Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The chiral compounds (6aS,9S,10aR)-11,11-dimethyl-5,5-di­oxo-2,3,8,9-tetra­hydro-6H-6a,9-methano­oxaza­olo[2,3-i][2,1]benzisothia­zol-10(7H)-one, C12H17NO4S, (1), (7aS,10S,11aR)-12,12-dimethyl-6,6-dioxo-3,4,9,10-tetra­hydro-7H-7a,10-methano-2H-1,3-oxazino[2,3-i][2,1]benzisothia­zol-11(8H)-one, C13H19NO4S, (2), (6aS,9S,10R,10aR)-11,11-dimethyl-5,5-dioxo-2,3,7,8,9,10-hexa­hydro-6H-6a,9-methano­oxazolo[2,3-i][2,1]benzisothia­zol-10-ol, C12H19NO4S, (3), and (7aS,10S,11R,11aR)-12,12-dimethyl-6,6-dioxo-3,4,8,9,10,11-hexahydro-7H-7a-methano-2H-[1,3]oxazino[2,3-i][2,1]benzisothia­zol-11-ol, C13H21NO4S, (4), consist of a camphor core with a five-membered spiro­sultaoxazolidine or six-membered spiro­sultaoxazine, as both their keto and hydroxy derivatives. In each structure, the mol­ecules are linked via hydrogen bonding to the sulfonyl O atoms, forming chains in the unit-cell b-axis direction. The chains inter­connect via weak C—H...O inter­actions. The keto compounds have very similar packing but represent the highest melting [507–508 K for (1)] and lowest melting [457–458 K for (2)] solids.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110041843/gz3184sup1.cif
Contains datablocks 1, 2, 3, 4, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110041843/gz31841sup2.hkl
Contains datablock 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110041843/gz31842sup3.hkl
Contains datablock 2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110041843/gz31843sup4.hkl
Contains datablock 3

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110041843/gz31844sup5.hkl
Contains datablock 4

CCDC references: 810020; 810021; 810022; 810023

Comment top

During the course of our studies toward the synthesis of camphor-based acetals (Wilke et al., 2010), an unexpected crystalline product was discovered. X-ray diffraction confirmed that the anticipated acetalization reaction (Magnus et al., 1992) of the ketone (Chen et al., 1996) instead resulted in reaction of the imine to produce spirooxazolidines, (1) and (2), that were further reduced to the exo alcohols, (3) and (4), shown in the Scheme. The alcohol functionality may provide a logical attachment point for use of these compounds as chiral auxiliaries.

The structures of the four compounds are shown in Fig. 1 and Table 1 gives the geometries of the functional groups in the four molecules. The only significant deviations in these geometries can be ascribed to chemical differences (CO versus C—OH and the five- versus six-member oxaza ring). The six-member oxaza ring (the only ring with conformational possibilities) adopts the chair conformation in (2) and (4). Perhaps the most surprising feature revealed in comparing structures is the ordering in the variation of melting points [457–458, 459–461, 474–478 and 507–508 K for (2) (4), (3) and (1), respectively]. As these are quite similar molecules, one might expect the hydroxy compounds [(3) and (4)] to have higher melting points relative to the keto compounds [(1) and (2)] based on the expected formation of O—H···OS hydrogen bonds. However, the 5-keto structure, (1), has the highest melting point of the four compounds (by approximately 3 K) and the 6-keto structure, (2), the lowest. As the packing coefficients for the structures are about the same with index slightly higher for the hydroxy compounds [0.708, 0.708, 0.732 and 0.720 for (1), (2), (3) and (4), respectively, as calculated with PLATON (Spek, 2009)], we decided to analyze the intermolecular interactions (including C—H···O contacts) for clues to explain the melting-point anomalies. Using the method of Etter et al. (1990) a graph-set analysis was done for the four structures. The analysis (first level only) included traditional hydrogen-bond networks as well as those generated by all possible C—H···O motifs (any with H···O or C···O less than the sum of van der Waals radii: 2.72 Å, 3.22 Å, respectively). There are no intermolecular C—H···N motifs that meet the close contact criteria. Table 2 summarizes the analysis.

In each structure there is at least one contact involving each O atom. The strongest interactions (based on the shortest H···O distance) in all structures involve the sulfonyl O atoms with the donor of highest priority (see footnote of Table 2): a traditional hydrogen bond (priority 1) in the hydroxy structures and two S—C—H···OS hydrogen bonds (priority 2) in the keto structures. The two S—C—H···O S interactions (in the keto structures) form a ring motif subset (R22) analogous to what would be considered cooperative hydrogen bonding (for traditional hydrogen bonds). These strongest interactions form columns of molecules in the b-axis direction. A search for C—H···OS interactions in the Cambridge Structural Database (CSD version 5.31, November 2009; Allen, 2002) finds 207 camphor sultams (see Scheme) with 173 having C—H···OS intermolecular interactions less than the sum of van der Waals radii (2.72 Å), indicating this is a common feature of camphor sultams. Of these, 65 have an intermolecular interaction between the methylene α (priority 2 donor) to the sulfonyl group and a sulfonyl O atom. Seven of these have two interactions forming R22(8) rings as found in (1) and (2).

For (1), the molecules are situated with the >SO2 group near the 21 axis at (0,y,0) allowing formation of the two (cooperative) S—C—H···OS hydrogen bonds. This orientation also allows the C—H···O interaction between H13A and O1 to occur. These interactions form doubled molecular columns parallel to the b axis. The proximity of the doubled molecular columns at x = 0 and x = 1 yields the H3B···O3 interaction and the H2A···O2 and H3A···O2 close contacts connecting adjacent columns in the a-axis direction. The 21 axis at (1/2,y,1/2) produces the H8B···O4 interactions that connect adjacent columns in the c-axis direction giving connectivity of the molecular columns in three dimensions. The geometry of the H2A···O2 and H3A···O2 contacts suggests they may be repulsive interactions although C—H···O interactions with similar geometries have been reported as attractive interactions (Steiner, 2003).

As in (1), in (2) a doubled molecular column parallel to the b axis is generated by a 21 axis at (0,y,0) which allows the two (cooperative) S—C—H···OS hydrogen bonds and the H14A···O1 contact. The columns are linked in the a-axis direction via the H3B···O2 and H13C···O4 interactions to form molecular sheets. There are no close contacts (less than van der Waals radius sums) between the molecular sheets. The lack of three-dimensional interconnectedness correlates with (2) having the lowest melting point.

The O—H···O hydrogen bond in (3) forms molecular columns in the b-axis direction. The H6B···O3 interaction interconnects the columns in the c-axis direction and the H2A···O3 and H13A···O1 interactions interconnect the columns in the a-axis direction to give the three-dimensional network.

In (4) the O—H···O hydrogen bond forms molecular columns also in the b-axis direction with an assist from the H11···O3 interaction. The H4A···O2 and H4B···O4 interactions interconnect molecular columns forming the doubled molecular columns. The H7A···O1 and H8B···O3 interactions connect the doubled columns into sheets. There are no close contacts (less than van der Waals radius sums) between the molecular sheets.

Although there is a correlation between the number and direction of intermolecular contacts and the melting point order (more contacts forming three-dimensional connectivity occur with higher melting solids; fewer contacts and two-dimensional connectivity occur with lower melting solids), attributing the differences in melting to differences in very weak intermolecular interactions suggests there are other more important factors in play.

The packing of the keto structures [(1) and (2)] is quite similar, as also confrimed by their very similar unit-cell parameters, but their melting points differ by 50 K. There are two differences in intermolecular interactions between the two structures: (a) the presence of the C2—H2A···O2 and C3—H3A···O2 interactions in (1) but only the C3—H3B···O2 in (2); (b) the weak interaction with O4 in (1) (H8B···O4) is involved in connecting adjacent columns the c-axis direction and in (2) the weak interaction with O4 (H13C···O4) is involved in connecting adjacent columns in the a-axis direction. Changing from a five-member envelope conformation oxaza-ring [in (1)] to the six-member chair conformation oxaza-ring of (2) precludes the doubled close contact of this ring with the O2 sulfonyl oxygen atom resulting in a slight twist (about the column axis, i. e. parallel to the b-cell axis) of each half of the doubled molecular columns (in opposite directions) in (2) versus (1). This twist also changes the closest contact of O4 from a H atom in an adjacent column in the a-axis direction to one in the c-cell direction. These slight differences in molecular packing seem unlikely to explain the large difference in melting points on the basis of weak C—H···O interactions. Considering that the sulfonyl group is highly polar, it seems more likely that the smaller five-member oxaza ring of (1) allows for a more favorable arrangement of polar groups resulting in a greater degree of electrostatic interaction and a higher melting point. The C2—H2A···O2 and C3—H3A···O2 close contacts in (1) may in fact be repulsive contacts that are `tolerated' to allow the more favorable arrangement of polar groups. A recent paper by Gavezzotti (2010) presents a quantitative analysis of relative stabilities in organic crystal structure by calculating interaction energies between pairs of molecules for 1108 non-ionic and 98 ionic molecules using the PIXEL method (Gavezzotti, 2008). He concludes that repulsive destabilizing contacts regularly appear in crystals of very strongly polar compounds. We are contemplating calculating the interaction energies for this series of compounds to provide further insight to explain the differences in melting points of this series of compounds.

Related literature top

For related literature, see: Chen et al. (1996); Etter et al. (1990); Gavezzotti (2008, 2010); Spek (2009); Steiner (2003).

Experimental top

Details of the preparation of the compounds can be found elsewhere (Wilke et al., 2010).

Refinement top

In each refinement several low-angle reflections were excluded from the final cycles of refinement because of beam-stop shadowing effects. H atoms were fully refined with isotropic displacement parameters in all structures. The bond distance ranges for C—H were: (1) 0.86 (2) - 1.06 (2) Å, (2) 0.92 (3) - 1.09 (3) Å, (3) 0.93 (2) - 1.06 (2) Å, (4) 0.91 (2) - 1.03 (3) Å. There are two O—H bonds – one in (3) [0.85 (3) Å] and one in (4) [0.87 (3) Å]. For (1) 1265 Friedel pairs were measured, for (2) 1394 Friedel pairs were measured, for (3) 1281 Friedel pairs were measured and for (4) 1440 Friedel pairs were measured.

Computing details top

For all compounds, data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Views showing the structures and atom-labeling schemes of the four title camphor derivatives, viz. (a) (1), (b) (2), (c) (3) and (d) (4). Displacement ellipsoids are drawn at the 50% probability level in each case.
[Figure 2] Fig. 2. Molecular packing and intermolecular interactions of the four title camphor derivatives, viz. (a) (1), (b) (2), (c) (3) and (d) (4). Stereoviews are down the hydrogen-bond-connected molecular columns (parallel to the b axis) to show the interactions that interconnect the columns. S atoms are represented by circles with a cross inside, O atoms by circles with a line inside, N atoms by a circle with a dot inside and C atoms by an empty circle. The small circles represent the H atoms involved in intermolecular contacts listed in Table 2. All other H atoms have been omitted for clarity. The intermolecular contacts are shown by the small diameter dotted lines.
(1) (6aS,9S,10aR)-11,11-dimethyl-5,5-dioxo-2,3,8,9-tetrahydro-6H-6a,9- methanooxazaolo[2,3-i][2,1]benzisothiazol-10(7H)-one top
Crystal data top
C12H17NO4SF(000) = 288
Mr = 271.33Dx = 1.468 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2811 reflections
a = 7.7873 (9) Åθ = 1.0–27.9°
b = 7.1895 (8) ŵ = 0.27 mm1
c = 11.1111 (12) ÅT = 210 K
β = 99.274 (5)°Plate, colorless
V = 613.94 (12) Å30.32 × 0.29 × 0.03 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
2845 independent reflections
Radiation source: fine-focus sealed tube2565 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 9 pixels mm-1θmax = 27.9°, θmin = 3.4°
CCD ϕ and ω scansh = 1010
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 99
Tmin = 0.918, Tmax = 0.992l = 1414
15611 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031All H-atom parameters refined
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0326P)2 + 0.0875P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2845 reflectionsΔρmax = 0.18 e Å3
232 parametersΔρmin = 0.26 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (6)
Crystal data top
C12H17NO4SV = 613.94 (12) Å3
Mr = 271.33Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.7873 (9) ŵ = 0.27 mm1
b = 7.1895 (8) ÅT = 210 K
c = 11.1111 (12) Å0.32 × 0.29 × 0.03 mm
β = 99.274 (5)°
Data collection top
Nonius KappaCCD
diffractometer
2845 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
2565 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 0.992Rint = 0.022
15611 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031All H-atom parameters refined
wR(F2) = 0.072Δρmax = 0.18 e Å3
S = 1.06Δρmin = 0.26 e Å3
2845 reflectionsAbsolute structure: Flack (1983)
232 parametersAbsolute structure parameter: 0.01 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Several low angle reflections were omitted due to beam-stop shadowing effects.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.42646 (17)0.77619 (17)0.28852 (12)0.0329 (3)
C20.5652 (3)0.8218 (3)0.2224 (2)0.0415 (5)
H2A0.545 (4)0.958 (4)0.187 (2)0.065 (8)*
H2B0.671 (3)0.818 (4)0.279 (2)0.054 (7)*
C30.5589 (3)0.6767 (3)0.1217 (2)0.0360 (5)
H3A0.555 (3)0.727 (3)0.043 (2)0.044 (6)*
H3B0.658 (3)0.600 (4)0.135 (2)0.054 (7)*
N40.40246 (19)0.5655 (2)0.13153 (13)0.0265 (3)
S50.22102 (5)0.62616 (6)0.03479 (4)0.02774 (11)
O20.18527 (18)0.4842 (2)0.05669 (12)0.0392 (4)
O30.23538 (19)0.8131 (2)0.00872 (13)0.0407 (3)
C60.0720 (2)0.6150 (3)0.14194 (15)0.0280 (3)
H6A0.033 (3)0.732 (4)0.1457 (19)0.041 (6)*
H6B0.021 (3)0.527 (3)0.109 (2)0.037 (6)*
C6A0.1779 (2)0.5519 (2)0.26180 (15)0.0255 (3)
C70.1391 (3)0.6410 (3)0.38013 (16)0.0326 (4)
H7A0.019 (3)0.640 (3)0.3804 (18)0.037 (5)*
H7B0.178 (3)0.780 (4)0.3869 (19)0.046 (6)*
C80.2454 (3)0.5184 (3)0.48031 (17)0.0384 (5)
H8A0.165 (3)0.463 (4)0.538 (2)0.062 (8)*
H8B0.336 (3)0.589 (3)0.5291 (17)0.027 (5)*
C90.3221 (3)0.3635 (3)0.40763 (18)0.0350 (4)
H90.352 (4)0.264 (4)0.449 (2)0.060 (7)*
C100.4649 (2)0.4539 (3)0.35165 (18)0.0336 (4)
O40.62152 (19)0.4387 (3)0.37788 (15)0.0530 (4)
C10A0.3710 (2)0.5919 (2)0.25629 (15)0.0259 (4)
C110.1810 (2)0.3385 (3)0.29320 (17)0.0292 (4)
C120.0072 (3)0.2675 (3)0.3223 (2)0.0392 (5)
H12A0.022 (3)0.131 (5)0.348 (2)0.059 (7)*
H12B0.087 (3)0.263 (4)0.252 (2)0.054 (7)*
H12C0.034 (3)0.342 (4)0.388 (2)0.057 (7)*
C130.2384 (3)0.2068 (3)0.1991 (2)0.0372 (5)
H13A0.237 (3)0.072 (4)0.236 (2)0.050 (7)*
H13B0.353 (3)0.236 (3)0.1803 (18)0.041 (6)*
H13C0.160 (3)0.216 (3)0.122 (2)0.041 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0367 (7)0.0299 (7)0.0342 (7)0.0047 (6)0.0119 (6)0.0052 (6)
C20.0348 (11)0.0431 (13)0.0492 (12)0.0105 (9)0.0150 (10)0.0092 (10)
C30.0298 (10)0.0409 (12)0.0401 (11)0.0062 (8)0.0141 (8)0.0055 (8)
N40.0238 (7)0.0292 (7)0.0276 (7)0.0004 (6)0.0073 (6)0.0004 (6)
S50.0289 (2)0.0290 (2)0.02624 (18)0.00087 (19)0.00726 (15)0.00173 (19)
O20.0384 (8)0.0487 (9)0.0306 (7)0.0011 (7)0.0061 (6)0.0111 (6)
O30.0441 (8)0.0364 (8)0.0426 (8)0.0010 (6)0.0096 (7)0.0153 (7)
C60.0249 (8)0.0309 (9)0.0294 (8)0.0057 (9)0.0080 (6)0.0035 (9)
C6A0.0258 (8)0.0247 (8)0.0275 (8)0.0037 (7)0.0086 (7)0.0028 (7)
C70.0350 (9)0.0346 (10)0.0309 (8)0.0055 (9)0.0133 (7)0.0010 (9)
C80.0420 (11)0.0478 (13)0.0262 (9)0.0009 (9)0.0079 (9)0.0008 (9)
C90.0384 (11)0.0350 (11)0.0321 (10)0.0084 (8)0.0073 (8)0.0101 (8)
C100.0326 (10)0.0356 (11)0.0333 (10)0.0069 (8)0.0068 (8)0.0033 (8)
O40.0328 (8)0.0681 (12)0.0570 (10)0.0122 (8)0.0039 (7)0.0204 (9)
C10A0.0259 (8)0.0261 (11)0.0265 (8)0.0027 (7)0.0068 (7)0.0011 (7)
C110.0327 (10)0.0258 (9)0.0309 (9)0.0027 (7)0.0106 (8)0.0042 (7)
C120.0398 (11)0.0390 (12)0.0419 (12)0.0065 (9)0.0157 (10)0.0011 (10)
C130.0461 (12)0.0244 (9)0.0440 (13)0.0028 (9)0.0158 (10)0.0001 (9)
Geometric parameters (Å, º) top
O1—C10A1.421 (2)C7—C81.551 (3)
O1—C21.439 (2)C7—H7A0.94 (2)
C2—C31.525 (3)C7—H7B1.05 (3)
C2—H2A1.06 (3)C8—C91.551 (3)
C2—H2B0.95 (2)C8—H8A1.04 (3)
C3—N41.476 (2)C8—H8B0.96 (2)
C3—H3A0.94 (2)C9—C101.506 (3)
C3—H3B0.94 (3)C9—C111.551 (3)
N4—C10A1.459 (2)C9—H90.86 (3)
N4—S51.6890 (15)C10—O41.213 (2)
S5—O21.4357 (14)C10—C10A1.547 (2)
S5—O31.4384 (15)C11—C121.529 (3)
S5—C61.7934 (16)C11—C131.530 (3)
C6—C6A1.518 (2)C12—H12A1.02 (3)
C6—H6A0.90 (3)C12—H12B0.98 (3)
C6—H6B0.99 (2)C12—H12C1.00 (3)
C6A—C71.536 (2)C13—H13A1.05 (3)
C6A—C10A1.542 (2)C13—H13B0.97 (2)
C6A—C111.573 (3)C13—H13C0.97 (2)
C10A—O1—C2107.86 (14)C9—C8—C7103.91 (15)
O1—C2—C3106.29 (16)C9—C8—H8A111.4 (15)
O1—C2—H2A108.6 (15)C7—C8—H8A110.8 (15)
C3—C2—H2A112.1 (14)C9—C8—H8B111.3 (11)
O1—C2—H2B107.3 (15)C7—C8—H8B111.3 (12)
C3—C2—H2B112.6 (15)H8A—C8—H8B108.2 (17)
H2A—C2—H2B110 (2)C10—C9—C8106.09 (18)
N4—C3—C2104.21 (15)C10—C9—C11100.60 (15)
N4—C3—H3A111.8 (14)C8—C9—C11103.23 (16)
C2—C3—H3A114.0 (14)C10—C9—H9115.2 (18)
N4—C3—H3B109.7 (15)C8—C9—H9114.4 (17)
C2—C3—H3B111.0 (15)C11—C9—H9115.7 (18)
H3A—C3—H3B106.1 (19)O4—C10—C9130.02 (18)
C10A—N4—C3105.50 (14)O4—C10—C10A124.64 (17)
C10A—N4—S5108.64 (11)C9—C10—C10A105.12 (15)
C3—N4—S5115.38 (13)O1—C10A—N4105.68 (13)
O2—S5—O3116.28 (9)O1—C10A—C6A115.01 (13)
O2—S5—N4108.29 (8)N4—C10A—C6A109.13 (14)
O3—S5—N4110.66 (8)O1—C10A—C10109.55 (14)
O2—S5—C6111.46 (10)N4—C10A—C10115.72 (14)
O3—S5—C6111.01 (10)C6A—C10A—C10102.09 (13)
N4—S5—C697.50 (7)C12—C11—C13107.70 (17)
C6A—C6—S5106.11 (11)C12—C11—C9113.55 (16)
C6A—C6—H6A112.3 (14)C13—C11—C9112.67 (16)
S5—C6—H6A104.3 (15)C12—C11—C6A112.95 (15)
C6A—C6—H6B113.5 (13)C13—C11—C6A116.64 (15)
S5—C6—H6B107.0 (13)C9—C11—C6A93.00 (14)
H6A—C6—H6B112.8 (19)C11—C12—H12A108.6 (14)
C6—C6A—C7118.19 (15)C11—C12—H12B114.6 (14)
C6—C6A—C10A107.74 (13)H12A—C12—H12B103.1 (19)
C7—C6A—C10A106.48 (14)C11—C12—H12C112.0 (15)
C6—C6A—C11118.23 (16)H12A—C12—H12C110 (2)
C7—C6A—C11102.43 (15)H12B—C12—H12C108 (2)
C10A—C6A—C11102.14 (13)C11—C13—H13A106.4 (14)
C6A—C7—C8102.80 (15)C11—C13—H13B113.2 (13)
C6A—C7—H7A109.4 (13)H13A—C13—H13B110 (2)
C8—C7—H7A114.2 (13)C11—C13—H13C110.6 (13)
C6A—C7—H7B111.4 (12)H13A—C13—H13C112 (2)
C8—C7—H7B112.1 (12)H13B—C13—H13C104.9 (18)
H7A—C7—H7B106.9 (19)
C10A—O1—C2—C315.3 (2)C3—N4—C10A—C1088.54 (18)
O1—C2—C3—N45.0 (2)S5—N4—C10A—C10147.20 (13)
C2—C3—N4—C10A22.7 (2)C6—C6A—C10A—O184.26 (18)
C2—C3—N4—S597.20 (18)C7—C6A—C10A—O143.46 (19)
C10A—N4—S5—O2133.76 (12)C11—C6A—C10A—O1150.52 (14)
C3—N4—S5—O2108.07 (14)C6—C6A—C10A—N434.26 (19)
C10A—N4—S5—O397.71 (12)C7—C6A—C10A—N4161.98 (15)
C3—N4—S5—O320.46 (15)C11—C6A—C10A—N490.96 (15)
C10A—N4—S5—C618.15 (13)C6—C6A—C10A—C10157.21 (15)
C3—N4—S5—C6136.32 (14)C7—C6A—C10A—C1075.06 (17)
O2—S5—C6—C6A111.18 (14)C11—C6A—C10A—C1031.99 (16)
O3—S5—C6—C6A117.48 (14)O4—C10—C10A—O157.2 (2)
N4—S5—C6—C6A1.90 (15)C9—C10—C10A—O1117.88 (16)
S5—C6—C6A—C7140.80 (15)O4—C10—C10A—N462.1 (3)
S5—C6—C6A—C10A20.18 (18)C9—C10—C10A—N4122.82 (17)
S5—C6—C6A—C1194.80 (17)O4—C10—C10A—C6A179.5 (2)
C6—C6A—C7—C8170.03 (17)C9—C10—C10A—C6A4.45 (18)
C10A—C6A—C7—C868.70 (19)C10—C9—C11—C12173.57 (16)
C11—C6A—C7—C838.15 (19)C8—C9—C11—C1264.1 (2)
C6A—C7—C8—C94.1 (2)C10—C9—C11—C1363.6 (2)
C7—C8—C9—C1073.6 (2)C8—C9—C11—C13173.14 (17)
C7—C8—C9—C1131.8 (2)C10—C9—C11—C6A56.91 (16)
C8—C9—C10—O4107.2 (3)C8—C9—C11—C6A52.58 (16)
C11—C9—C10—O4145.5 (2)C6—C6A—C11—C1270.3 (2)
C8—C9—C10—C10A67.45 (19)C7—C6A—C11—C1261.5 (2)
C11—C9—C10—C10A39.78 (18)C10A—C6A—C11—C12171.69 (16)
C2—O1—C10A—N430.03 (18)C6—C6A—C11—C1355.2 (2)
C2—O1—C10A—C6A150.46 (16)C7—C6A—C11—C13172.90 (16)
C2—O1—C10A—C1095.28 (17)C10A—C6A—C11—C1362.74 (19)
C3—N4—C10A—O132.85 (17)C6—C6A—C11—C9172.50 (14)
S5—N4—C10A—O191.40 (13)C7—C6A—C11—C955.64 (15)
C3—N4—C10A—C6A157.06 (14)C10A—C6A—C11—C954.52 (14)
S5—N4—C10A—C6A32.80 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O2i0.90 (3)2.57 (3)3.368 (2)148 (2)
C6—H6B···O3ii0.99 (2)2.41 (2)3.390 (3)174 (2)
C13—H13A···O1iii1.05 (3)2.60 (3)3.499 (3)143 (2)
C3—H3B···O3iv0.94 (3)2.70 (3)3.409 (3)133 (2)
C8—H8B···O4v0.96 (2)2.72 (2)3.487 (3)137 (2)
C2—H2A···O2vi1.06 (3)2.75 (3)3.111 (3)100 (2)
C3—H3A···O2vi0.94 (2)2.73 (2)3.137 (2)107 (2)
Symmetry codes: (i) x, y+1/2, z; (ii) x, y1/2, z; (iii) x, y1, z; (iv) x+1, y1/2, z; (v) x+1, y+1/2, z+1; (vi) x+1, y+1/2, z.
(2) (7aS,10S,11aR)-12,12-dimethyl-6,6-dioxo-3,4,9,10-tetrahydro-7H- 7a,10-methano- 2H-1,3-oxazino[2,3-i][2,1]benzisothiazol-11(8H)-one top
Crystal data top
C13H19NO4SF(000) = 304
Mr = 285.35Dx = 1.447 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3030 reflections
a = 7.6970 (9) Åθ = 1.0–27.9°
b = 6.9954 (8) ŵ = 0.26 mm1
c = 12.2852 (13) ÅT = 210 K
β = 98.145 (5)°Plate, colorless
V = 654.81 (13) Å30.22 × 0.14 × 0.07 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
3084 independent reflections
Radiation source: fine-focus sealed tube2783 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 9 pixels mm-1θmax = 27.9°, θmin = 2.7°
CCD ϕ and ω scansh = 1010
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 98
Tmin = 0.946, Tmax = 0.982l = 1616
15564 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031All H-atom parameters refined
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0406P)2 + 0.037P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.006
3084 reflectionsΔρmax = 0.19 e Å3
249 parametersΔρmin = 0.26 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (6)
Crystal data top
C13H19NO4SV = 654.81 (13) Å3
Mr = 285.35Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.6970 (9) ŵ = 0.26 mm1
b = 6.9954 (8) ÅT = 210 K
c = 12.2852 (13) Å0.22 × 0.14 × 0.07 mm
β = 98.145 (5)°
Data collection top
Nonius KappaCCD
diffractometer
3084 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
2783 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.982Rint = 0.028
15564 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031All H-atom parameters refined
wR(F2) = 0.076Δρmax = 0.19 e Å3
S = 1.04Δρmin = 0.26 e Å3
3084 reflectionsAbsolute structure: Flack (1983)
249 parametersAbsolute structure parameter: 0.01 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.34596 (16)0.81283 (17)0.31615 (10)0.0275 (3)
C20.5257 (2)0.8774 (3)0.32130 (16)0.0343 (4)
H2A0.605 (3)0.795 (4)0.376 (2)0.054 (7)*
H2B0.537 (3)1.003 (4)0.3576 (19)0.041 (6)*
C30.5817 (3)0.8787 (3)0.20777 (17)0.0355 (4)
H3A0.511 (3)0.978 (3)0.1662 (18)0.043 (6)*
H3B0.703 (3)0.910 (3)0.2151 (16)0.032 (5)*
C40.5537 (2)0.6861 (3)0.15377 (15)0.0312 (4)
H4A0.567 (2)0.682 (3)0.0802 (18)0.034 (5)*
H4B0.627 (3)0.584 (3)0.1878 (18)0.034 (6)*
N50.37493 (19)0.6134 (2)0.16208 (11)0.0254 (3)
S60.21759 (5)0.66565 (6)0.05877 (3)0.02599 (11)
O20.20787 (18)0.5152 (2)0.02146 (11)0.0392 (4)
O30.23942 (19)0.8555 (2)0.01740 (11)0.0373 (3)
C70.0386 (2)0.6551 (3)0.13706 (13)0.0254 (3)
H7A0.002 (3)0.778 (4)0.1410 (18)0.045 (7)*
H7B0.052 (3)0.566 (3)0.1044 (18)0.033 (6)*
C7A0.1152 (2)0.5826 (2)0.25063 (13)0.0230 (3)
C80.0402 (2)0.6627 (4)0.35040 (13)0.0292 (3)
H8A0.081 (3)0.650 (3)0.3388 (15)0.029 (5)*
H8B0.070 (3)0.793 (4)0.3553 (19)0.044 (6)*
C90.1304 (3)0.5367 (3)0.44586 (15)0.0372 (5)
H9A0.216 (3)0.611 (3)0.5005 (18)0.042 (6)*
H9B0.043 (3)0.478 (3)0.4880 (19)0.044 (6)*
C100.2276 (2)0.3814 (3)0.38750 (15)0.0316 (4)
H100.257 (3)0.264 (4)0.4290 (19)0.044 (6)*
C110.3879 (2)0.4734 (3)0.35319 (14)0.0295 (4)
O40.54103 (19)0.4392 (2)0.38397 (12)0.0441 (4)
C11A0.3155 (2)0.6296 (2)0.26794 (13)0.0232 (4)
C120.1124 (2)0.3622 (2)0.27305 (14)0.0274 (4)
C130.0722 (3)0.2839 (3)0.27983 (19)0.0382 (5)
H13A0.069 (3)0.155 (5)0.296 (2)0.069 (8)*
H13B0.139 (3)0.298 (3)0.2087 (18)0.029 (5)*
H13C0.142 (3)0.360 (4)0.327 (2)0.061 (8)*
C140.1956 (3)0.2329 (3)0.19402 (19)0.0352 (4)
H14A0.189 (4)0.086 (4)0.223 (2)0.068 (9)*
H14B0.328 (3)0.272 (3)0.1864 (17)0.037 (6)*
H14C0.131 (3)0.246 (3)0.1187 (19)0.038 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0282 (6)0.0272 (7)0.0269 (6)0.0032 (5)0.0027 (5)0.0051 (5)
C20.0300 (10)0.0380 (11)0.0329 (10)0.0073 (8)0.0017 (8)0.0048 (9)
C30.0264 (10)0.0412 (11)0.0387 (10)0.0072 (9)0.0033 (8)0.0020 (9)
C40.0235 (8)0.0415 (11)0.0290 (9)0.0000 (8)0.0046 (6)0.0027 (9)
N50.0214 (7)0.0326 (8)0.0217 (6)0.0025 (5)0.0017 (5)0.0005 (5)
S60.0263 (2)0.0322 (2)0.01902 (18)0.00068 (19)0.00185 (14)0.00044 (19)
O20.0391 (8)0.0504 (9)0.0276 (7)0.0005 (7)0.0029 (6)0.0137 (6)
O30.0376 (7)0.0406 (8)0.0328 (7)0.0015 (6)0.0017 (6)0.0145 (6)
C70.0233 (8)0.0295 (9)0.0228 (7)0.0027 (9)0.0012 (6)0.0030 (8)
C7A0.0230 (8)0.0240 (8)0.0212 (8)0.0016 (6)0.0008 (6)0.0003 (7)
C80.0284 (9)0.0343 (9)0.0260 (8)0.0021 (9)0.0073 (6)0.0021 (9)
C90.0427 (12)0.0469 (12)0.0231 (9)0.0024 (10)0.0082 (8)0.0033 (9)
C100.0358 (10)0.0313 (10)0.0268 (9)0.0021 (8)0.0007 (7)0.0080 (8)
C110.0323 (10)0.0307 (9)0.0239 (9)0.0042 (7)0.0012 (7)0.0005 (7)
O40.0320 (8)0.0567 (10)0.0410 (8)0.0115 (7)0.0040 (6)0.0139 (7)
C11A0.0219 (8)0.0256 (10)0.0216 (7)0.0020 (6)0.0017 (6)0.0016 (6)
C120.0328 (10)0.0232 (9)0.0257 (9)0.0010 (7)0.0022 (7)0.0032 (7)
C130.0393 (11)0.0355 (12)0.0395 (12)0.0074 (9)0.0043 (9)0.0047 (9)
C140.0435 (12)0.0223 (9)0.0386 (12)0.0032 (8)0.0023 (9)0.0017 (8)
Geometric parameters (Å, º) top
O1—C11A1.417 (2)C7A—C121.567 (2)
O1—C21.449 (2)C8—C91.550 (3)
C2—C31.517 (3)C8—H8A0.93 (2)
C2—H2A1.02 (3)C8—H8B0.94 (3)
C2—H2B0.98 (3)C9—C101.551 (3)
C3—C41.504 (3)C9—H9A1.02 (2)
C3—H3A0.98 (2)C9—H9B1.00 (2)
C3—H3B0.95 (2)C10—C111.504 (3)
C4—N51.484 (2)C10—C121.558 (2)
C4—H4A0.92 (2)C10—H100.97 (2)
C4—H4B0.97 (2)C11—O41.209 (2)
N5—C11A1.443 (2)C11—C11A1.561 (2)
N5—S61.6659 (14)C12—C141.532 (3)
S6—O21.4369 (14)C12—C131.536 (3)
S6—O31.4405 (15)C13—H13A0.93 (3)
S6—C71.7898 (16)C13—H13B0.95 (2)
C7—C7A1.523 (2)C13—H13C1.00 (3)
C7—H7A0.92 (3)C14—H14A1.09 (3)
C7—H7B0.97 (2)C14—H14B1.07 (2)
C7A—C81.533 (2)C14—H14C0.99 (2)
C7A—C11A1.561 (2)
C11A—O1—C2113.64 (13)C7A—C8—H8B106.9 (14)
O1—C2—C3110.84 (15)C9—C8—H8B115.1 (14)
O1—C2—H2A109.2 (14)H8A—C8—H8B109 (2)
C3—C2—H2A112.8 (14)C8—C9—C10104.01 (14)
O1—C2—H2B108.6 (13)C8—C9—H9A112.7 (13)
C3—C2—H2B113.3 (13)C10—C9—H9A110.8 (12)
H2A—C2—H2B102 (2)C8—C9—H9B111.4 (14)
C4—C3—C2111.02 (17)C10—C9—H9B110.8 (14)
C4—C3—H3A111.9 (14)H9A—C9—H9B107.2 (17)
C2—C3—H3A105.9 (13)C11—C10—C9107.36 (16)
C4—C3—H3B108.9 (13)C11—C10—C1299.70 (14)
C2—C3—H3B108.5 (12)C9—C10—C12103.16 (15)
H3A—C3—H3B110.6 (17)C11—C10—H10111.5 (14)
N5—C4—C3110.67 (15)C9—C10—H10116.0 (13)
N5—C4—H4A106.6 (12)C12—C10—H10117.5 (14)
C3—C4—H4A115.4 (15)O4—C11—C10129.01 (17)
N5—C4—H4B101.7 (12)O4—C11—C11A126.03 (18)
C3—C4—H4B115.8 (13)C10—C11—C11A104.95 (14)
H4A—C4—H4B105.4 (19)O1—C11A—N5113.12 (13)
C11A—N5—C4116.79 (14)O1—C11A—C11109.29 (13)
C11A—N5—S6112.34 (11)N5—C11A—C11114.89 (14)
C4—N5—S6116.96 (12)O1—C11A—C7A110.46 (13)
O2—S6—O3115.52 (9)N5—C11A—C7A107.08 (13)
O2—S6—N5108.87 (8)C11—C11A—C7A101.30 (13)
O3—S6—N5111.26 (8)C14—C12—C13107.26 (17)
O2—S6—C7111.66 (9)C14—C12—C10112.78 (15)
O3—S6—C7111.40 (9)C13—C12—C10113.21 (15)
N5—S6—C796.51 (7)C14—C12—C7A116.88 (15)
C7A—C7—S6106.17 (11)C13—C12—C7A113.35 (15)
C7A—C7—H7A110.8 (14)C10—C12—C7A93.07 (13)
S6—C7—H7A106.6 (14)C12—C13—H13A111.1 (17)
C7A—C7—H7B109.0 (13)C12—C13—H13B107.1 (12)
S6—C7—H7B111.3 (12)H13A—C13—H13B107 (2)
H7A—C7—H7B112.8 (19)C12—C13—H13C114.8 (15)
C7—C7A—C8118.03 (14)H13A—C13—H13C113 (2)
C7—C7A—C11A107.54 (13)H13B—C13—H13C102.6 (19)
C8—C7A—C11A106.88 (14)C12—C14—H14A108.1 (15)
C7—C7A—C12118.40 (15)C12—C14—H14B113.0 (12)
C8—C7A—C12101.71 (15)H14A—C14—H14B111.1 (19)
C11A—C7A—C12102.81 (13)C12—C14—H14C109.5 (12)
C7A—C8—C9102.59 (15)H14A—C14—H14C110.5 (19)
C7A—C8—H8A109.0 (12)H14B—C14—H14C104.7 (17)
C9—C8—H8A113.2 (13)
C11A—O1—C2—C356.7 (2)S6—N5—C11A—C11141.53 (13)
O1—C2—C3—C454.8 (2)C4—N5—C11A—C7A169.07 (14)
C2—C3—C4—N548.5 (2)S6—N5—C11A—C7A29.89 (16)
C3—C4—N5—C11A45.7 (2)O4—C11—C11A—O171.5 (2)
C3—C4—N5—S691.56 (17)C10—C11—C11A—O1107.79 (15)
C11A—N5—S6—O2129.82 (12)O4—C11—C11A—N556.9 (3)
C4—N5—S6—O291.08 (15)C10—C11—C11A—N5123.83 (15)
C11A—N5—S6—O3101.75 (13)O4—C11—C11A—C7A171.91 (19)
C4—N5—S6—O337.34 (15)C10—C11—C11A—C7A8.80 (16)
C11A—N5—S6—C714.25 (13)C7—C7A—C11A—O189.74 (16)
C4—N5—S6—C7153.35 (15)C8—C7A—C11A—O137.92 (18)
O2—S6—C7—C7A106.76 (14)C12—C7A—C11A—O1144.56 (13)
O3—S6—C7—C7A122.43 (13)C7—C7A—C11A—N533.84 (18)
N5—S6—C7—C7A6.54 (14)C8—C7A—C11A—N5161.50 (15)
S6—C7—C7A—C8144.40 (15)C12—C7A—C11A—N591.86 (15)
S6—C7—C7A—C11A23.51 (17)C7—C7A—C11A—C11154.53 (14)
S6—C7—C7A—C1292.28 (17)C8—C7A—C11A—C1177.80 (16)
C7—C7A—C8—C9172.40 (17)C12—C7A—C11A—C1128.84 (15)
C11A—C7A—C8—C966.38 (19)C11—C10—C12—C1462.24 (19)
C12—C7A—C8—C941.05 (18)C9—C10—C12—C14172.77 (16)
C7A—C8—C9—C107.3 (2)C11—C10—C12—C13175.73 (16)
C8—C9—C10—C1175.61 (19)C9—C10—C12—C1365.2 (2)
C8—C9—C10—C1229.1 (2)C11—C10—C12—C7A58.67 (15)
C9—C10—C11—O4115.4 (2)C9—C10—C12—C7A51.87 (16)
C12—C10—C11—O4137.4 (2)C7—C7A—C12—C1454.4 (2)
C9—C10—C11—C11A63.81 (17)C8—C7A—C12—C14174.46 (15)
C12—C10—C11—C11A43.37 (16)C11A—C7A—C12—C1463.90 (18)
C2—O1—C11A—N552.18 (18)C7—C7A—C12—C1371.1 (2)
C2—O1—C11A—C1177.18 (17)C8—C7A—C12—C1359.99 (19)
C2—O1—C11A—C7A172.20 (14)C11A—C7A—C12—C13170.56 (14)
C4—N5—C11A—O147.1 (2)C7—C7A—C12—C10171.93 (14)
S6—N5—C11A—O192.03 (14)C8—C7A—C12—C1056.95 (15)
C4—N5—C11A—C1179.30 (19)C11A—C7A—C12—C1053.62 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O2i0.92 (3)2.60 (2)3.346 (2)139 (2)
C7—H7B···O3ii0.97 (2)2.43 (2)3.380 (2)166 (2)
C14—H14A···O1iii1.09 (3)2.46 (3)3.425 (2)147 (2)
C13—H13C···O4iv1.00 (3)2.69 (3)3.572 (3)147 (2)
C3—H3B···O2v0.95 (2)2.67 (2)3.134 (2)111 (1)
Symmetry codes: (i) x, y+1/2, z; (ii) x, y1/2, z; (iii) x, y1, z; (iv) x1, y, z; (v) x+1, y+1/2, z.
(3) (6aS,9S,10R,10aR)-11,11-dimethyl-5,5-dioxo-2,3,7,8,9,10-hexahydro- 6H-6a,9-methanooxazolo[2,3-i][2,1]benziisothiazol-10-ol top
Crystal data top
C12H19NO4SF(000) = 584
Mr = 273.34Dx = 1.498 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5567 reflections
a = 7.3091 (8) Åθ = 1.0–27.9°
b = 10.9033 (12) ŵ = 0.27 mm1
c = 15.2110 (16) ÅT = 190 K
V = 1212.2 (2) Å3Plate, colorless
Z = 40.26 × 0.24 × 0.11 mm
Data collection top
Nonius KappaCCD
diffractometer
2898 independent reflections
Radiation source: fine-focus sealed tube2662 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 9 pixels mm-1θmax = 27.9°, θmin = 3.1°
CCD ϕ and ω scansh = 99
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 1414
Tmin = 0.932, Tmax = 0.970l = 2019
30886 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031All H-atom parameters refined
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0428P)2 + 0.2065P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2898 reflectionsΔρmax = 0.20 e Å3
240 parametersΔρmin = 0.32 e Å3
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (6)
Crystal data top
C12H19NO4SV = 1212.2 (2) Å3
Mr = 273.34Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.3091 (8) ŵ = 0.27 mm1
b = 10.9033 (12) ÅT = 190 K
c = 15.2110 (16) Å0.26 × 0.24 × 0.11 mm
Data collection top
Nonius KappaCCD
diffractometer
2898 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
2662 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.970Rint = 0.041
30886 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031All H-atom parameters refined
wR(F2) = 0.077Δρmax = 0.20 e Å3
S = 1.06Δρmin = 0.32 e Å3
2898 reflectionsAbsolute structure: Flack (1983)
240 parametersAbsolute structure parameter: 0.01 (6)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Several low angle reflections were omitted due to beam-stop shadowing effects.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.05367 (16)0.01982 (11)0.20184 (8)0.0239 (3)
C20.0018 (3)0.04165 (18)0.28189 (13)0.0292 (4)
H2A0.046 (3)0.009 (2)0.3305 (15)0.041 (6)*
H2B0.134 (4)0.049 (2)0.2828 (16)0.048 (7)*
C30.1064 (3)0.16394 (16)0.28040 (12)0.0272 (4)
H3A0.025 (4)0.238 (2)0.2729 (15)0.045 (7)*
H3B0.172 (3)0.1743 (19)0.3364 (14)0.029 (5)*
N40.2392 (2)0.14833 (12)0.20731 (9)0.0198 (3)
S50.19278 (5)0.22720 (3)0.11503 (3)0.02080 (10)
O20.33036 (17)0.32056 (11)0.10442 (8)0.0298 (3)
O30.00667 (16)0.26972 (11)0.11457 (9)0.0303 (3)
C60.2259 (3)0.10489 (15)0.03780 (11)0.0221 (3)
H6A0.103 (3)0.0837 (19)0.0140 (13)0.028 (5)*
H6B0.306 (3)0.137 (2)0.0085 (13)0.030 (5)*
C6A0.2996 (2)0.00233 (14)0.09106 (10)0.0188 (3)
C70.2371 (3)0.13191 (16)0.06543 (12)0.0258 (4)
H7B0.260 (3)0.149 (2)0.0037 (13)0.029 (5)*
H7A0.103 (3)0.1458 (18)0.0763 (12)0.025 (5)*
C80.3651 (3)0.21502 (16)0.12152 (14)0.0296 (4)
H8A0.301 (3)0.265 (2)0.1647 (16)0.039 (6)*
H8B0.433 (3)0.271 (2)0.0884 (14)0.037 (6)*
C90.4906 (3)0.12175 (15)0.16942 (11)0.0256 (4)
H90.610 (3)0.1563 (19)0.1901 (14)0.036 (6)*
C100.3735 (3)0.06328 (16)0.24234 (11)0.0238 (4)
H100.306 (3)0.1296 (17)0.2729 (12)0.017 (4)*
O40.4704 (2)0.00792 (13)0.30538 (8)0.0323 (3)
H40.527 (4)0.046 (3)0.3356 (18)0.060 (8)*
C10A0.2387 (2)0.01669 (14)0.18747 (10)0.0184 (3)
C110.5124 (2)0.01861 (15)0.10017 (10)0.0219 (3)
C120.6050 (3)0.0630 (2)0.01531 (13)0.0319 (4)
H12A0.546 (4)0.135 (3)0.0138 (16)0.051 (7)*
H12B0.732 (4)0.082 (3)0.0263 (19)0.061 (8)*
H12C0.604 (3)0.005 (2)0.0270 (15)0.036 (6)*
C130.6195 (3)0.09444 (17)0.12991 (13)0.0272 (4)
H13A0.746 (4)0.067 (2)0.1335 (16)0.049 (7)*
H13B0.580 (3)0.1276 (19)0.1844 (14)0.032 (5)*
H13C0.612 (3)0.155 (2)0.0838 (15)0.041 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0212 (6)0.0236 (6)0.0268 (6)0.0025 (5)0.0034 (5)0.0005 (5)
C20.0285 (10)0.0302 (10)0.0291 (9)0.0002 (8)0.0071 (8)0.0008 (7)
C30.0338 (10)0.0240 (9)0.0238 (8)0.0040 (7)0.0069 (8)0.0022 (7)
N40.0247 (7)0.0164 (6)0.0182 (6)0.0023 (5)0.0002 (5)0.0010 (5)
S50.0243 (2)0.01588 (17)0.02222 (18)0.00072 (15)0.00416 (17)0.00117 (14)
O20.0387 (7)0.0217 (6)0.0288 (6)0.0103 (5)0.0044 (6)0.0048 (5)
O30.0273 (6)0.0288 (6)0.0347 (6)0.0099 (5)0.0066 (6)0.0006 (6)
C60.0265 (9)0.0200 (7)0.0197 (7)0.0003 (7)0.0032 (7)0.0001 (6)
C6A0.0208 (7)0.0165 (7)0.0193 (7)0.0008 (7)0.0001 (6)0.0008 (5)
C70.0303 (9)0.0201 (8)0.0270 (8)0.0023 (7)0.0008 (7)0.0038 (7)
C80.0368 (9)0.0173 (8)0.0346 (9)0.0011 (7)0.0006 (8)0.0001 (8)
C90.0259 (9)0.0217 (8)0.0292 (8)0.0062 (7)0.0000 (7)0.0034 (7)
C100.0277 (8)0.0232 (8)0.0204 (8)0.0026 (7)0.0007 (7)0.0036 (6)
O40.0389 (8)0.0326 (7)0.0253 (6)0.0064 (6)0.0109 (6)0.0009 (5)
C10A0.0190 (7)0.0165 (7)0.0196 (7)0.0003 (6)0.0004 (6)0.0006 (6)
C110.0195 (7)0.0228 (7)0.0234 (8)0.0013 (6)0.0009 (6)0.0030 (6)
C120.0299 (10)0.0331 (10)0.0327 (10)0.0049 (8)0.0069 (8)0.0004 (8)
C130.0219 (9)0.0272 (9)0.0326 (10)0.0033 (7)0.0027 (7)0.0020 (7)
Geometric parameters (Å, º) top
O1—C10A1.427 (2)C7—H7B0.97 (2)
O1—C21.441 (2)C7—H7A1.01 (2)
C2—C31.537 (3)C8—C91.551 (3)
C2—H2A0.98 (2)C8—H8A0.97 (2)
C2—H2B1.00 (3)C8—H8B0.93 (2)
C3—N41.485 (2)C9—C101.539 (2)
C3—H3A1.01 (2)C9—C111.549 (2)
C3—H3B0.99 (2)C9—H91.00 (2)
N4—C10A1.467 (2)C10—O41.423 (2)
N4—S51.6807 (14)C10—C10A1.558 (2)
S5—O31.4371 (12)C10—H100.991 (19)
S5—O21.4399 (13)O4—H40.85 (3)
S5—C61.7937 (17)C11—C131.529 (2)
C6—C6A1.521 (2)C11—C121.536 (2)
C6—H6A0.99 (2)C12—H12A1.00 (3)
C6—H6B0.98 (2)C12—H12B0.97 (3)
C6A—C71.535 (2)C12—H12C0.98 (2)
C6A—C10A1.546 (2)C13—H13A0.97 (3)
C6A—C111.572 (2)C13—H13B0.95 (2)
C7—C81.557 (3)C13—H13C0.97 (2)
C10A—O1—C2104.44 (13)C7—C8—H8A113.9 (14)
O1—C2—C3105.08 (14)C9—C8—H8B111.8 (14)
O1—C2—H2A106.9 (13)C7—C8—H8B113.8 (14)
C3—C2—H2A109.5 (14)H8A—C8—H8B104.8 (18)
O1—C2—H2B108.1 (15)C10—C9—C11104.28 (13)
C3—C2—H2B115.5 (15)C10—C9—C8106.32 (15)
H2A—C2—H2B111 (2)C11—C9—C8102.56 (14)
N4—C3—C2103.69 (13)C10—C9—H9114.4 (13)
N4—C3—H3A113.0 (14)C11—C9—H9113.4 (13)
C2—C3—H3A113.8 (14)C8—C9—H9114.6 (12)
N4—C3—H3B109.9 (12)O4—C10—C9115.77 (15)
C2—C3—H3B109.3 (12)O4—C10—C10A111.74 (14)
H3A—C3—H3B107.1 (17)C9—C10—C10A101.38 (13)
C10A—N4—C3105.36 (13)O4—C10—H10109.3 (10)
C10A—N4—S5109.17 (10)C9—C10—H10108.2 (11)
C3—N4—S5115.77 (11)C10A—C10—H10110.2 (11)
O3—S5—O2115.62 (8)C10—O4—H4103.1 (18)
O3—S5—N4111.10 (8)O1—C10A—N4104.09 (13)
O2—S5—N4108.33 (7)O1—C10A—C6A112.36 (13)
O3—S5—C6111.37 (8)N4—C10A—C6A109.02 (12)
O2—S5—C6110.97 (8)O1—C10A—C10111.16 (13)
N4—S5—C698.01 (7)N4—C10A—C10115.86 (13)
C6A—C6—S5105.69 (11)C6A—C10A—C10104.56 (13)
C6A—C6—H6A109.5 (12)C13—C11—C12106.11 (15)
S5—C6—H6A106.9 (12)C13—C11—C9115.90 (14)
C6A—C6—H6B116.5 (13)C12—C11—C9112.83 (14)
S5—C6—H6B106.6 (12)C13—C11—C6A116.22 (14)
H6A—C6—H6B111.0 (17)C12—C11—C6A113.43 (14)
C6—C6A—C7117.84 (13)C9—C11—C6A92.29 (12)
C6—C6A—C10A107.48 (12)C11—C12—H12A115.5 (15)
C7—C6A—C10A106.19 (13)C11—C12—H12B110.3 (17)
C6—C6A—C11118.95 (14)H12A—C12—H12B109 (2)
C7—C6A—C11102.30 (13)C11—C12—H12C108.2 (13)
C10A—C6A—C11102.48 (12)H12A—C12—H12C108 (2)
C6A—C7—C8102.57 (14)H12B—C12—H12C106 (2)
C6A—C7—H7B112.0 (13)C11—C13—H13A105.0 (15)
C8—C7—H7B108.1 (13)C11—C13—H13B114.1 (14)
C6A—C7—H7A112.8 (11)H13A—C13—H13B111 (2)
C8—C7—H7A114.1 (11)C11—C13—H13C108.0 (14)
H7B—C7—H7A107.2 (17)H13A—C13—H13C108 (2)
C9—C8—C7103.37 (14)H13B—C13—H13C110.7 (18)
C9—C8—H8A109.4 (14)
C10A—O1—C2—C333.40 (17)C3—N4—C10A—C1087.40 (17)
O1—C2—C3—N411.49 (19)S5—N4—C10A—C10147.66 (12)
C2—C3—N4—C10A13.91 (18)C6—C6A—C10A—O179.97 (16)
C2—C3—N4—S5106.80 (14)C7—C6A—C10A—O146.98 (16)
C10A—N4—S5—O3102.75 (12)C11—C6A—C10A—O1153.92 (13)
C3—N4—S5—O315.88 (15)C6—C6A—C10A—N434.88 (17)
C10A—N4—S5—O2129.22 (11)C7—C6A—C10A—N4161.83 (13)
C3—N4—S5—O2112.16 (13)C11—C6A—C10A—N491.23 (14)
C10A—N4—S5—C613.92 (13)C6—C6A—C10A—C10159.36 (13)
C3—N4—S5—C6132.55 (13)C7—C6A—C10A—C1073.69 (16)
O3—S5—C6—C6A122.90 (12)C11—C6A—C10A—C1033.25 (15)
O2—S5—C6—C6A106.76 (12)O4—C10—C10A—O1116.56 (15)
N4—S5—C6—C6A6.45 (13)C9—C10—C10A—O1119.54 (15)
S5—C6—C6A—C7143.47 (13)O4—C10—C10A—N42.0 (2)
S5—C6—C6A—C10A23.69 (15)C9—C10—C10A—N4121.92 (15)
S5—C6—C6A—C1191.97 (15)O4—C10—C10A—C6A121.98 (14)
C6—C6A—C7—C8170.13 (15)C9—C10—C10A—C6A1.92 (16)
C10A—C6A—C7—C869.42 (16)C10—C9—C11—C1364.87 (18)
C11—C6A—C7—C837.65 (17)C8—C9—C11—C13175.58 (15)
C6A—C7—C8—C92.28 (19)C10—C9—C11—C12172.51 (15)
C7—C8—C9—C1074.77 (17)C8—C9—C11—C1261.79 (18)
C7—C8—C9—C1134.41 (18)C10—C9—C11—C6A55.86 (15)
C11—C9—C10—O483.66 (17)C8—C9—C11—C6A54.86 (15)
C8—C9—C10—O4168.38 (14)C6—C6A—C11—C1350.92 (19)
C11—C9—C10—C10A37.45 (16)C7—C6A—C11—C13177.27 (14)
C8—C9—C10—C10A70.50 (16)C10A—C6A—C11—C1367.36 (16)
C2—O1—C10A—N442.78 (15)C6—C6A—C11—C1272.48 (19)
C2—O1—C10A—C6A160.59 (13)C7—C6A—C11—C1259.34 (17)
C2—O1—C10A—C1082.62 (15)C10A—C6A—C11—C12169.24 (14)
C3—N4—C10A—O134.97 (16)C6—C6A—C11—C9171.39 (13)
S5—N4—C10A—O189.98 (12)C7—C6A—C11—C956.80 (14)
C3—N4—C10A—C6A155.05 (14)C10A—C6A—C11—C953.10 (13)
S5—N4—C10A—C6A30.11 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2i0.85 (3)2.01 (3)2.860 (2)174 (3)
C6—H6B···O3ii0.98 (2)2.41 (2)3.384 (2)175 (2)
C2—H2A···O3iii0.98 (2)2.59 (2)3.358 (2)136 (2)
C13—H13A···O1iv0.97 (3)2.65 (3)3.581 (2)160 (2)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x, y1/2, z+1/2; (iv) x+1, y, z.
(4) (7aS,10S,11R,11aR)-12,12-dimethyl-6,6-dioxo-3,4,8,9,10,11-hexhydro- 7H-7a-methano- 2H-[1,3]oxazino[2,3-i][2,1]benzisothiazol-11-ol top
Crystal data top
C13H21NO4SF(000) = 616
Mr = 287.37Dx = 1.455 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 3089 reflections
a = 16.5474 (18) Åθ = 1.0–27.9°
b = 7.5668 (9) ŵ = 0.26 mm1
c = 11.5945 (13) ÅT = 210 K
β = 115.376 (5)°Rod, colorless
V = 1311.7 (3) Å30.24 × 0.07 × 0.07 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3118 independent reflections
Radiation source: fine-focus sealed tube2852 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 9 pixels mm-1θmax = 27.9°, θmin = 3.0°
CCD ϕ and ω scansh = 2121
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 99
Tmin = 0.941, Tmax = 0.982l = 1515
13727 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032All H-atom parameters refined
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0378P)2 + 0.0333P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.004
3118 reflectionsΔρmax = 0.16 e Å3
257 parametersΔρmin = 0.27 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (5)
Crystal data top
C13H21NO4SV = 1311.7 (3) Å3
Mr = 287.37Z = 4
Monoclinic, C2Mo Kα radiation
a = 16.5474 (18) ŵ = 0.26 mm1
b = 7.5668 (9) ÅT = 210 K
c = 11.5945 (13) Å0.24 × 0.07 × 0.07 mm
β = 115.376 (5)°
Data collection top
Nonius KappaCCD
diffractometer
3118 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
2852 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.982Rint = 0.027
13727 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032All H-atom parameters refined
wR(F2) = 0.073Δρmax = 0.16 e Å3
S = 1.05Δρmin = 0.27 e Å3
3118 reflectionsAbsolute structure: Flack (1983)
257 parametersAbsolute structure parameter: 0.07 (5)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Several low angle reflections were omitted due to beam-stop shadowing effects.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.66086 (8)0.55136 (17)0.38706 (12)0.0254 (3)
C20.57270 (13)0.6132 (3)0.3627 (2)0.0313 (4)
H2A0.5639 (12)0.733 (3)0.3183 (19)0.027 (5)*
H2B0.5743 (14)0.627 (3)0.451 (2)0.043 (6)*
C30.50214 (13)0.4847 (3)0.2780 (2)0.0313 (4)
H3A0.4432 (14)0.533 (3)0.2643 (19)0.024 (5)*
H3B0.5087 (13)0.363 (3)0.3236 (18)0.025 (5)*
C40.51113 (12)0.4590 (2)0.15427 (19)0.0262 (4)
H4A0.4737 (14)0.359 (3)0.0970 (19)0.036 (6)*
H4B0.4933 (14)0.565 (3)0.1011 (19)0.034 (6)*
N50.60549 (9)0.42143 (18)0.18081 (13)0.0200 (3)
S60.63508 (3)0.21104 (4)0.20406 (4)0.02160 (11)
O20.62043 (9)0.13265 (16)0.08356 (12)0.0310 (3)
O30.59476 (8)0.11904 (17)0.27415 (13)0.0303 (3)
C70.75140 (12)0.2471 (2)0.30155 (19)0.0271 (4)
H7A0.7628 (13)0.208 (3)0.385 (2)0.034 (5)*
H7B0.7852 (14)0.192 (3)0.267 (2)0.035 (6)*
C7A0.76530 (11)0.4471 (2)0.30387 (16)0.0220 (4)
C80.83347 (13)0.5280 (3)0.42856 (19)0.0283 (4)
H8A0.8927 (14)0.469 (3)0.4607 (19)0.024 (5)*
H8B0.8127 (13)0.525 (3)0.497 (2)0.024 (5)*
C90.83965 (13)0.7216 (3)0.38768 (18)0.0314 (4)
H9A0.8183 (16)0.803 (3)0.428 (2)0.043 (6)*
H9B0.9032 (15)0.755 (3)0.411 (2)0.039 (6)*
C100.78082 (11)0.7205 (3)0.24131 (16)0.0257 (4)
H100.7931 (13)0.817 (3)0.1967 (19)0.030 (5)*
C110.68303 (11)0.7233 (2)0.22219 (15)0.0231 (3)
H110.6745 (13)0.817 (3)0.2776 (19)0.023 (5)*
O40.61874 (9)0.74975 (16)0.09433 (13)0.0315 (3)
H40.6111 (16)0.864 (4)0.086 (2)0.048 (7)*
C11A0.67357 (11)0.5361 (2)0.27309 (16)0.0199 (3)
C120.79396 (12)0.5296 (2)0.20293 (19)0.0244 (4)
C130.89088 (14)0.4865 (3)0.2293 (3)0.0369 (5)
H13A0.9045 (16)0.559 (4)0.170 (2)0.054 (7)*
H13B0.8975 (15)0.358 (3)0.213 (2)0.043 (6)*
H13C0.9346 (16)0.509 (3)0.312 (2)0.041 (7)*
C140.73723 (14)0.4814 (3)0.06287 (19)0.0293 (4)
H14A0.7576 (18)0.558 (4)0.007 (3)0.054 (7)*
H14B0.6715 (14)0.510 (3)0.0308 (19)0.027 (5)*
H14C0.7473 (15)0.356 (3)0.057 (2)0.042 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0253 (6)0.0300 (6)0.0216 (7)0.0004 (5)0.0107 (5)0.0028 (5)
C20.0299 (10)0.0330 (11)0.0347 (12)0.0000 (8)0.0173 (9)0.0079 (8)
C30.0265 (10)0.0308 (10)0.0406 (12)0.0017 (8)0.0182 (9)0.0018 (8)
C40.0208 (9)0.0238 (9)0.0292 (10)0.0015 (7)0.0062 (8)0.0011 (8)
N50.0197 (7)0.0147 (6)0.0226 (8)0.0003 (5)0.0063 (6)0.0004 (5)
S60.0257 (2)0.01410 (17)0.0239 (2)0.00056 (17)0.00954 (16)0.00112 (17)
O20.0442 (8)0.0188 (5)0.0279 (7)0.0026 (6)0.0135 (6)0.0031 (5)
O30.0343 (7)0.0238 (6)0.0347 (8)0.0025 (5)0.0165 (6)0.0071 (6)
C70.0253 (9)0.0244 (10)0.0293 (10)0.0039 (7)0.0095 (8)0.0054 (7)
C7A0.0211 (8)0.0194 (8)0.0245 (9)0.0006 (7)0.0087 (7)0.0008 (7)
C80.0237 (9)0.0329 (10)0.0229 (10)0.0025 (8)0.0047 (8)0.0011 (7)
C90.0297 (9)0.0313 (9)0.0285 (9)0.0080 (9)0.0080 (7)0.0056 (9)
C100.0299 (9)0.0204 (8)0.0268 (9)0.0053 (8)0.0120 (7)0.0001 (8)
C110.0290 (8)0.0156 (7)0.0225 (8)0.0008 (8)0.0089 (7)0.0005 (8)
O40.0371 (8)0.0179 (7)0.0284 (7)0.0003 (5)0.0035 (6)0.0042 (5)
C11A0.0240 (9)0.0170 (7)0.0167 (8)0.0008 (6)0.0069 (7)0.0015 (6)
C120.0272 (9)0.0229 (8)0.0255 (9)0.0027 (7)0.0136 (8)0.0007 (7)
C130.0304 (11)0.0412 (12)0.0452 (14)0.0013 (9)0.0220 (11)0.0006 (10)
C140.0417 (12)0.0230 (9)0.0283 (10)0.0051 (8)0.0199 (9)0.0028 (8)
Geometric parameters (Å, º) top
O1—C11A1.429 (2)C8—C91.557 (3)
O1—C21.440 (2)C8—H8A0.99 (2)
C2—C31.514 (3)C8—H8B0.99 (2)
C2—H2A1.02 (2)C9—C101.553 (2)
C2—H2B1.01 (2)C9—H9A0.93 (3)
C3—C41.517 (3)C9—H9B1.00 (2)
C3—H3A0.99 (2)C10—C111.537 (2)
C3—H3B1.04 (2)C10—C121.554 (3)
C4—N51.484 (2)C10—H100.97 (2)
C4—H4A1.02 (2)C11—O41.421 (2)
C4—H4B0.97 (2)C11—C11A1.568 (3)
N5—C11A1.461 (2)C11—H111.01 (2)
N5—S61.6534 (14)O4—H40.87 (3)
S6—O31.4334 (12)C12—C141.531 (3)
S6—O21.4396 (13)C12—C131.533 (3)
S6—C71.7867 (19)C13—H13A0.98 (3)
C7—C7A1.529 (2)C13—H13B1.01 (2)
C7—H7A0.96 (2)C13—H13C0.93 (3)
C7—H7B0.91 (2)C14—H14A1.03 (3)
C7A—C81.529 (3)C14—H14B1.01 (2)
C7A—C11A1.556 (2)C14—H14C0.97 (3)
C7A—C121.568 (2)
C11A—O1—C2112.55 (14)H8A—C8—H8B108.3 (16)
O1—C2—C3110.68 (15)C10—C9—C8103.62 (16)
O1—C2—H2A107.5 (11)C10—C9—H9A111.0 (14)
C3—C2—H2A109.8 (11)C8—C9—H9A112.5 (15)
O1—C2—H2B104.5 (12)C10—C9—H9B113.1 (12)
C3—C2—H2B113.7 (13)C8—C9—H9B110.6 (13)
H2A—C2—H2B110.5 (17)H9A—C9—H9B106.2 (19)
C2—C3—C4109.59 (15)C11—C10—C12103.86 (15)
C2—C3—H3A107.5 (12)C11—C10—C9106.60 (14)
C4—C3—H3A112.7 (11)C12—C10—C9102.65 (16)
C2—C3—H3B110.7 (11)C11—C10—H10111.2 (12)
C4—C3—H3B109.5 (10)C12—C10—H10117.6 (12)
H3A—C3—H3B106.8 (15)C9—C10—H10113.8 (12)
N5—C4—C3110.45 (15)O4—C11—C10115.08 (14)
N5—C4—H4A106.5 (12)O4—C11—C11A111.68 (14)
C3—C4—H4A115.6 (11)C10—C11—C11A101.66 (14)
N5—C4—H4B107.1 (12)O4—C11—H11108.6 (11)
C3—C4—H4B111.6 (12)C10—C11—H11110.2 (11)
H4A—C4—H4B105.1 (17)C11A—C11—H11109.4 (11)
C11A—N5—C4116.80 (14)C11—O4—H4105.4 (16)
C11A—N5—S6111.77 (10)O1—C11A—N5110.63 (13)
C4—N5—S6115.47 (11)O1—C11A—C7A109.79 (13)
O3—S6—O2115.11 (8)N5—C11A—C7A106.34 (13)
O3—S6—N5112.51 (7)O1—C11A—C11110.68 (13)
O2—S6—N5108.88 (7)N5—C11A—C11115.53 (14)
O3—S6—C7110.63 (9)C7A—C11A—C11103.44 (13)
O2—S6—C7111.38 (9)C14—C12—C13105.91 (17)
N5—S6—C796.87 (7)C14—C12—C10115.33 (15)
C7A—C7—S6105.99 (12)C13—C12—C10113.78 (15)
C7A—C7—H7A109.0 (15)C14—C12—C7A116.90 (14)
S6—C7—H7A106.6 (12)C13—C12—C7A113.06 (16)
C7A—C7—H7B110.1 (15)C10—C12—C7A91.83 (13)
S6—C7—H7B110.4 (13)C12—C13—H13A106.0 (15)
H7A—C7—H7B114.4 (19)C12—C13—H13B110.9 (13)
C7—C7A—C8117.19 (15)H13A—C13—H13B110 (2)
C7—C7A—C11A107.43 (14)C12—C13—H13C116.8 (14)
C8—C7A—C11A107.19 (14)H13A—C13—H13C107 (2)
C7—C7A—C12118.17 (15)H13B—C13—H13C106 (2)
C8—C7A—C12102.11 (14)C12—C14—H14A108.2 (15)
C11A—C7A—C12103.53 (13)C12—C14—H14B114.4 (11)
C7A—C8—C9101.93 (15)H14A—C14—H14B103.8 (18)
C7A—C8—H8A112.6 (12)C12—C14—H14C105.2 (13)
C9—C8—H8A110.7 (11)H14A—C14—H14C113 (2)
C7A—C8—H8B112.4 (12)H14B—C14—H14C111.9 (17)
C9—C8—H8B110.7 (12)
C11A—O1—C2—C361.7 (2)S6—N5—C11A—C7A32.67 (16)
O1—C2—C3—C457.3 (2)C4—N5—C11A—C1177.12 (18)
C2—C3—C4—N549.0 (2)S6—N5—C11A—C11146.77 (12)
C3—C4—N5—C11A47.1 (2)C7—C7A—C11A—O184.51 (17)
C3—C4—N5—S687.37 (16)C8—C7A—C11A—O142.25 (17)
C11A—N5—S6—O398.82 (12)C12—C7A—C11A—O1149.73 (13)
C4—N5—S6—O337.91 (15)C7—C7A—C11A—N535.21 (18)
C11A—N5—S6—O2132.34 (11)C8—C7A—C11A—N5161.97 (13)
C4—N5—S6—O290.94 (13)C12—C7A—C11A—N590.55 (15)
C11A—N5—S6—C716.91 (13)C7—C7A—C11A—C11157.34 (14)
C4—N5—S6—C7153.64 (13)C8—C7A—C11A—C1175.90 (16)
O3—S6—C7—C7A122.00 (13)C12—C7A—C11A—C1131.57 (16)
O2—S6—C7—C7A108.62 (13)O4—C11—C11A—O1123.68 (14)
N5—S6—C7—C7A4.78 (14)C10—C11—C11A—O1113.11 (14)
S6—C7—C7A—C8143.96 (14)O4—C11—C11A—N53.0 (2)
S6—C7—C7A—C11A23.33 (17)C10—C11—C11A—N5120.19 (15)
S6—C7—C7A—C1293.18 (16)O4—C11—C11A—C7A118.79 (15)
C7—C7A—C8—C9171.45 (16)C10—C11—C11A—C7A4.43 (16)
C11A—C7A—C8—C967.79 (18)C11—C10—C12—C1464.25 (18)
C12—C7A—C8—C940.68 (17)C9—C10—C12—C14175.16 (15)
C7A—C8—C9—C105.31 (19)C11—C10—C12—C13173.07 (17)
C8—C9—C10—C1176.78 (19)C9—C10—C12—C1362.2 (2)
C8—C9—C10—C1232.06 (18)C11—C10—C12—C7A56.82 (14)
C12—C10—C11—O481.16 (18)C9—C10—C12—C7A54.10 (14)
C9—C10—C11—O4170.85 (16)C7—C7A—C12—C1451.7 (2)
C12—C10—C11—C11A39.71 (16)C8—C7A—C12—C14178.14 (16)
C9—C10—C11—C11A68.29 (18)C11A—C7A—C12—C1466.89 (18)
C2—O1—C11A—N555.93 (17)C7—C7A—C12—C1371.7 (2)
C2—O1—C11A—C7A173.00 (14)C8—C7A—C12—C1358.50 (19)
C2—O1—C11A—C1173.43 (17)C11A—C7A—C12—C13169.75 (16)
C4—N5—C11A—O149.60 (18)C7—C7A—C12—C10171.45 (15)
S6—N5—C11A—O186.50 (14)C8—C7A—C12—C1058.39 (15)
C4—N5—C11A—C7A168.77 (14)C11A—C7A—C12—C1052.86 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2i0.87 (3)2.04 (3)2.901 (2)169 (2)
C4—H4A···O2ii1.02 (2)2.64 (2)3.646 (2)170 (2)
C11—H11···O3i1.01 (2)2.63 (2)3.496 (2)144 (1)
C8—H8B···O3iii0.99 (2)2.53 (2)3.203 (2)125 (1)
C7—H7A···O1iv0.96 (2)2.67 (2)3.584 (2)162 (2)
C4—H4B···O4ii0.97 (2)2.63 (2)3.530 (2)153 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x+3/2, y+1/2, z+1; (iv) x+3/2, y1/2, z+1.

Experimental details

(1)(2)(3)(4)
Crystal data
Chemical formulaC12H17NO4SC13H19NO4SC12H19NO4SC13H21NO4S
Mr271.33285.35273.34287.37
Crystal system, space groupMonoclinic, P21Monoclinic, P21Orthorhombic, P212121Monoclinic, C2
Temperature (K)210210190210
a, b, c (Å)7.7873 (9), 7.1895 (8), 11.1111 (12)7.6970 (9), 6.9954 (8), 12.2852 (13)7.3091 (8), 10.9033 (12), 15.2110 (16)16.5474 (18), 7.5668 (9), 11.5945 (13)
α, β, γ (°)90, 99.274 (5), 9090, 98.145 (5), 9090, 90, 9090, 115.376 (5), 90
V3)613.94 (12)654.81 (13)1212.2 (2)1311.7 (3)
Z2244
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.270.260.270.26
Crystal size (mm)0.32 × 0.29 × 0.030.22 × 0.14 × 0.070.26 × 0.24 × 0.110.24 × 0.07 × 0.07
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.918, 0.9920.946, 0.9820.932, 0.9700.941, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
15611, 2845, 2565 15564, 3084, 2783 30886, 2898, 2662 13727, 3118, 2852
Rint0.0220.0280.0410.027
(sin θ/λ)max1)0.6580.6580.6580.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.072, 1.06 0.031, 0.076, 1.04 0.031, 0.077, 1.06 0.032, 0.073, 1.05
No. of reflections2845308428983118
No. of parameters232249240257
No. of restraints1101
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refinedAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.18, 0.260.19, 0.260.20, 0.320.16, 0.27
Absolute structureFlack (1983)Flack (1983)Flack (1983)Flack (1983)
Absolute structure parameter0.01 (6)0.01 (6)0.01 (6)0.07 (5)

Computer programs: COLLECT (Nonius, 2000), SCALEPACK (Otwinowski & Minor, 1997), DENZO (Otwinowski & Minor, 1997) and SCALEPACK, SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Bond distances (Å) and angles (°) of the functional groups in the four title camphor-core structures. top
(1)(2)(3)(4)
S(5/6)—O21.4357 (14)1.4369 (14)1.4399 (13)1.4396 (13)
S(5/6)—O31.4384 (15)1.4405 (15)1.4371 (12)1.4334 (12)
S(5/6)—N(4/5)1.6890 (15)1.6659 (14)1.6807 (14)1.6534 (14)
S(5/6)—C(6/7)1.7934 (16)1.7898 (16)1.7937 (17)1.7867 (19)
O1—C21.439 (2)1.449 (2)1.441 (2)1.440 (2)
O1—C(10A/11A)1.421 (2)1.417 (2)1.427 (2)1.429 (2)
N(4/5)—C(3/4)1.476 (2)1.484 (2)1.485 (2)1.484 (2)
N(4/5)—C(10A/11A)1.459 (2)1.443 (2)1.467 (2)1.461 (2)
C(10/11)—O41.213 (2)1.209 (2)1.423 (2)1.421 (2)
O2—S(5/6)—O3116.28 (9)115.52 (9)115.62 (8)115.11 (8)
O2—S(5/6)—N(4/5)108.29 (8)108.87 (8)108.33 (7)108.88 (7)
O2—S(5/6)—C(6/7)111.46 (10)111.66 (9)110.97 (8)111.38 (9)
O3—S(5/6)—N(4/5)110.66 (8)111.26 (8)111.10 (8)112.51 (7)
O3—S(5/6)—C(6/7)111.01 (10)111.40 (9)111.37 (8)110.63 (9)
N(4/5)—S(5/6)—C(6/7)97.50 (7)96.51 (7)98.01 (7)96.87 (7)
C2—O1—C(10A/11A)107.86 (14)113.64 (13)104.44 (13)112.55 (14)
S(5/6)—N(4/5)—C(3/4)115.38 (13)116.96 (12)115.77 (11)115.47 (11)
S(5/6)—N(4/5)—C(10A/11A)108.64 (11)112.34 (11)109.17 (10)111.77 (10)
C(3/4)—N(4/5)—C(10A/11A)105.50 (15)116.79 (14)105.36 (13)116.80 (14)
Note: numbers in parenthesis complete the atom label with the first used with compounds (1) and (2) and the second used with compounds (3) and (4).
Motifs, motif priority, graph set classifications and motif direction of O—H···O hydrogen bonds and C—H···O interactions in the four title camphor-core structures. top
MotifD—H (Å)H···A (Å)D···A (Å)D—H···A (°)Site symmetry APriorityGraph setDirection
Compound (1)
C6—H6B···O30.99 (2)2.41 (2)3.390 (3)174 (2)-x, y-1/2, -z2C(4)[R22(8)]b axis
C6—H6A···O20.90 (3)2.57 (3)3.368 (2)148 (2)-x, y+1/2, -z2C(4)[R22(8)]b axis
C13—H13A···O11.05 (3)2.60 (3)3.499 (3)143 (2)x, y-1, z6C(6)b axis
C3—H3B···O30.94 (3)2.70 (3)3.409 (3)133 (2)-x+1, y-1/2, -z4C(5)b axis
C8—H8B···O40.96 (2)2.72 (2)3.487 (3)137 (2)-x+1, y+1/2, -z+15C(5)b axis
C3—H3A···O20.94 (2)2.73 (2)3.137 (2)107 (2)-x+1, y+1/2, -z4C(5)a axis
C2—H2A···O21.06 (3)2.75 (3)3.111 (3)100 (2)-x+1, y+1/2, -z3C(5)a axis
Compound (2)
C7—H7B···O30.97 (2)2.43 (2)3.380 (2)166 (2)-x, y-1/2, -z2C(4)[R22(8)]b axis
C7—H7A···O20.92 (3)2.60 (2)3.346 (2)139 (2)-x, y+1/2, -z2C(4)[R22(8)]b axis
C14—H14A···O11.09 (3)2.46 (3)3.425 (2)147 (2)x, y-1, z6C(6)b axis
C3—H3B···O20.95 (2)2.67 (2)3.134 (2)111 (1)-x+1, y+1/2, -z4C(6)b axis
C13—H13C···O41.00 (3)2.69 (3)3.572 (3)147 (2)x-1, y, z6C(6)a axis
Compound (3)
O4—H4···O20.85 (3)2.01 (3)2.860 (2)174 (3)-x+1, y-1/2, -z+1/21C(7)b axis
C6—H6B···O30.98 (2)2.41 (2)3.384 (2)175 (2)x+1/2, -y+1/2, -z2C(4)a axis
C2—H2A···O30.98 (2)2.59 (2)3.358 (2)136 (2)-x, y-1/2, -z+1/23C(6)b axis
C13—H13A···O10.97 (3)2.65 (3)3.581 (2)160 (2)x+1, y, z6C(6)a axis
Compound (4)
O4—H4···O20.87 (3)2.04 (3)2.901 (2)169 (2)x, y+1, z1C(7)b axis
C8—H8B···O30.99 (2)2.53 (2)3.203 (2)125 (1)-x+3/2, y+1/2, -z+15C(6)
C11—H11···O31.01 (2)2.63 (2)3.496 (2)144 (1)x, y+1, z3C(6)b axis
C4—H4B···O40.97 (2)2.63 (2)3.530 (2)153 (2)-x+1, y, -z4R22(12)
C4—H4A···O21.02 (2)2.64 (2)3.646 (2)170 (2)-x+1, y, -z4R22(10)
C7—H7A···O10.96 (2)2.67 (2)3.584 (2)162 (2)-x+3/2, y-1/2, -z+12C(5)a axis
Graph-set designations of Etter (1990) used. Motif priories based on the priority of the H-donor atom: (1) O—H···; (2) S—C—H···; (3) O—C—H···; (4) N—C—H···; (5) Cmethylene—H···; (6) Cmethyl—H···
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds