a dihedral angle of 9.8 (3)° in (I) and 6.8 (2)° in (II). In (III), the dihedral angles of the relative pyridine rings and benzene rings are 15.0 (2) and 18.5 (2)°.

In the solid state, as shown in Fig. 2, compounds (I)–(III) have the same packing motif. Herein, the representative structure of (I) is described in detail. As shown in Fig. 3, the one-dimensional Hg—Cl chains are formed along the [021] direction through noncovalent Hg···Cl interactions [Hg1···Cl2ii; symmetry code: (ii) -x+1, -y-1 -z+2]. If three different Cl···Cl interactions [Cl2···Cl1ii, Cl2···Cl2ii and Cl1···Cl1iii; symmetry code: ((iii) -x+1, -y, -z+2] are taken into consideration, a network parallel to the bc plane if formed. Fig. 4 shows the chains of Hg—Br moieties in (II) and the chains of Hg—I moieties in (III) with noncovalent interactions emphasized. The important noncovalent interactions in (I)–(III) are compared in Table 4. These two-dimensional sheets driven by noncovalent Hg···X and X···X (X = Cl, Br and I) interactions are both arranged in an ···AA··· parallel fashion in the a direction. The Hg—X distances, in the range 3.369 (2)–3.9819 (9) Å, are shorter than their van der Waals contact distances, the X···X distances are all beyond the sums of van der Waals radii (van der Waals radii: Hg = 2.15 Å, Cl = 1.80 Å, Br = 1.95 Å and I = 2.15 Å; Batsanov, 2001). Weak Cl···Cl interactions as long as 3.72 Å, which is longer than the van der Waals contact of 3.60 Å, have been reported for hexachlorobenzene (Sarma & Desiraju, 1986). The X···X (X = Cl, Br and I) distances in (I), (II) and (III) are a little longer than the sums of the van der Waals radii. The Hg—X and the weak X···X interactions are important for assisting in the lattice formation.

In summary, three macrocycles have been synthesized based on the flexible ether-bridged dipyridyl ligand. We anticipate this approach may be useful in constructing novel supramolecular compounds with the flexible ether-bridged dipyridyl ligand.

Related literature top

For related literature, see: Batsanov (2001); Chae et al. (2001); Chuang et al. (2010); Dong et al. (2007); Fang et al. (2011); Fujita et al. (2007); Jiang et al. (2009); Masciocchi et al. (2009); Sarma, Jagarlapudi & Desiraju (1986); Wang et al. (2011); Yuan et al. (2011).

Experimental top

For the preparation of 1,2-bis[4-(pyridin-3-yl)phenoxy]ethane (L), sodium hydroxide (0.44 g, 11 mmol) was added with stirring to a solution of 1,2-bis(p-tolylsulfonyl)ethane (1.85 g, 5 mmol) and 4-(pyridin-3-yl)phenol (1.71 g, 10 mmol) in anhydrous N,N-dimethylformamide (50 ml). The mixture was stirred for 24 h at 358 K, and monitored by thin-layer chromatography (TLC). After removal of the solvent, the compound was purified by column chromatography using silica gel and CH2Cl2–MeOH (20:1 v/v) to afford L as a white crystalline solid (yield 1.54 g, 4.18 mmol, 83.7%). Elemental analysis calculated for C24H20N2O2: C 78.24, H 5.47, N 7.60%; found: C 78.17, H 5.38, N 7.73%.

For the preparation of (I), a solution of HgCl2(5.97 mg, 0.022 mmol) in methanol (8 ml) was layered onto a solution of L (8.10 mg, 0.022 mmol) in CH2Cl2 (8 ml). The system was left for about 1 week at room temperature and colourless crystals of (I) were obtained (yield 11.11 mg, 79%). IR (KBr pellet, cm-1): 3417(m), 3128 (m), 2925 (w), 2873 (w), 1605 (s), 1580 (w), 1515 (s), 1476 (s), 1452 (m), 1435 (m), 1399 (s), 1315 (w), 1282 (s), 1246 (s), 1200 (w), 1181 (s), 1131 (w), 1072 (m), 1026 (w), 1002 (w), 944 (m), 840 (m), 802 (s), 738 (w), 698 (m), 646 (w), 632 (m), 556 (m), 490 (w).

For the preparation of (II), a solution of HgBr2 (7.93 mg, 0.022 mmol) in methanol (8 ml) was layered onto a solution of L (8.10 mg, 0.022 mmol) in CH2Cl2 (8 ml). The system was left for about 1 week at room temperature and colourless crystals of (II) were obtained (yield 10.10 mg, 63%). IR (KBr pellet, cm-1): 3415 (m), 3128 (m), 2925 (w), 2873 (w), 1605 (s), 1516 (s), 1476 (s), 1452 (m), 1436 (m), 1400 (s), 1282 (s), 1246 (s), 1181 (s), 1130 (w), 1072 (m), 1026 (w), 1001 (w), 944 (m), 837 (m), 802 (s), 738 (w), 698 (m), 646 (w), 632( m), 555 (m).

For the preparation of (III), a solution of HgI2 (10.00 mg, 0.022 mmol) in methanol (7 ml) was layered onto a solution of L (8.10 mg, 0.022 mmol) in CH2Cl2 (7 ml). The system was left for about 1 week at room temperature and colourless crystals of (III) were obtained (yield 10.67 mg, 59%). IR (KBr pellet, cm-1): 3417 (m), 3128 (m), 2919 (w), 1605 (s), 1517 (s), 1475 (s), 1450 (m), 1436 (m), 1399 (s), 1313 (w), 1280 (s), 1246 (s), 1180 (s), 1130 (w), 1073 (m), 1024 (w), 1001 (w), 950 (s), 836 (s), 801 (s), 738 (w), 700 (m), 646 (w), 630 (m), 553 (m).

Refinement top

H atoms were placed in geometrically idealized positions and included as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) (aromatic) and C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) (methylene). Atoms O1, O2, C12 and C13 in (I) are statistically disordered because of the rotation about the C—O bond, Attempts to model the disorder were not successful. The ratio of the disorder part is less than 20%; the minor component is not included in the refinement. In the C6–C11 benzene ring of (III), the bond lengths except for the C6—C11 bond range from 1.358 to 1.378 Å; a restraint of 1.37 (1) Å was applied to the longer C6—C11 bond to keep the rationality of the ring. As a result, the C6—C11 bond length is 1.388 Å.

Computing details top

For all compounds, data collection: SMART (Bruker, 2003); cell refinement: SMART (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (a) (I), (b) (II) and (c) (III), showing the atom-numbering schemes. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity. [Symmetry code: (i) -x+1, -y+1, -z+1.]
[Figure 2] Fig. 2. The packing feature of compound (I). H atoms have been omitted for clarity.
[Figure 3] Fig. 3. The two-dimensional sheet parallel to the bc plane and the ···AA··· parallel fashion of the two-dimensional sheet in the a direction. The one-dimensional Hg—Cl chains are formed along the b direction through noncovalent Hg···Cl interactions (Hg1···Cl2ii) and three different Cl···Cl interactions (Cl2···Cl1ii, Cl2···Cl2ii and Cl1···Cl1iii). H atoms have been omitted for clarity. [Symmetry codes: (ii) -x+1, -y-1, -z+2; (iii) -x+1, -y, -z+2.]
[Figure 4] Fig. 4. The Hg—X fragments and the chains formed by Hg···X and X···X interactions in (II) and (III) analogous to those shown in Fig. 3. [Symmetry codes: (ii) -x+1, -y-1, -z+2; (iii) -x+1, -y, -z+2.]
(I) bis{µ-1,2-bis[4-(pyridin-3-yl)phenoxy]ethane- κ2N:N'}bis[dichloridomercury(II)] top
Crystal data top
[Hg2Cl4(C24H20N2O2)2]Z = 1
Mr = 1279.82F(000) = 616
Triclinic, P1Dx = 1.927 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7822 (15) ÅCell parameters from 3326 reflections
b = 10.6904 (18) Åθ = 2.4–26.0°
c = 12.044 (2) ŵ = 7.25 mm1
α = 86.662 (2)°T = 298 K
β = 78.930 (2)°Block, colourless
γ = 84.014 (2)°0.20 × 0.15 × 0.15 mm
V = 1102.8 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4066 independent reflections
Radiation source: fine-focus sealed tube3708 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕand ω scansθmax = 25.6°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1010
Tmin = 0.325, Tmax = 0.410k = 912
5867 measured reflectionsl = 1410
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0783P)2 + 0.1498P]
where P = (Fo2 + 2Fc2)/3
4066 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 1.99 e Å3
0 restraintsΔρmin = 1.68 e Å3
Crystal data top
[Hg2Cl4(C24H20N2O2)2]γ = 84.014 (2)°
Mr = 1279.82V = 1102.8 (3) Å3
Triclinic, P1Z = 1
a = 8.7822 (15) ÅMo Kα radiation
b = 10.6904 (18) ŵ = 7.25 mm1
c = 12.044 (2) ÅT = 298 K
α = 86.662 (2)°0.20 × 0.15 × 0.15 mm
β = 78.930 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4066 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
3708 reflections with I > 2σ(I)
Tmin = 0.325, Tmax = 0.410Rint = 0.021
5867 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.08Δρmax = 1.99 e Å3
4066 reflectionsΔρmin = 1.68 e Å3
280 parameters
Special details top

Experimental. Spectroscopic data for (I): IR (KBr pellet, cm-1): 3453 (s), 2948 (w), 2931 (w), 1635 (s), 1610 (s), 1517 (s), 1474 (s), 1454 (s), 1428 (w), 1384 (s), 1338 (w), 1311 (w), 1283 (m), 1243 (s), 1180 (m), 1116 (w), 1102 (w), 1079 (s), 1069 (s), 997 (m), 938 (m), 841 (s), 801 (s), 713 (s), 629 (s), 554 (m), 512 (w); 1H NMR (300 MHz, DMSO, 25°, TMS): δ 8.85 (s, 1H, -C5H4N), 8.51 (d, 1H, -C5H4N), 8.03 (d, 1H, -C5H4N), 7.46 (t, 1H, -C5H4N), 7.46-7.11 (aabb, 4H, -C6H4-), 4.40 (s, 2H, -CH2-).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5273 (11)0.4072 (9)0.7328 (7)0.066 (2)
H10.49420.48350.76430.080*
C20.6001 (12)0.4014 (9)0.6195 (7)0.073 (2)
H20.62120.47360.57750.087*
C30.6396 (10)0.2886 (8)0.5718 (6)0.059 (2)
H30.68250.28270.49510.071*
C40.6170 (7)0.1811 (7)0.6356 (6)0.0447 (15)
C50.5488 (8)0.2015 (7)0.7505 (6)0.0464 (16)
H50.53500.13300.79690.056*
C60.6608 (7)0.0570 (7)0.5892 (5)0.0434 (15)
C70.7768 (9)0.0447 (7)0.4944 (6)0.0544 (18)
H70.82630.11700.45900.065*
C80.8210 (9)0.0695 (8)0.4512 (6)0.0559 (19)
H80.89950.07360.38740.067*
C90.7507 (9)0.1790 (7)0.5010 (6)0.0498 (16)
C100.6316 (9)0.1695 (7)0.5935 (6)0.0565 (19)
H100.58030.24220.62700.068*
C110.5879 (9)0.0545 (7)0.6368 (6)0.0518 (17)
H110.50770.05080.69940.062*
C120.9080 (14)0.3037 (9)0.3653 (8)0.087 (3)
H12A0.86500.28880.29940.105*
H12B0.99320.23940.37030.105*
C130.9697 (13)0.4351 (13)0.3523 (11)0.096 (3)
H13A0.99470.45800.42310.115*
H13B1.06290.43550.29410.115*
C140.8966 (10)0.6362 (8)0.2860 (7)0.058 (2)
C151.0303 (10)0.6899 (9)0.2961 (7)0.066 (2)
H151.10530.64500.33170.079*
C161.0509 (8)0.8119 (8)0.2524 (7)0.0565 (19)
H161.14100.84700.25940.068*
C170.9437 (7)0.8829 (6)0.1992 (5)0.0394 (14)
C180.8096 (8)0.8235 (7)0.1906 (6)0.0479 (16)
H180.73420.86740.15490.057*
C190.7872 (9)0.7043 (8)0.2330 (7)0.0557 (18)
H190.69740.66880.22600.067*
C200.9645 (7)1.0120 (6)0.1525 (5)0.0381 (14)
C211.1045 (8)1.0660 (7)0.1440 (6)0.0473 (16)
H211.18921.01980.16740.057*
C221.1176 (8)1.1862 (8)0.1015 (6)0.0523 (17)
H221.21091.22210.09580.063*
C230.9917 (7)1.2540 (7)0.0671 (6)0.0452 (15)
H231.00091.33630.03900.054*
C240.8465 (7)1.0885 (7)0.1143 (6)0.0419 (14)
H240.75181.05520.11820.050*
Cl10.4617 (2)0.1547 (2)1.0667 (2)0.0679 (6)
Cl20.2783 (2)0.52263 (19)1.0097 (2)0.0712 (6)
Hg10.36668 (3)0.32236 (2)0.99358 (2)0.04437 (13)
N10.5032 (7)0.3086 (6)0.7976 (5)0.0481 (14)
N20.8577 (6)1.2051 (5)0.0729 (5)0.0424 (12)
O10.7901 (7)0.2962 (5)0.4652 (4)0.0649 (15)
O20.8583 (10)0.5138 (7)0.3240 (6)0.099 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.080 (6)0.056 (5)0.063 (5)0.027 (4)0.006 (4)0.010 (4)
C20.106 (7)0.051 (5)0.058 (5)0.017 (5)0.002 (5)0.013 (4)
C30.076 (5)0.055 (5)0.042 (4)0.015 (4)0.002 (3)0.003 (3)
C40.041 (3)0.051 (4)0.042 (3)0.005 (3)0.006 (3)0.004 (3)
C50.050 (4)0.043 (4)0.046 (4)0.005 (3)0.008 (3)0.002 (3)
C60.042 (3)0.052 (4)0.037 (3)0.007 (3)0.009 (3)0.005 (3)
C70.066 (4)0.044 (4)0.045 (4)0.000 (3)0.008 (3)0.001 (3)
C80.065 (4)0.051 (5)0.044 (4)0.012 (4)0.010 (3)0.004 (3)
C90.068 (4)0.046 (4)0.037 (3)0.012 (3)0.011 (3)0.007 (3)
C100.070 (5)0.039 (4)0.055 (4)0.002 (4)0.000 (4)0.005 (3)
C110.055 (4)0.049 (5)0.048 (4)0.008 (3)0.001 (3)0.000 (3)
C120.137 (9)0.044 (5)0.068 (6)0.021 (6)0.018 (6)0.006 (4)
C130.082 (7)0.106 (10)0.099 (8)0.021 (7)0.017 (6)0.012 (7)
C140.074 (5)0.039 (4)0.053 (4)0.004 (4)0.006 (4)0.004 (3)
C150.066 (5)0.057 (5)0.069 (5)0.004 (4)0.015 (4)0.021 (4)
C160.043 (4)0.053 (5)0.071 (5)0.002 (3)0.012 (3)0.013 (4)
C170.041 (3)0.038 (4)0.036 (3)0.002 (3)0.003 (2)0.001 (3)
C180.050 (4)0.045 (4)0.048 (4)0.011 (3)0.008 (3)0.004 (3)
C190.056 (4)0.049 (5)0.061 (4)0.016 (4)0.004 (3)0.001 (4)
C200.037 (3)0.042 (4)0.033 (3)0.003 (3)0.002 (2)0.003 (3)
C210.037 (3)0.053 (5)0.052 (4)0.004 (3)0.009 (3)0.001 (3)
C220.040 (3)0.054 (5)0.063 (4)0.011 (3)0.011 (3)0.006 (4)
C230.047 (4)0.042 (4)0.048 (4)0.009 (3)0.010 (3)0.006 (3)
C240.032 (3)0.044 (4)0.049 (3)0.008 (3)0.005 (3)0.002 (3)
Cl10.0470 (9)0.0656 (14)0.0960 (15)0.0068 (9)0.0162 (9)0.0325 (12)
Cl20.0617 (11)0.0361 (11)0.1196 (18)0.0200 (9)0.0248 (12)0.0203 (11)
Hg10.04736 (18)0.03537 (19)0.05181 (19)0.01233 (12)0.01111 (12)0.00770 (12)
N10.054 (3)0.044 (4)0.045 (3)0.015 (3)0.005 (3)0.007 (3)
N20.040 (3)0.038 (3)0.048 (3)0.010 (2)0.006 (2)0.005 (2)
O10.103 (4)0.042 (3)0.047 (3)0.019 (3)0.002 (3)0.001 (2)
O20.117 (6)0.071 (5)0.083 (5)0.019 (4)0.016 (4)0.035 (4)
Geometric parameters (Å, º) top
C1—N11.322 (11)C13—H13B0.9700
C1—C21.392 (12)C14—C191.377 (12)
C1—H10.9300C14—C151.388 (12)
C2—C31.355 (12)C14—O21.414 (11)
C2—H20.9300C15—C161.395 (12)
C3—C41.395 (11)C15—H150.9300
C3—H30.9300C16—C171.378 (10)
C4—C51.413 (10)C16—H160.9300
C4—C61.469 (10)C17—C181.418 (9)
C5—N11.314 (9)C17—C201.475 (10)
C5—H50.9300C18—C191.364 (11)
C6—C71.387 (9)C18—H180.9300
C6—C111.392 (10)C19—H190.9300
C7—C81.364 (11)C20—C241.384 (9)
C7—H70.9300C20—C211.396 (9)
C8—C91.378 (11)C21—C221.362 (11)
C8—H80.9300C21—H210.9300
C9—O11.358 (9)C22—C231.376 (10)
C9—C101.381 (11)C22—H220.9300
C10—C111.370 (11)C23—N21.326 (8)
C10—H100.9300C23—H230.9300
C11—H110.9300C24—N21.322 (9)
C12—O11.433 (10)C24—H240.9300
C12—C131.547 (15)Cl1—Hg12.337 (2)
C12—H12A0.9700Cl2—Hg12.338 (2)
C12—H12B0.9700Hg1—N12.438 (6)
C13—O21.306 (13)Hg1—N2i2.463 (5)
C13—H13A0.9700N2—Hg1i2.463 (5)
N1—C1—C2122.8 (8)C19—C14—O2114.0 (8)
N1—C1—H1118.6C15—C14—O2126.6 (8)
C2—C1—H1118.6C14—C15—C16119.2 (7)
C3—C2—C1118.6 (8)C14—C15—H15120.4
C3—C2—H2120.7C16—C15—H15120.4
C1—C2—H2120.7C17—C16—C15123.0 (8)
C2—C3—C4121.3 (7)C17—C16—H16118.5
C2—C3—H3119.4C15—C16—H16118.5
C4—C3—H3119.4C16—C17—C18115.6 (7)
C3—C4—C5114.2 (7)C16—C17—C20123.4 (6)
C3—C4—C6123.7 (6)C18—C17—C20121.0 (6)
C5—C4—C6122.1 (6)C19—C18—C17122.3 (7)
N1—C5—C4125.7 (7)C19—C18—H18118.8
N1—C5—H5117.2C17—C18—H18118.8
C4—C5—H5117.2C18—C19—C14120.5 (7)
C7—C6—C11116.3 (7)C18—C19—H19119.8
C7—C6—C4121.5 (6)C14—C19—H19119.8
C11—C6—C4122.2 (6)C24—C20—C21115.1 (6)
C8—C7—C6122.4 (7)C24—C20—C17122.5 (6)
C8—C7—H7118.8C21—C20—C17122.4 (6)
C6—C7—H7118.8C22—C21—C20120.3 (6)
C7—C8—C9120.7 (7)C22—C21—H21119.8
C7—C8—H8119.7C20—C21—H21119.8
C9—C8—H8119.7C21—C22—C23119.5 (7)
O1—C9—C8124.5 (7)C21—C22—H22120.3
O1—C9—C10117.5 (7)C23—C22—H22120.3
C8—C9—C10118.0 (7)N2—C23—C22121.7 (7)
C11—C10—C9121.1 (7)N2—C23—H23119.1
C11—C10—H10119.5C22—C23—H23119.1
C9—C10—H10119.5N2—C24—C20125.2 (6)
C10—C11—C6121.5 (7)N2—C24—H24117.4
C10—C11—H11119.2C20—C24—H24117.4
C6—C11—H11119.2Cl1—Hg1—Cl2152.25 (10)
O1—C12—C13110.2 (8)Cl1—Hg1—N1100.05 (16)
O1—C12—H12A109.6Cl2—Hg1—N1103.08 (16)
C13—C12—H12A109.6Cl1—Hg1—N2i98.41 (14)
O1—C12—H12B109.6Cl2—Hg1—N2i98.11 (14)
C13—C12—H12B109.6N1—Hg1—N2i86.50 (19)
H12A—C12—H12B108.1C5—N1—C1117.4 (6)
O2—C13—C12106.3 (10)C5—N1—Hg1121.2 (5)
O2—C13—H13A110.5C1—N1—Hg1121.3 (5)
C12—C13—H13A110.5C24—N2—C23118.1 (6)
O2—C13—H13B110.5C24—N2—Hg1i119.5 (4)
C12—C13—H13B110.5C23—N2—Hg1i122.3 (5)
H13A—C13—H13B108.7C9—O1—C12116.2 (6)
C19—C14—C15119.5 (8)C13—O2—C14117.0 (10)
N1—C1—C2—C34.1 (15)C16—C17—C20—C24170.3 (6)
C1—C2—C3—C43.9 (15)C18—C17—C20—C2410.3 (9)
C2—C3—C4—C50.9 (12)C16—C17—C20—C219.4 (10)
C2—C3—C4—C6178.5 (8)C18—C17—C20—C21170.0 (6)
C3—C4—C5—N12.2 (11)C24—C20—C21—C220.5 (9)
C6—C4—C5—N1178.3 (7)C17—C20—C21—C22179.2 (6)
C3—C4—C6—C724.7 (11)C20—C21—C22—C230.0 (11)
C5—C4—C6—C7154.7 (7)C21—C22—C23—N20.8 (11)
C3—C4—C6—C11154.7 (7)C21—C20—C24—N20.5 (9)
C5—C4—C6—C1125.9 (10)C17—C20—C24—N2179.2 (6)
C11—C6—C7—C81.7 (11)C4—C5—N1—C12.2 (11)
C4—C6—C7—C8178.9 (7)C4—C5—N1—Hg1174.5 (5)
C6—C7—C8—C90.1 (13)C2—C1—N1—C51.1 (13)
C7—C8—C9—O1178.3 (8)C2—C1—N1—Hg1177.8 (7)
C7—C8—C9—C101.8 (12)Cl1—Hg1—N1—C526.4 (5)
O1—C9—C10—C11178.1 (7)Cl2—Hg1—N1—C5169.1 (5)
C8—C9—C10—C112.0 (12)N2i—Hg1—N1—C571.6 (5)
C9—C10—C11—C60.3 (12)Cl1—Hg1—N1—C1157.1 (6)
C7—C6—C11—C101.5 (11)Cl2—Hg1—N1—C17.5 (6)
C4—C6—C11—C10179.1 (7)N2i—Hg1—N1—C1105.0 (6)
O1—C12—C13—O271.5 (12)C20—C24—N2—C230.2 (10)
C19—C14—C15—C160.1 (12)C20—C24—N2—Hg1i178.8 (5)
O2—C14—C15—C16179.1 (8)C22—C23—N2—C240.9 (10)
C14—C15—C16—C170.2 (13)C22—C23—N2—Hg1i178.1 (5)
C15—C16—C17—C180.4 (11)C8—C9—O1—C123.2 (12)
C15—C16—C17—C20179.9 (7)C10—C9—O1—C12176.7 (8)
C16—C17—C18—C190.5 (10)C13—C12—O1—C9165.7 (8)
C20—C17—C18—C19180.0 (6)C12—C13—O2—C14168.2 (8)
C17—C18—C19—C140.3 (11)C19—C14—O2—C13165.6 (9)
C15—C14—C19—C180.0 (11)C15—C14—O2—C1313.5 (14)
O2—C14—C19—C18179.1 (7)
Symmetry code: (i) x+1, y+1, z+1.
(II) bis{µ-1,2-bis[4-(pyridin-3-yl)phenoxy]ethane- κ2N:N'}bis[dibromidomercury(II)] top
Crystal data top
[Hg2Br4(C24H20N2O2)2]Z = 1
Mr = 1457.66F(000) = 688
Triclinic, P1Dx = 2.106 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 9.021 (4) ÅCell parameters from 2261 reflections
b = 11.096 (4) Åθ = 2.3–23.2°
c = 11.914 (5) ŵ = 10.20 mm1
α = 81.812 (5)°T = 298 K
β = 78.764 (5)°Block, colourless
γ = 81.635 (5)°0.15 × 0.14 × 0.13 mm
V = 1149.1 (8) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4234 independent reflections
Radiation source: fine-focus sealed tube3491 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 25.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 109
Tmin = 0.310, Tmax = 0.351k = 137
6112 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.1447P]
where P = (Fo2 + 2Fc2)/3
4234 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 1.19 e Å3
0 restraintsΔρmin = 1.04 e Å3
Crystal data top
[Hg2Br4(C24H20N2O2)2]γ = 81.635 (5)°
Mr = 1457.66V = 1149.1 (8) Å3
Triclinic, P1Z = 1
a = 9.021 (4) ÅMo Kα radiation
b = 11.096 (4) ŵ = 10.20 mm1
c = 11.914 (5) ÅT = 298 K
α = 81.812 (5)°0.15 × 0.14 × 0.13 mm
β = 78.764 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4234 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
3491 reflections with I > 2σ(I)
Tmin = 0.310, Tmax = 0.351Rint = 0.025
6112 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.08Δρmax = 1.19 e Å3
4234 reflectionsΔρmin = 1.04 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.46032 (8)0.16667 (8)1.06539 (8)0.0674 (2)
Br20.25820 (11)0.52762 (8)1.02646 (10)0.0853 (3)
C10.4994 (10)0.3976 (8)0.7275 (8)0.080 (3)
H10.45980.47030.75900.095*
C20.5734 (12)0.3894 (9)0.6154 (8)0.088 (3)
H20.58760.45550.57280.105*
C30.6271 (11)0.2775 (9)0.5671 (7)0.079 (3)
H30.67660.26810.49080.095*
C40.6066 (7)0.1812 (7)0.6325 (6)0.0527 (17)
C50.5342 (8)0.2045 (7)0.7467 (6)0.0540 (17)
H50.52240.14220.79350.065*
C60.6596 (8)0.0593 (7)0.5874 (6)0.0516 (17)
C70.7724 (9)0.0468 (7)0.4912 (6)0.063 (2)
H70.81440.11550.45430.076*
C80.8246 (9)0.0643 (8)0.4482 (6)0.068 (2)
H80.90040.06980.38310.082*
C90.7647 (8)0.1669 (7)0.5013 (6)0.0555 (18)
C100.6499 (9)0.1575 (8)0.5974 (6)0.063 (2)
H100.60760.22620.63430.075*
C110.5987 (8)0.0439 (7)0.6380 (6)0.0586 (19)
H110.52070.03830.70160.070*
C120.9231 (10)0.2928 (7)0.3664 (7)0.074 (2)
H12A0.87970.28430.30000.089*
H12B1.00770.22870.37180.089*
C130.9791 (10)0.4190 (8)0.3523 (8)0.084 (3)
H13A1.00660.43390.42350.101*
H13B1.06770.42350.29160.101*
C140.8920 (8)0.6250 (8)0.2874 (6)0.061 (2)
C151.0254 (9)0.6680 (8)0.2959 (7)0.068 (2)
H151.10080.61650.32830.082*
C161.0450 (8)0.7904 (8)0.2547 (7)0.065 (2)
H161.13370.81980.26210.078*
C170.9381 (7)0.8686 (6)0.2037 (5)0.0466 (16)
C180.8060 (8)0.8216 (7)0.1966 (7)0.0589 (19)
H180.73060.87220.16330.071*
C190.7842 (8)0.7028 (7)0.2373 (7)0.0609 (19)
H190.69460.67420.23090.073*
C200.9624 (7)0.9977 (6)0.1582 (5)0.0420 (15)
C211.0991 (8)1.0437 (7)0.1515 (7)0.0598 (19)
H211.18040.99320.17730.072*
C221.1160 (8)1.1646 (7)0.1064 (7)0.062 (2)
H221.20791.19530.10160.074*
C230.9955 (8)1.2374 (7)0.0694 (6)0.0563 (18)
H231.00651.31860.04030.068*
C240.8515 (8)1.0791 (7)0.1161 (6)0.0531 (17)
H240.75931.05040.11700.064*
Hg10.35219 (3)0.32686 (2)0.99462 (2)0.05355 (13)
N10.4807 (7)0.3094 (6)0.7936 (5)0.0601 (15)
N20.8637 (6)1.1967 (5)0.0734 (5)0.0515 (14)
O10.8105 (6)0.2816 (5)0.4685 (4)0.0705 (15)
O20.8578 (6)0.5059 (5)0.3240 (5)0.0792 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0517 (4)0.0724 (5)0.0860 (6)0.0108 (4)0.0146 (4)0.0296 (5)
Br20.0754 (5)0.0491 (5)0.1318 (9)0.0217 (4)0.0170 (5)0.0004 (5)
C10.095 (7)0.067 (5)0.084 (7)0.038 (5)0.011 (5)0.008 (5)
C20.118 (8)0.082 (6)0.072 (6)0.040 (6)0.002 (5)0.028 (5)
C30.094 (6)0.095 (7)0.051 (5)0.021 (6)0.002 (4)0.020 (5)
C40.044 (4)0.061 (5)0.054 (4)0.005 (3)0.010 (3)0.011 (4)
C50.056 (4)0.058 (4)0.048 (4)0.010 (4)0.004 (3)0.008 (4)
C60.049 (4)0.062 (5)0.045 (4)0.008 (3)0.012 (3)0.004 (3)
C70.074 (5)0.063 (5)0.043 (4)0.001 (4)0.008 (3)0.014 (4)
C80.072 (5)0.084 (6)0.039 (4)0.011 (5)0.014 (3)0.003 (4)
C90.059 (4)0.069 (5)0.036 (4)0.007 (4)0.005 (3)0.002 (4)
C100.069 (5)0.068 (5)0.048 (4)0.008 (4)0.001 (4)0.011 (4)
C110.054 (4)0.072 (5)0.047 (4)0.016 (4)0.005 (3)0.007 (4)
C120.092 (6)0.061 (5)0.056 (5)0.004 (5)0.007 (4)0.003 (4)
C130.077 (6)0.088 (7)0.074 (6)0.004 (5)0.005 (5)0.021 (5)
C140.056 (4)0.076 (5)0.046 (4)0.005 (4)0.001 (3)0.003 (4)
C150.058 (5)0.071 (5)0.068 (5)0.003 (4)0.016 (4)0.018 (4)
C160.047 (4)0.083 (6)0.064 (5)0.009 (4)0.017 (3)0.005 (4)
C170.037 (3)0.060 (4)0.041 (4)0.002 (3)0.002 (3)0.015 (3)
C180.050 (4)0.055 (4)0.075 (5)0.002 (4)0.018 (4)0.013 (4)
C190.057 (4)0.065 (5)0.065 (5)0.014 (4)0.019 (4)0.005 (4)
C200.038 (3)0.056 (4)0.033 (3)0.006 (3)0.003 (3)0.014 (3)
C210.037 (4)0.069 (5)0.073 (5)0.003 (3)0.009 (3)0.015 (4)
C220.038 (4)0.069 (5)0.082 (6)0.005 (4)0.015 (4)0.015 (4)
C230.046 (4)0.054 (4)0.068 (5)0.011 (3)0.001 (3)0.010 (4)
C240.044 (4)0.061 (5)0.058 (4)0.013 (3)0.013 (3)0.007 (4)
Hg10.05616 (19)0.04413 (18)0.0619 (2)0.01459 (13)0.01151 (13)0.00151 (13)
N10.065 (4)0.060 (4)0.056 (4)0.017 (3)0.011 (3)0.003 (3)
N20.045 (3)0.056 (4)0.054 (4)0.010 (3)0.006 (3)0.007 (3)
O10.086 (4)0.069 (4)0.050 (3)0.017 (3)0.001 (3)0.004 (3)
O20.073 (4)0.069 (4)0.085 (4)0.010 (3)0.009 (3)0.021 (3)
Geometric parameters (Å, º) top
C1—N11.314 (10)C13—H13B0.9700
C1—C21.369 (13)C14—C191.373 (10)
C1—H10.9300C14—C151.384 (10)
C2—C31.404 (12)C14—O21.390 (9)
C2—H20.9300C15—C161.401 (11)
C3—C41.380 (11)C15—H150.9300
C3—H30.9300C16—C171.374 (9)
C4—C51.396 (10)C16—H160.9300
C4—C61.492 (10)C17—C181.390 (9)
C5—N11.331 (9)C17—C201.489 (9)
C5—H50.9300C18—C191.366 (10)
C6—C111.364 (10)C18—H180.9300
C6—C71.382 (10)C19—H190.9300
C7—C81.378 (11)C20—C241.369 (9)
C7—H70.9300C20—C211.385 (9)
C8—C91.371 (10)C21—C221.391 (10)
C8—H80.9300C21—H210.9300
C9—O11.376 (9)C22—C231.363 (10)
C9—C101.389 (10)C22—H220.9300
C10—C111.394 (10)C23—N21.322 (8)
C10—H100.9300C23—H230.9300
C11—H110.9300C24—N21.343 (9)
C12—O11.428 (9)C24—H240.9300
C12—C131.533 (12)Br1—Hg12.4644 (10)
C12—H12A0.9700Br2—Hg12.4512 (12)
C12—H12B0.9700Hg1—N12.443 (6)
C13—O21.410 (9)Hg1—N2i2.449 (5)
C13—H13A0.9700N2—Hg1i2.449 (5)
N1—C1—C2124.3 (8)C19—C14—O2115.9 (7)
N1—C1—H1117.9C15—C14—O2125.0 (7)
C2—C1—H1117.9C14—C15—C16118.9 (7)
C1—C2—C3117.5 (8)C14—C15—H15120.6
C1—C2—H2121.3C16—C15—H15120.6
C3—C2—H2121.3C17—C16—C15122.4 (7)
C4—C3—C2120.2 (8)C17—C16—H16118.8
C4—C3—H3119.9C15—C16—H16118.8
C2—C3—H3119.9C16—C17—C18116.9 (7)
C3—C4—C5115.8 (7)C16—C17—C20121.6 (6)
C3—C4—C6123.5 (7)C18—C17—C20121.5 (6)
C5—C4—C6120.7 (6)C19—C18—C17121.6 (7)
N1—C5—C4124.8 (7)C19—C18—H18119.2
N1—C5—H5117.6C17—C18—H18119.2
C4—C5—H5117.6C18—C19—C14121.2 (7)
C11—C6—C7117.3 (7)C18—C19—H19119.4
C11—C6—C4121.9 (6)C14—C19—H19119.4
C7—C6—C4120.8 (7)C24—C20—C21114.9 (6)
C8—C7—C6122.1 (7)C24—C20—C17121.9 (6)
C8—C7—H7119.0C21—C20—C17123.2 (6)
C6—C7—H7119.0C20—C21—C22120.6 (7)
C9—C8—C7120.0 (7)C20—C21—H21119.7
C9—C8—H8120.0C22—C21—H21119.7
C7—C8—H8120.0C23—C22—C21118.9 (7)
C8—C9—O1125.3 (6)C23—C22—H22120.5
C8—C9—C10119.2 (7)C21—C22—H22120.5
O1—C9—C10115.5 (7)N2—C23—C22122.3 (7)
C9—C10—C11119.3 (7)N2—C23—H23118.8
C9—C10—H10120.4C22—C23—H23118.8
C11—C10—H10120.4N2—C24—C20125.9 (6)
C6—C11—C10122.1 (7)N2—C24—H24117.1
C6—C11—H11119.0C20—C24—H24117.1
C10—C11—H11119.0Br1—Hg1—Br2150.17 (4)
O1—C12—C13108.9 (7)Br1—Hg1—N1100.18 (15)
O1—C12—H12A109.9Br2—Hg1—N1104.22 (15)
C13—C12—H12A109.9N2i—Hg1—Br197.82 (14)
O1—C12—H12B109.9N2i—Hg1—Br2100.51 (14)
C13—C12—H12B109.9N1—Hg1—N2i86.53 (19)
H12A—C12—H12B108.3C1—N1—C5117.3 (7)
O2—C13—C12106.5 (7)C1—N1—Hg1123.8 (5)
O2—C13—H13A110.4C5—N1—Hg1118.9 (5)
C12—C13—H13A110.4C23—N2—C24117.4 (6)
O2—C13—H13B110.4C23—N2—Hg1i122.4 (5)
C12—C13—H13B110.4C24—N2—Hg1i120.2 (4)
H13A—C13—H13B108.6C9—O1—C12115.5 (6)
C19—C14—C15119.0 (7)C14—O2—C13116.2 (6)
N1—C1—C2—C32.7 (16)C16—C17—C20—C24174.5 (7)
C1—C2—C3—C40.9 (14)C18—C17—C20—C245.5 (10)
C2—C3—C4—C51.4 (12)C16—C17—C20—C217.9 (10)
C2—C3—C4—C6179.7 (8)C18—C17—C20—C21172.2 (7)
C3—C4—C5—N12.4 (11)C24—C20—C21—C221.1 (10)
C6—C4—C5—N1178.7 (6)C17—C20—C21—C22178.9 (7)
C3—C4—C6—C11158.8 (8)C20—C21—C22—C230.2 (12)
C5—C4—C6—C1122.3 (10)C21—C22—C23—N20.9 (12)
C3—C4—C6—C720.7 (11)C21—C20—C24—N22.0 (10)
C5—C4—C6—C7158.2 (7)C17—C20—C24—N2179.9 (6)
C11—C6—C7—C81.1 (12)C2—C1—N1—C51.8 (14)
C4—C6—C7—C8179.4 (7)C2—C1—N1—Hg1178.9 (8)
C6—C7—C8—C90.2 (13)C4—C5—N1—C10.8 (11)
C7—C8—C9—O1178.0 (7)C4—C5—N1—Hg1178.5 (5)
C7—C8—C9—C100.9 (12)N2i—Hg1—N1—C1104.7 (7)
C8—C9—C10—C110.3 (11)Br2—Hg1—N1—C14.7 (7)
O1—C9—C10—C11178.7 (7)Br1—Hg1—N1—C1158.0 (6)
C7—C6—C11—C101.7 (11)N2i—Hg1—N1—C574.6 (5)
C4—C6—C11—C10178.8 (7)Br2—Hg1—N1—C5174.5 (5)
C9—C10—C11—C61.1 (12)Br1—Hg1—N1—C522.8 (5)
O1—C12—C13—O270.1 (9)C22—C23—N2—C240.1 (10)
C19—C14—C15—C161.1 (12)C22—C23—N2—Hg1i179.4 (6)
O2—C14—C15—C16179.6 (7)C20—C24—N2—C231.5 (10)
C14—C15—C16—C171.6 (12)C20—C24—N2—Hg1i179.0 (5)
C15—C16—C17—C181.3 (11)C8—C9—O1—C124.1 (11)
C15—C16—C17—C20178.7 (7)C10—C9—O1—C12177.0 (7)
C16—C17—C18—C190.7 (11)C13—C12—O1—C9171.3 (6)
C20—C17—C18—C19179.4 (7)C19—C14—O2—C13166.8 (7)
C17—C18—C19—C140.3 (12)C15—C14—O2—C1311.8 (11)
C15—C14—C19—C180.5 (12)C12—C13—O2—C14169.1 (7)
O2—C14—C19—C18179.1 (7)
Symmetry code: (i) x+1, y+1, z+1.
(III) bis{µ-1,2-bis[4-(pyridin-3-yl)phenoxy]ethane- κ2N:N'}bis[iodidomercury(II)] top
Crystal data top
[Hg2I4(C24H20N2O2)2]Z = 1
Mr = 1645.62F(000) = 760
Triclinic, P1Dx = 2.252 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9444 (16) ÅCell parameters from 3275 reflections
b = 12.352 (2) Åθ = 2.4–27.0°
c = 12.052 (2) ŵ = 8.91 mm1
α = 72.641 (2)°T = 298 K
β = 74.882 (2)°Block, colourless
γ = 77.620 (2)°0.20 × 0.15 × 0.15 mm
V = 1213.3 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4426 independent reflections
Radiation source: fine-focus sealed tube3740 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 25.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1010
Tmin = 0.269, Tmax = 0.348k = 1414
6387 measured reflectionsl = 1214
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0445P)2]
where P = (Fo2 + 2Fc2)/3
4426 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 1.11 e Å3
1 restraintΔρmin = 1.10 e Å3
Crystal data top
[Hg2I4(C24H20N2O2)2]γ = 77.620 (2)°
Mr = 1645.62V = 1213.3 (4) Å3
Triclinic, P1Z = 1
a = 8.9444 (16) ÅMo Kα radiation
b = 12.352 (2) ŵ = 8.91 mm1
c = 12.052 (2) ÅT = 298 K
α = 72.641 (2)°0.20 × 0.15 × 0.15 mm
β = 74.882 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4426 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
3740 reflections with I > 2σ(I)
Tmin = 0.269, Tmax = 0.348Rint = 0.023
6387 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0341 restraint
wR(F2) = 0.086H-atom parameters constrained
S = 1.02Δρmax = 1.11 e Å3
4426 reflectionsΔρmin = 1.10 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5421 (7)0.3617 (6)0.7284 (6)0.0512 (15)
H10.51640.43540.76110.061*
C20.6406 (9)0.3372 (6)0.6195 (7)0.065 (2)
H20.68060.39360.57840.079*
C30.6801 (8)0.2287 (6)0.5709 (7)0.065 (2)
H30.74870.21230.49740.078*
C40.6187 (6)0.1437 (5)0.6303 (5)0.0406 (13)
C50.5236 (7)0.1789 (5)0.7401 (5)0.0481 (15)
H50.48440.12530.78460.058*
C60.6549 (6)0.0249 (5)0.5844 (5)0.0405 (13)
C70.7775 (7)0.0037 (6)0.4901 (6)0.0534 (16)
H70.83990.05370.45620.064*
C80.8113 (8)0.1142 (6)0.4440 (6)0.0560 (17)
H80.89420.13060.37950.067*
C90.7217 (7)0.1999 (5)0.4939 (5)0.0432 (14)
C100.6013 (7)0.1732 (6)0.5879 (6)0.0523 (16)
H100.54120.23050.62280.063*
C110.5664 (7)0.0638 (5)0.6322 (6)0.0532 (16)
H110.48180.04860.69560.064*
C120.8457 (8)0.3461 (6)0.3417 (6)0.0526 (16)
H12A0.82440.31210.28560.063*
H12B0.95380.31930.34870.063*
C130.8204 (8)0.4731 (6)0.2980 (6)0.0553 (16)
H13A0.86160.49550.21290.066*
H13B0.70920.50180.31300.066*
C140.9126 (7)0.6343 (5)0.3114 (5)0.0425 (14)
C151.0155 (7)0.6758 (5)0.3514 (6)0.0491 (15)
H151.07030.62700.40760.059*
C161.0365 (7)0.7884 (5)0.3084 (5)0.0447 (14)
H161.10660.81430.33600.054*
C170.9571 (6)0.8658 (5)0.2248 (5)0.0365 (12)
C180.8547 (7)0.8219 (5)0.1869 (5)0.0440 (14)
H180.79970.87070.13090.053*
C190.8311 (7)0.7097 (6)0.2285 (6)0.0508 (16)
H190.76050.68390.20120.061*
C200.9810 (6)0.9871 (5)0.1800 (5)0.0373 (13)
C211.1090 (6)1.0272 (5)0.1905 (6)0.0454 (14)
H211.18600.97650.22680.054*
C221.1218 (7)1.1427 (6)0.1467 (6)0.0504 (16)
H221.20821.16940.15290.061*
C231.0089 (7)1.2176 (5)0.0946 (6)0.0460 (14)
H231.01891.29500.06570.055*
C240.8729 (7)1.0703 (5)0.1249 (5)0.0451 (14)
H240.78621.04620.11560.054*
Hg10.33105 (3)0.31840 (2)0.99668 (2)0.04913 (10)
I10.45290 (5)0.18407 (5)1.07191 (5)0.06595 (16)
I20.23304 (5)0.51441 (4)1.03272 (5)0.06082 (15)
N10.4828 (6)0.2833 (4)0.7883 (5)0.0491 (12)
N20.8836 (5)1.1814 (4)0.0843 (4)0.0425 (11)
O10.7450 (5)0.3123 (4)0.4541 (4)0.0538 (11)
O20.8984 (5)0.5213 (4)0.3581 (4)0.0547 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.055 (4)0.045 (4)0.056 (4)0.014 (3)0.020 (3)0.006 (3)
C20.083 (5)0.047 (4)0.066 (5)0.008 (4)0.009 (4)0.020 (4)
C30.073 (5)0.061 (5)0.055 (4)0.014 (4)0.007 (4)0.022 (4)
C40.038 (3)0.040 (3)0.046 (3)0.001 (2)0.018 (3)0.009 (3)
C50.047 (3)0.046 (4)0.045 (3)0.008 (3)0.001 (3)0.010 (3)
C60.038 (3)0.048 (4)0.038 (3)0.005 (3)0.014 (3)0.009 (3)
C70.055 (4)0.044 (4)0.056 (4)0.004 (3)0.002 (3)0.019 (3)
C80.050 (4)0.053 (4)0.055 (4)0.018 (3)0.011 (3)0.011 (3)
C90.044 (3)0.052 (4)0.040 (3)0.010 (3)0.015 (3)0.013 (3)
C100.057 (4)0.052 (4)0.048 (4)0.005 (3)0.005 (3)0.021 (3)
C110.049 (4)0.055 (4)0.047 (4)0.008 (3)0.005 (3)0.013 (3)
C120.063 (4)0.056 (4)0.043 (3)0.019 (3)0.004 (3)0.017 (3)
C130.067 (4)0.057 (4)0.048 (4)0.019 (3)0.020 (3)0.010 (3)
C140.044 (3)0.044 (4)0.044 (3)0.007 (3)0.012 (3)0.016 (3)
C150.053 (4)0.048 (4)0.052 (4)0.001 (3)0.026 (3)0.013 (3)
C160.039 (3)0.049 (4)0.051 (4)0.005 (3)0.020 (3)0.011 (3)
C170.031 (3)0.040 (3)0.037 (3)0.001 (2)0.004 (2)0.012 (2)
C180.047 (3)0.039 (3)0.049 (3)0.004 (3)0.022 (3)0.008 (3)
C190.052 (4)0.052 (4)0.060 (4)0.010 (3)0.030 (3)0.014 (3)
C200.030 (3)0.047 (3)0.035 (3)0.000 (2)0.005 (2)0.016 (3)
C210.035 (3)0.048 (4)0.060 (4)0.003 (3)0.019 (3)0.018 (3)
C220.038 (3)0.055 (4)0.065 (4)0.009 (3)0.012 (3)0.022 (3)
C230.045 (3)0.043 (4)0.052 (4)0.010 (3)0.013 (3)0.011 (3)
C240.038 (3)0.049 (4)0.049 (3)0.009 (3)0.014 (3)0.007 (3)
Hg10.05209 (16)0.04490 (16)0.05199 (16)0.01471 (11)0.01592 (12)0.00525 (11)
I10.0506 (3)0.0845 (4)0.0802 (4)0.0097 (2)0.0164 (2)0.0450 (3)
I20.0608 (3)0.0435 (3)0.0802 (3)0.0167 (2)0.0315 (2)0.0018 (2)
N10.048 (3)0.045 (3)0.053 (3)0.008 (2)0.011 (2)0.010 (3)
N20.036 (2)0.039 (3)0.051 (3)0.007 (2)0.010 (2)0.006 (2)
O10.066 (3)0.046 (3)0.052 (3)0.014 (2)0.005 (2)0.019 (2)
O20.073 (3)0.049 (3)0.051 (3)0.018 (2)0.026 (2)0.009 (2)
Geometric parameters (Å, º) top
C1—N11.318 (7)C13—H13B0.9700
C1—C21.366 (10)C14—O21.362 (7)
C1—H10.9300C14—C151.387 (8)
C2—C31.375 (10)C14—C191.390 (9)
C2—H20.9300C15—C161.367 (9)
C3—C41.384 (8)C15—H150.9300
C3—H30.9300C16—C171.393 (8)
C4—C51.375 (8)C16—H160.9300
C4—C61.479 (8)C17—C181.387 (8)
C5—N11.333 (8)C17—C201.475 (8)
C5—H50.9300C18—C191.367 (9)
C6—C71.378 (9)C18—H180.9300
C6—C111.388 (6)C19—H190.9300
C7—C81.378 (9)C20—C211.388 (7)
C7—H70.9300C20—C241.391 (8)
C8—C91.375 (8)C21—C221.385 (9)
C8—H80.9300C21—H210.9300
C9—C101.358 (8)C22—C231.362 (9)
C9—O11.369 (7)C22—H220.9300
C10—C111.368 (9)C23—N21.338 (7)
C10—H100.9300C23—H230.9300
C11—H110.9300C24—N21.328 (7)
C12—O11.416 (7)C24—H240.9300
C12—C131.485 (9)I1—Hg12.6365 (6)
C12—H12A0.9700I2—Hg12.6272 (6)
C12—H12B0.9700Hg1—N12.482 (5)
C13—O21.437 (7)Hg1—N2i2.471 (5)
C13—H13A0.9700N2—Hg1i2.471 (5)
N1—C1—C2121.5 (6)O2—C14—C19124.8 (5)
N1—C1—H1119.2C15—C14—C19118.6 (6)
C2—C1—H1119.2C16—C15—C14120.1 (6)
C1—C2—C3119.6 (6)C16—C15—H15120.0
C1—C2—H2120.2C14—C15—H15120.0
C3—C2—H2120.2C15—C16—C17122.6 (5)
C2—C3—C4120.6 (7)C15—C16—H16118.7
C2—C3—H3119.7C17—C16—H16118.7
C4—C3—H3119.7C18—C17—C16115.9 (5)
C5—C4—C3114.5 (6)C18—C17—C20122.3 (5)
C5—C4—C6121.4 (5)C16—C17—C20121.7 (5)
C3—C4—C6124.1 (6)C19—C18—C17122.8 (6)
N1—C5—C4125.7 (6)C19—C18—H18118.6
N1—C5—H5117.1C17—C18—H18118.6
C4—C5—H5117.1C18—C19—C14120.0 (5)
C7—C6—C11116.4 (6)C18—C19—H19120.0
C7—C6—C4121.4 (5)C14—C19—H19120.0
C11—C6—C4122.2 (5)C21—C20—C24115.2 (6)
C6—C7—C8122.5 (5)C21—C20—C17123.5 (5)
C6—C7—H7118.8C24—C20—C17121.3 (5)
C8—C7—H7118.8C22—C21—C20119.8 (6)
C9—C8—C7119.6 (6)C22—C21—H21120.1
C9—C8—H8120.2C20—C21—H21120.1
C7—C8—H8120.2C23—C22—C21120.5 (6)
C10—C9—O1117.2 (5)C23—C22—H22119.8
C10—C9—C8118.8 (6)C21—C22—H22119.8
O1—C9—C8124.0 (6)N2—C23—C22120.9 (6)
C9—C10—C11121.5 (6)N2—C23—H23119.6
C9—C10—H10119.3C22—C23—H23119.6
C11—C10—H10119.3N2—C24—C20125.1 (5)
C10—C11—C6121.2 (6)N2—C24—H24117.4
C10—C11—H11119.4C20—C24—H24117.4
C6—C11—H11119.4I1—Hg1—I2149.69 (2)
O1—C12—C13109.6 (5)I1—Hg1—N198.91 (12)
O1—C12—H12A109.8I2—Hg1—N1103.46 (12)
C13—C12—H12A109.8N2i—Hg1—I1100.74 (11)
O1—C12—H12B109.8N2i—Hg1—I2100.93 (11)
C13—C12—H12B109.8N2i—Hg1—N186.14 (16)
H12A—C12—H12B108.2C1—N1—C5117.9 (6)
O2—C13—C12109.3 (5)C1—N1—Hg1125.7 (4)
O2—C13—H13A109.8C5—N1—Hg1115.7 (4)
C12—C13—H13A109.8C24—N2—C23118.5 (5)
O2—C13—H13B109.8C24—N2—Hg1i120.4 (4)
C12—C13—H13B109.8C23—N2—Hg1i121.1 (4)
H13A—C13—H13B108.3C9—O1—C12117.6 (4)
O2—C14—C15116.6 (5)C14—O2—C13116.1 (5)
N1—C1—C2—C30.5 (11)C18—C17—C20—C21162.3 (5)
C1—C2—C3—C41.3 (12)C16—C17—C20—C2117.8 (8)
C2—C3—C4—C52.5 (10)C18—C17—C20—C2418.6 (8)
C2—C3—C4—C6179.9 (7)C16—C17—C20—C24161.3 (6)
C3—C4—C5—N13.2 (9)C24—C20—C21—C220.3 (8)
C6—C4—C5—N1179.1 (6)C17—C20—C21—C22179.5 (5)
C5—C4—C6—C7163.9 (6)C20—C21—C22—C230.7 (9)
C3—C4—C6—C713.6 (9)C21—C22—C23—N20.1 (9)
C5—C4—C6—C1117.2 (9)C21—C20—C24—N20.7 (9)
C3—C4—C6—C11165.4 (7)C17—C20—C24—N2178.5 (5)
C11—C6—C7—C80.5 (10)C2—C1—N1—C51.1 (9)
C4—C6—C7—C8178.5 (6)C2—C1—N1—Hg1171.6 (5)
C6—C7—C8—C90.9 (11)C4—C5—N1—C12.6 (9)
C7—C8—C9—C100.1 (10)C4—C5—N1—Hg1174.1 (5)
C7—C8—C9—O1179.5 (6)N2i—Hg1—N1—C1120.7 (5)
O1—C9—C10—C11178.4 (6)I2—Hg1—N1—C120.4 (5)
C8—C9—C10—C111.0 (10)I1—Hg1—N1—C1139.0 (5)
C9—C10—C11—C61.4 (10)N2i—Hg1—N1—C568.6 (4)
C7—C6—C11—C100.6 (10)I2—Hg1—N1—C5168.9 (4)
C4—C6—C11—C10179.6 (6)I1—Hg1—N1—C531.7 (4)
O1—C12—C13—O277.9 (7)C20—C24—N2—C231.3 (9)
O2—C14—C15—C16179.8 (5)C20—C24—N2—Hg1i175.1 (4)
C19—C14—C15—C160.8 (9)C22—C23—N2—C240.8 (9)
C14—C15—C16—C170.4 (10)C22—C23—N2—Hg1i175.5 (4)
C15—C16—C17—C180.2 (9)C10—C9—O1—C12166.3 (6)
C15—C16—C17—C20179.7 (5)C8—C9—O1—C1213.1 (9)
C16—C17—C18—C190.3 (9)C13—C12—O1—C9163.3 (5)
C20—C17—C18—C19179.6 (5)C15—C14—O2—C13166.5 (5)
C17—C18—C19—C140.6 (10)C19—C14—O2—C1314.1 (9)
O2—C14—C19—C18179.8 (6)C12—C13—O2—C14167.4 (5)
C15—C14—C19—C180.8 (9)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

(I)(II)(III)
Crystal data
Chemical formula[Hg2Cl4(C24H20N2O2)2][Hg2Br4(C24H20N2O2)2][Hg2I4(C24H20N2O2)2]
Mr1279.821457.661645.62
Crystal system, space groupTriclinic, P1Triclinic, P1Triclinic, P1
Temperature (K)298298298
a, b, c (Å)8.7822 (15), 10.6904 (18), 12.044 (2)9.021 (4), 11.096 (4), 11.914 (5)8.9444 (16), 12.352 (2), 12.052 (2)
α, β, γ (°)86.662 (2), 78.930 (2), 84.014 (2)81.812 (5), 78.764 (5), 81.635 (5)72.641 (2), 74.882 (2), 77.620 (2)
V3)1102.8 (3)1149.1 (8)1213.3 (4)
Z111
Radiation typeMo KαMo KαMo Kα
µ (mm1)7.2510.208.91
Crystal size (mm)0.20 × 0.15 × 0.150.15 × 0.14 × 0.130.20 × 0.15 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Multi-scan
(SADABS; Bruker, 2003)
Multi-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.325, 0.4100.310, 0.3510.269, 0.348
No. of measured, independent and
observed [I > 2σ(I)] reflections
5867, 4066, 3708 6112, 4234, 3491 6387, 4426, 3740
Rint0.0210.0250.023
(sin θ/λ)max1)0.6080.6080.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.116, 1.08 0.040, 0.100, 1.08 0.034, 0.086, 1.02
No. of reflections406642344426
No. of parameters280280280
No. of restraints001
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.99, 1.681.19, 1.041.11, 1.10

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) for (I) top
Cl1—Hg12.337 (2)Hg1—N2i2.463 (5)
Cl2—Hg12.338 (2)N2—Hg1i2.463 (5)
Hg1—N12.438 (6)
Cl1—Hg1—Cl2152.25 (10)Cl1—Hg1—N2i98.41 (14)
Cl1—Hg1—N1100.05 (16)Cl2—Hg1—N2i98.11 (14)
Cl2—Hg1—N1103.08 (16)N1—Hg1—N2i86.50 (19)
Symmetry code: (i) x+1, y+1, z+1.
Selected geometric parameters (Å, º) for (II) top
Br1—Hg12.4644 (10)Hg1—N2i2.449 (5)
Br2—Hg12.4512 (12)N2—Hg1i2.449 (5)
Hg1—N12.443 (6)
Br1—Hg1—Br2150.17 (4)N2i—Hg1—Br197.82 (14)
Br1—Hg1—N1100.18 (15)N2i—Hg1—Br2100.51 (14)
Br2—Hg1—N1104.22 (15)N1—Hg1—N2i86.53 (19)
Symmetry code: (i) x+1, y+1, z+1.
Selected geometric parameters (Å, º) for (III) top
I1—Hg12.6365 (6)Hg1—N2i2.471 (5)
I2—Hg12.6272 (6)N2—Hg1i2.471 (5)
Hg1—N12.482 (5)
I1—Hg1—I2149.69 (2)N2i—Hg1—I1100.74 (11)
I1—Hg1—N198.91 (12)N2i—Hg1—I2100.93 (11)
I2—Hg1—N1103.46 (12)N2i—Hg1—N186.14 (16)
Symmetry code: (i) x+1, y+1, z+1.
Comparative geometric parameters (Å) for the important noncovalent interactions in (I), (II) and (III) top
(I) (X = Cl)(II) (X = Br)(III) (X = I)
Hg1—X2ii3.369 (4)3.625 (8)3.982 (4)
X2—X2ii3.935 (5)4.077 (2)4.452 (5)
X2—X1ii3.985 (3)4.405 (5)4.707 (2)
X1—X1iii3.661 (4)3.913 (8)4.535 (4)
Symmetry codes: (ii) -x-1, -y-1, -z+2; (iii) -x+1, -y, -z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds