Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structure of the title compound [systematic name: bis­(adamantan-1-aminium) tetra­chloridozincate(II)–1,4,7,10,13,16-hexa­oxacyclo­octa­decane–water (1/1/1)], (C10H18N)2[ZnCl4]·C12H24O6·H2O, consists of supra­molecular rotator–stator assemblies and ribbons of hydrogen bonds parallel to [010]. The assemblies are composed of one protonated adamantan-1-aminium cation and one crown ether mol­ecule (1,4,7,10,13,16-hexa­oxacyclo­octa­decane) to give an overall [(C10H18N)(18-crown-6)]+ cation. The –NH3+ group of the cation nests in the crown and links to the crown-ether O atoms through N—H...O hydrogen bonds. The 18-crown-6 ring adopts a pseudo-C3v conformation. The second adamantan-1-aminium forms part of ribbons of adamantan-1-aminium–water–tetra­chloridozincate units which are inter­connected by O—H...Cl, N—H...O and N—H...Cl hydrogen bonds via three different continuous rings with R54(12), R43(10) and R33(8) motifs.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110025795/gz3178sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110025795/gz3178Isup2.hkl
Contains datablock I

CCDC reference: 790630

Comment top

Crown ethers have attracted much attention due to their ability to form noncovalent and hydrogen-bonded complexes with ammonium cations, in both the solid state and solution (Fender et al., 2002; Rieger et al., 2005). Both the size of the crown ether and the nature of the ammonium cation (–NH4+, RNH3+ etc.) can influence the stoichiometry and stability of these host–guest adducts. Through the intermolecular interactions between the host molecules and guest species, it is easy to realise high selectivity in ionic or molecular recognition (Sato et al., 2007; Akutagawa et al., 2008). 18-Crown-6 and its derivatives exhibit the highest affinity with organic ammonium cations RNH3+, with a 1:1 stoichiometry in most studies (Doxsee et al., 2000; Johnson et al., 2000; Buschmann et al., 2001). We now present the structure of the title compound, (I), containing an adduct of 18-crown-6 and an ammonium cation.

Compound (I) crystallizes in the space group Pbcn. The asymmetric unit contains two adamantan-1-aminium cations, one 18-crown-6 ether molecule, one [ZnCl4]2- anion, and one water molecule (Fig. 1). Only one of the two crystallographically independent adamantan-1-aminium cations joins the rotator–stator assembly with 18-crown-6, via a hydrogen-bonding interaction (Fig. 2). The –NH3+ group of the cation interacts with the six crown ether O atoms through three short approximately linear N—H···O hydrogen bonds (Table 1) and three longer acute interactions [2.957 (4), 2.938 (4) and 2.958 (4) Å from N1 to atoms O1, O3 and O5, respectively].

The conformation of the crown-ether ring and the hydrogen-bond geometry in this assembly closely resemble those in related adducts of 18-crown-6 and primary alkylammonium salts (Henschel et al., 1997). The macrocycle adopts a conformation with approximate D3d symmetry, with all C—C torsion angles being gauche and alternating in sign, and all C—O and O—C torsion angles being trans. The ether O atoms are nearly coplanar. O1, O3 and O5 are located below the mean O-atom plane [0.1798 (18), 0.1499 (18) and 0.1672 (19) Å, respectively] and O2, O4 and O6 are located above the plane [0.1635 (17), 0.1533 (18) and 0.1801 (18) Å, respectively]. The C—N bonds of the adamantan-1-aminium cation are almost perpendicular to the mean plane of the crown-ether O atoms. Atom N1 of the adamantan-1-aminium cation is 0.983 (3) Å out of the plane.

It is interesting that the second adamantan-1-aminium cation is not trapped by the 18-crown-6 ether. The reason may lie in the [ZnCl4]2- anions, which are relatively small {in contrast to the [Ni(dmit)2]- (dmit is 2-thioxo-1,3-dithiole-4,5-dithiolate; Akutagawa et al., 2002) and [PMo12O40]4- (Akutagawa et al., 2006) anions} for embedding large and structurally diverse supramolecular cations in the crystal lattice.

The [ZnCl4]2- anions are present as counterions to the supramolecular [(C10H18N)(18-crown-6)]+ and isolated adamantan-1-aminium cations, and coordinate to both. The ZnII centre adopts a tetrahedral coordination with four Cl- ions, which has been observed in many crystal structures (Jin et al., 2005; Valkonen et al., 2006; Albrecht et al., 2003; Wickleder, 2001). Generally, the Zn—Cl bond lengths and Cl—Zn—Cl angles in a [ZnCl4]2- anion are not equal to one another (Wickleder, 2001; Albrecht et al. 2003) but vary with the environment around the Cl atoms. In (I), as Cl1, Cl3 and Cl4 are involved in stronger and more numerous N—H···Cl hydrogen bonds than Cl2, the Zn1—Cl2 bonds are obviously shorter than all the other Zn—Cl bonds. The [ZnCl4]2- anion shows typical Zn—Cl bond lengths [2.2354 (9)–2.3214 (10) Å] and the Cl—Zn—Cl angles range from 104.53 (4) to 115.96 (4)°. Owing to the obvious differences of the Zn—Cl distances and the Cl—Zn—Cl angles, the coordination geometry of the Zn atom could be regarded as a distorted tetrahedron.

It has been reported that Cl atoms coordinating to metal atom centres are good hydrogen-bond acceptors (Aullon et al., 1998). In this structure, only one of the four Cl atoms (Cl2) of [ZnCl4]2- fails to engage in hydrogen-bonding interactions (Table 1). The O—H···Cl, N—H···O and N—H···Cl hydrogen bonds between discrete tetrahedral tetrachlorozincate(II) anions, isolated adamantylammonium cations and solvent water molecules result in a noteworthy one-dimensional ribbon-like structure along the b axis (Fig. 3). This ribbon motif (Fig. 3) is the dominant hydrogen-bonding motif (Hulme et al., 2006) in the structure of (I). This structure propagates via two types of rings: one of level four [R43(10)], and one of level three [R33(8)]. The R43(10) ring includes four hydrogen bonds, viz. N2—H2D···Cl4, N2—H2E···Cl1, O1W—H1WA···Cl4 and O1W—H1WB···Cl3. The second-order motif involves three hydrogen bonds, viz. N2—H2D···Cl4, N2—H2F···O1W and O1W—H1WB···Cl3. The discrete adamantan-1-aminium–crown ether units are located on both sides of the ribbon, forming possible C—H···Cl hydrogen bonds which would link all the units into a two-dimensional network.

This study is also part of our systematic investigation of dielectric, ferroelectric and phase-transition materials (Ye et al., 2009; Zhang et al., 2009), including organic compounds, metal–organic coordination compounds and organic–inorganic hybrids. The measurement of the dielectric constant of (I) as a function of temperature showed that the permittivity is basically temperature-independent (dielectric constant of 6–7) below room temperature. Such a dielectric response suggests that this compound might not undergo a distinct structural phase transition in the lower temperature range. Similarly, in the range from room temperature to near its melting point (m.p. > 470 K), the dielectric constant increases smoothly as a function of temperature, and no dielectric anomaly was observed (dielectric constant 7–17).

Related literature top

For related literature, see: Akutagawa et al. (2002, 2006, 2008); Albrecht et al. (2003); Aullon et al. (1998); Buschmann et al. (2001); Doxsee et al. (2000); Fender et al. (2002); Henschel et al. (1997); Hulme & Tocher (2006); Jin et al. (2005); Johnson et al. (2000); Rieger & Muclring (2005); Sato et al. (2007); Valkonen et al. (2006); Wickleder (2001); Ye et al. (2009); Zhang et al. (2009).

Experimental top

Adamantylammonium chloride (2 mmol, 0.375 g) and 18-crown-6 (2 mmol, 0.528 g) were dissolved in methanol (40 ml). Zinc(II) dichloride (2 mmol, 0.272 g) was added to the solution, followed by concentrated hydrochloric acid (5 ml). Single crystals of (I) suitable for X-ray diffraction analysis were obtained via slow evaporation of the methanol solution at room temperature after two weeks. The crystals were colourless, of prismatic habitus and of an average size of about 0.2 × 0.3 × 0.4 mm.

Dielectric studies (capacitance and dielectric-loss measurements) were performed on powder samples which had been pressed into tablets, on the surfaces of which conducting carbon glue was deposited. An automatic impedance TongHui2828 Analyzer was used. In the measured temperature range (80–430 K), the title structure showed no dielectric anomaly.

Refinement top

All C-bound H atoms were placed in calculated positions, with C—H = 0.93–0.97 Å, and allowed to ride on the parent C atoms, with Uiso(H) = 1.2Ueq(C).

All the N- and O-bound H atoms were discernible in the difference electron-density map. The positions of the N-bound H atoms were refined using a riding model, with N—H = 0.89 Å and Uiso(H) = 1.5Ueq(N). The coordinates of the water H atoms were refined with the restraint O—H = 0.84 (2) Å, and with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The interactions between an adamantylammonium cation and a crown ether molecule in (I). Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen-bonding interactions have been omitted.
[Figure 3] Fig. 3. A ribbon motif of the hydrogen-bonded adamantylammonium–water–tetrachloridozincate units. The graph-set notation for the three types of hydrogen-bonding patterns is R54(12), R43(10) and R33(8). Only selected H atoms are shown. Dashed lines indicate hydrogen-bonding interactions.
Bis(adamantan-1-aminium) tetrachloridozincate(II)–1,4,7,10,13,16-hexaoxacyclooctadecane–water (1/1/1) top
Crystal data top
(C10H18N)2[ZnCl4]·C12H24O6·H2OF(000) = 3376
Mr = 794.03Dx = 1.363 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 16230 reflections
a = 26.9702 (12) Åθ = 2.5–27.5°
b = 11.4912 (7) ŵ = 0.96 mm1
c = 24.9646 (18) ÅT = 293 K
V = 7737.0 (8) Å3Prism, colourless
Z = 80.40 × 0.30 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
7595 independent reflections
Radiation source: fine-focus sealed tube6098 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.094
Detector resolution: 28.5714 pixels mm-1θmax = 26.0°, θmin = 2.5°
CCD profile fitting scansh = 3333
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1414
Tmin = 0.716, Tmax = 0.826l = 3030
72972 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0495P)2 + 10.437P]
where P = (Fo2 + 2Fc2)/3
7595 reflections(Δ/σ)max = 0.011
439 parametersΔρmax = 0.87 e Å3
9 restraintsΔρmin = 0.46 e Å3
Crystal data top
(C10H18N)2[ZnCl4]·C12H24O6·H2OV = 7737.0 (8) Å3
Mr = 794.03Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 26.9702 (12) ŵ = 0.96 mm1
b = 11.4912 (7) ÅT = 293 K
c = 24.9646 (18) Å0.40 × 0.30 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
7595 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
6098 reflections with I > 2σ(I)
Tmin = 0.716, Tmax = 0.826Rint = 0.094
72972 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0589 restraints
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0495P)2 + 10.437P]
where P = (Fo2 + 2Fc2)/3
7595 reflectionsΔρmax = 0.87 e Å3
439 parametersΔρmin = 0.46 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.01397 (9)0.9551 (2)0.32499 (10)0.0215 (6)
O20.04104 (9)0.74527 (19)0.33211 (9)0.0170 (5)
O30.01826 (9)0.5450 (2)0.32173 (10)0.0211 (6)
O40.12103 (9)0.5388 (2)0.34175 (10)0.0234 (6)
O50.16665 (9)0.7566 (2)0.33494 (11)0.0235 (6)
O60.11567 (9)0.9724 (2)0.34748 (10)0.0226 (6)
C10.08890 (14)1.0634 (3)0.32143 (16)0.0259 (9)
H1A0.09021.05230.28290.031*
H1B0.10401.13780.32970.031*
C20.03598 (14)1.0632 (3)0.33970 (15)0.0220 (8)
H2A0.03451.07320.37820.026*
H2B0.01811.12700.32310.026*
C30.03863 (13)0.9530 (3)0.33264 (15)0.0207 (8)
H3A0.05341.02250.31740.025*
H3B0.04630.95100.37060.025*
C40.05914 (13)0.8473 (3)0.30571 (14)0.0204 (8)
H4A0.09510.84880.30710.024*
H4B0.04920.84640.26840.024*
C50.05830 (13)0.6416 (3)0.30644 (15)0.0201 (8)
H5A0.05020.64400.26860.024*
H5B0.09400.63590.30990.024*
C60.03415 (13)0.5381 (3)0.33204 (15)0.0213 (8)
H6A0.04030.53830.37030.026*
H6B0.04760.46690.31710.026*
C70.04329 (14)0.4389 (3)0.33304 (15)0.0229 (8)
H7A0.02680.37490.31510.027*
H7B0.04270.42400.37130.027*
C80.09578 (14)0.4481 (3)0.31395 (15)0.0234 (8)
H8A0.11270.37470.31990.028*
H8B0.09610.46400.27580.028*
C90.17039 (14)0.5525 (3)0.32144 (17)0.0277 (9)
H9A0.16940.56440.28300.033*
H9B0.18960.48290.32860.033*
C100.19394 (14)0.6552 (3)0.34806 (18)0.0300 (9)
H10A0.19420.64410.38660.036*
H10B0.22800.66330.33600.036*
C110.19128 (14)0.8623 (3)0.34754 (18)0.0300 (9)
H11A0.22480.86030.33360.036*
H11B0.19310.87150.38610.036*
C120.16392 (15)0.9623 (3)0.32375 (18)0.0324 (10)
H12A0.18241.03350.32970.039*
H12B0.16060.95090.28540.039*
N10.06286 (11)0.7499 (3)0.37307 (12)0.0159 (6)
C450.01869 (13)0.8261 (3)0.45260 (14)0.0206 (8)
H45A0.01250.79850.43810.025*
H45B0.02400.90510.44010.025*
C460.06108 (12)0.7478 (3)0.43363 (13)0.0144 (7)
C470.05219 (15)0.6227 (3)0.45224 (14)0.0236 (8)
H47A0.07860.57270.43930.028*
H47B0.02100.59430.43800.028*
C480.11047 (13)0.7926 (3)0.45525 (14)0.0208 (8)
H48A0.11620.87130.44280.025*
H48B0.13730.74370.44250.025*
C490.09984 (16)0.6659 (3)0.53586 (16)0.0304 (9)
H49A0.12670.61640.52370.036*
H49B0.09910.66360.57470.036*
C500.10870 (14)0.7904 (3)0.51700 (15)0.0242 (8)
H50A0.14030.81880.53140.029*
C510.05087 (16)0.6210 (3)0.51374 (15)0.0286 (9)
H51A0.04540.54120.52620.034*
C520.06640 (14)0.8686 (3)0.53647 (15)0.0252 (8)
H52A0.07190.94780.52450.030*
H52B0.06540.86860.57530.030*
C530.00837 (15)0.6991 (3)0.53328 (15)0.0279 (9)
H53A0.02290.67060.51930.033*
H53B0.00680.69730.57210.033*
C540.01700 (14)0.8238 (3)0.51428 (14)0.0229 (8)
H54A0.01010.87360.52690.027*
N20.28509 (13)0.1901 (3)0.12694 (15)0.0268 (7)
C350.27675 (16)0.2430 (3)0.04315 (17)0.0332 (10)
H35A0.28630.26190.07960.040*
H35B0.24230.21890.04340.040*
C360.30930 (16)0.1437 (3)0.02189 (17)0.0327 (10)
H36A0.30530.07510.04490.039*
C370.36369 (16)0.1823 (4)0.02240 (18)0.0346 (10)
H37A0.37380.20060.05870.042*
H37B0.38460.11980.00930.042*
C380.36985 (15)0.2902 (4)0.01342 (18)0.0338 (10)
H38A0.40460.31540.01300.041*
C390.33667 (16)0.3889 (3)0.00756 (17)0.0341 (10)
H39A0.34040.45700.01500.041*
H39B0.34660.40980.04360.041*
C400.28288 (16)0.3497 (3)0.00755 (16)0.0298 (9)
H40A0.26190.41280.02110.036*
C410.29381 (15)0.1133 (3)0.03515 (16)0.0287 (9)
H41A0.31410.05010.04860.034*
H41B0.25950.08840.03560.034*
C420.35450 (14)0.2596 (3)0.07097 (17)0.0283 (9)
H42A0.37530.19740.08460.034*
H42B0.35850.32690.09400.034*
C430.30025 (13)0.2209 (3)0.07056 (16)0.0214 (8)
C440.26747 (14)0.3198 (3)0.05008 (15)0.0265 (9)
H44A0.27130.38760.07290.032*
H44B0.23290.29620.05090.032*
Zn10.151271 (15)0.26010 (3)0.193239 (16)0.01715 (12)
Cl10.16918 (4)0.43733 (8)0.15504 (4)0.0302 (2)
Cl20.07045 (3)0.24824 (7)0.21232 (4)0.02010 (19)
Cl30.20360 (3)0.24701 (8)0.26389 (4)0.0278 (2)
Cl40.17186 (3)0.10892 (8)0.13571 (4)0.0247 (2)
O1W0.29515 (11)0.3741 (3)0.19759 (12)0.0368 (7)
H1WA0.3011 (15)0.442 (2)0.1855 (17)0.044*
H1WB0.2671 (10)0.373 (4)0.2132 (17)0.044*
H2F0.2905 (19)0.255 (3)0.1474 (18)0.055*
H2E0.3040 (16)0.131 (3)0.1377 (19)0.055*
H2D0.2532 (11)0.175 (4)0.1285 (19)0.055*
H1F0.0717 (18)0.818 (3)0.3620 (19)0.055*
H1E0.0328 (12)0.731 (4)0.3592 (19)0.055*
H1D0.0856 (15)0.704 (4)0.3584 (19)0.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0212 (14)0.0147 (12)0.0284 (14)0.0018 (10)0.0019 (11)0.0020 (11)
O20.0196 (12)0.0137 (12)0.0177 (12)0.0005 (10)0.0023 (10)0.0013 (10)
O30.0199 (13)0.0143 (12)0.0291 (14)0.0017 (10)0.0019 (11)0.0011 (11)
O40.0215 (14)0.0173 (13)0.0314 (15)0.0018 (10)0.0051 (11)0.0084 (11)
O50.0191 (13)0.0159 (12)0.0354 (16)0.0008 (10)0.0024 (11)0.0013 (11)
O60.0217 (14)0.0154 (13)0.0308 (15)0.0019 (10)0.0034 (11)0.0062 (11)
C10.030 (2)0.0163 (18)0.031 (2)0.0036 (16)0.0061 (17)0.0077 (16)
C20.028 (2)0.0095 (16)0.028 (2)0.0002 (15)0.0063 (16)0.0022 (15)
C30.0223 (19)0.0150 (17)0.025 (2)0.0039 (15)0.0008 (15)0.0018 (15)
C40.0198 (19)0.0227 (19)0.0187 (18)0.0027 (15)0.0028 (15)0.0030 (15)
C50.0189 (19)0.0180 (18)0.0233 (19)0.0020 (14)0.0039 (15)0.0030 (15)
C60.022 (2)0.0163 (17)0.025 (2)0.0039 (15)0.0018 (15)0.0033 (15)
C70.030 (2)0.0109 (17)0.028 (2)0.0002 (15)0.0002 (16)0.0000 (15)
C80.028 (2)0.0156 (17)0.027 (2)0.0029 (15)0.0051 (16)0.0047 (15)
C90.020 (2)0.024 (2)0.038 (2)0.0040 (16)0.0046 (17)0.0071 (17)
C100.021 (2)0.022 (2)0.047 (3)0.0009 (16)0.0048 (18)0.0003 (18)
C110.021 (2)0.026 (2)0.043 (3)0.0064 (16)0.0084 (18)0.0004 (18)
C120.029 (2)0.024 (2)0.044 (3)0.0060 (17)0.0118 (19)0.0036 (19)
N10.0168 (15)0.0161 (15)0.0148 (15)0.0019 (12)0.0008 (12)0.0001 (13)
C450.0178 (19)0.0228 (19)0.0213 (19)0.0041 (15)0.0006 (15)0.0023 (15)
C460.0188 (17)0.0120 (16)0.0124 (16)0.0009 (13)0.0008 (13)0.0010 (13)
C470.037 (2)0.0128 (17)0.021 (2)0.0064 (16)0.0005 (16)0.0019 (15)
C480.0198 (19)0.0206 (18)0.022 (2)0.0020 (15)0.0006 (15)0.0042 (15)
C490.044 (3)0.028 (2)0.019 (2)0.0145 (19)0.0055 (18)0.0006 (17)
C500.021 (2)0.029 (2)0.022 (2)0.0023 (16)0.0020 (16)0.0015 (16)
C510.047 (3)0.0167 (18)0.022 (2)0.0078 (18)0.0006 (18)0.0058 (16)
C520.034 (2)0.0200 (19)0.022 (2)0.0022 (16)0.0011 (17)0.0054 (16)
C530.031 (2)0.035 (2)0.0177 (19)0.0114 (18)0.0055 (16)0.0043 (17)
C540.022 (2)0.028 (2)0.0185 (19)0.0047 (16)0.0003 (15)0.0057 (16)
N20.0230 (18)0.0206 (17)0.037 (2)0.0016 (14)0.0014 (15)0.0033 (15)
C350.033 (2)0.038 (2)0.029 (2)0.0022 (19)0.0033 (18)0.0013 (19)
C360.045 (3)0.020 (2)0.033 (2)0.0031 (18)0.0008 (19)0.0063 (17)
C370.036 (2)0.028 (2)0.040 (3)0.0069 (19)0.008 (2)0.0004 (19)
C380.021 (2)0.037 (2)0.043 (3)0.0079 (18)0.0041 (18)0.001 (2)
C390.044 (3)0.021 (2)0.037 (2)0.0045 (19)0.007 (2)0.0031 (18)
C400.037 (2)0.0208 (19)0.032 (2)0.0061 (17)0.0045 (18)0.0029 (17)
C410.030 (2)0.0157 (18)0.040 (2)0.0017 (16)0.0013 (18)0.0005 (17)
C420.019 (2)0.030 (2)0.035 (2)0.0001 (17)0.0038 (16)0.0023 (18)
C430.0163 (18)0.0176 (18)0.030 (2)0.0016 (14)0.0003 (15)0.0040 (15)
C440.025 (2)0.0198 (19)0.034 (2)0.0035 (16)0.0010 (17)0.0010 (17)
Zn10.0169 (2)0.0144 (2)0.0201 (2)0.00041 (16)0.00345 (16)0.00073 (17)
Cl10.0322 (5)0.0212 (5)0.0372 (5)0.0078 (4)0.0038 (4)0.0102 (4)
Cl20.0177 (4)0.0126 (4)0.0300 (5)0.0007 (3)0.0016 (3)0.0002 (4)
Cl30.0265 (5)0.0293 (5)0.0277 (5)0.0027 (4)0.0123 (4)0.0048 (4)
Cl40.0268 (5)0.0203 (4)0.0270 (5)0.0022 (4)0.0021 (4)0.0046 (4)
O1W0.0364 (18)0.0383 (18)0.0357 (18)0.0118 (14)0.0037 (14)0.0017 (14)
Geometric parameters (Å, º) top
O1—C21.425 (4)C48—C501.542 (5)
O1—C31.432 (4)C48—H48A0.9700
O2—C51.430 (4)C48—H48B0.9700
O2—C41.431 (4)C49—C511.521 (6)
O3—C71.422 (4)C49—C501.526 (5)
O3—C61.439 (4)C49—H49A0.9700
O4—C81.426 (4)C49—H49B0.9700
O4—C91.433 (4)C50—C521.531 (5)
O5—C101.417 (4)C50—H50A0.9800
O5—C111.419 (4)C51—C531.535 (6)
O6—C11.428 (4)C51—H51A0.9800
O6—C121.435 (4)C52—C541.532 (5)
C1—C21.499 (5)C52—H52A0.9700
C1—H1A0.9700C52—H52B0.9700
C1—H1B0.9700C53—C541.527 (5)
C2—H2A0.9700C53—H53A0.9700
C2—H2B0.9700C53—H53B0.9700
C3—C41.495 (5)C54—H54A0.9800
C3—H3A0.9700N2—C431.508 (5)
C3—H3B0.9700N2—H2F0.91 (3)
C4—H4A0.9700N2—H2E0.89 (3)
C4—H4B0.9700N2—H2D0.88 (3)
C5—C61.499 (5)C35—C401.523 (5)
C5—H5A0.9700C35—C361.535 (6)
C5—H5B0.9700C35—H35A0.9700
C6—H6A0.9700C35—H35B0.9700
C6—H6B0.9700C36—C411.524 (6)
C7—C81.497 (5)C36—C371.533 (6)
C7—H7A0.9700C36—H36A0.9800
C7—H7B0.9700C37—C381.537 (6)
C8—H8A0.9700C37—H37A0.9700
C8—H8B0.9700C37—H37B0.9700
C9—C101.495 (5)C38—C421.536 (6)
C9—H9A0.9700C38—C391.537 (6)
C9—H9B0.9700C38—H38A0.9800
C10—H10A0.9700C39—C401.519 (6)
C10—H10B0.9700C39—H39A0.9700
C11—C121.489 (6)C39—H39B0.9700
C11—H11A0.9700C40—C441.536 (5)
C11—H11B0.9700C40—H40A0.9800
C12—H12A0.9700C41—C431.529 (5)
C12—H12B0.9700C41—H41A0.9700
N1—C461.513 (4)C41—H41B0.9700
N1—H1F0.87 (3)C42—C431.529 (5)
N1—H1E0.91 (3)C42—H42A0.9700
N1—H1D0.89 (3)C42—H42B0.9700
C45—C461.530 (5)C43—C441.528 (5)
C45—C541.541 (5)C44—H44A0.9700
C45—H45A0.9700C44—H44B0.9700
C45—H45B0.9700Zn1—Cl22.2354 (9)
C46—C481.527 (5)Zn1—Cl32.2639 (10)
C46—C471.529 (4)Zn1—Cl12.3001 (10)
C47—C511.536 (5)Zn1—Cl42.3214 (10)
C47—H47A0.9700O1W—H1WA0.857 (18)
C47—H47B0.9700O1W—H1WB0.851 (18)
C2—O1—C3113.1 (3)C51—C49—H49A109.7
C5—O2—C4111.4 (3)C50—C49—H49A109.7
C7—O3—C6112.6 (3)C51—C49—H49B109.7
C8—O4—C9110.6 (3)C50—C49—H49B109.7
C10—O5—C11114.2 (3)H49A—C49—H49B108.2
C1—O6—C12109.3 (3)C49—C50—C52109.6 (3)
O6—C1—C2110.0 (3)C49—C50—C48109.2 (3)
O6—C1—H1A109.7C52—C50—C48109.3 (3)
C2—C1—H1A109.7C49—C50—H50A109.6
O6—C1—H1B109.7C52—C50—H50A109.6
C2—C1—H1B109.7C48—C50—H50A109.6
H1A—C1—H1B108.2C49—C51—C53109.5 (3)
O1—C2—C1108.6 (3)C49—C51—C47109.8 (3)
O1—C2—H2A110.0C53—C51—C47109.1 (3)
C1—C2—H2A110.0C49—C51—H51A109.5
O1—C2—H2B110.0C53—C51—H51A109.5
C1—C2—H2B110.0C47—C51—H51A109.5
H2A—C2—H2B108.3C50—C52—C54109.6 (3)
O1—C3—C4108.7 (3)C50—C52—H52A109.7
O1—C3—H3A110.0C54—C52—H52A109.7
C4—C3—H3A110.0C50—C52—H52B109.7
O1—C3—H3B110.0C54—C52—H52B109.7
C4—C3—H3B110.0H52A—C52—H52B108.2
H3A—C3—H3B108.3C54—C53—C51109.6 (3)
O2—C4—C3109.4 (3)C54—C53—H53A109.7
O2—C4—H4A109.8C51—C53—H53A109.7
C3—C4—H4A109.8C54—C53—H53B109.7
O2—C4—H4B109.8C51—C53—H53B109.7
C3—C4—H4B109.8H53A—C53—H53B108.2
H4A—C4—H4B108.2C53—C54—C52109.6 (3)
O2—C5—C6109.2 (3)C53—C54—C45109.3 (3)
O2—C5—H5A109.8C52—C54—C45109.3 (3)
C6—C5—H5A109.8C53—C54—H54A109.5
O2—C5—H5B109.8C52—C54—H54A109.5
C6—C5—H5B109.8C45—C54—H54A109.5
H5A—C5—H5B108.3C43—N2—H2F107 (3)
O3—C6—C5107.9 (3)C43—N2—H2E108 (3)
O3—C6—H6A110.1H2F—N2—H2E111 (4)
C5—C6—H6A110.1C43—N2—H2D111 (3)
O3—C6—H6B110.1H2F—N2—H2D107 (4)
C5—C6—H6B110.1H2E—N2—H2D113 (4)
H6A—C6—H6B108.4C40—C35—C36109.6 (3)
O3—C7—C8109.0 (3)C40—C35—H35A109.8
O3—C7—H7A109.9C36—C35—H35A109.8
C8—C7—H7A109.9C40—C35—H35B109.8
O3—C7—H7B109.9C36—C35—H35B109.8
C8—C7—H7B109.9H35A—C35—H35B108.2
H7A—C7—H7B108.3C41—C36—C37109.7 (3)
O4—C8—C7110.4 (3)C41—C36—C35109.7 (3)
O4—C8—H8A109.6C37—C36—C35109.2 (3)
C7—C8—H8A109.6C41—C36—H36A109.4
O4—C8—H8B109.6C37—C36—H36A109.4
C7—C8—H8B109.6C35—C36—H36A109.4
H8A—C8—H8B108.1C36—C37—C38109.4 (3)
O4—C9—C10108.9 (3)C36—C37—H37A109.8
O4—C9—H9A109.9C38—C37—H37A109.8
C10—C9—H9A109.9C36—C37—H37B109.8
O4—C9—H9B109.9C38—C37—H37B109.8
C10—C9—H9B109.9H37A—C37—H37B108.2
H9A—C9—H9B108.3C42—C38—C39109.3 (3)
O5—C10—C9109.0 (3)C42—C38—C37109.3 (3)
O5—C10—H10A109.9C39—C38—C37109.5 (4)
C9—C10—H10A109.9C42—C38—H38A109.6
O5—C10—H10B109.9C39—C38—H38A109.6
C9—C10—H10B109.9C37—C38—H38A109.6
H10A—C10—H10B108.3C40—C39—C38109.7 (3)
O5—C11—C12109.9 (3)C40—C39—H39A109.7
O5—C11—H11A109.7C38—C39—H39A109.7
C12—C11—H11A109.7C40—C39—H39B109.7
O5—C11—H11B109.7C38—C39—H39B109.7
C12—C11—H11B109.7H39A—C39—H39B108.2
H11A—C11—H11B108.2C39—C40—C35110.0 (3)
O6—C12—C11110.3 (3)C39—C40—C44108.9 (3)
O6—C12—H12A109.6C35—C40—C44109.7 (3)
C11—C12—H12A109.6C39—C40—H40A109.4
O6—C12—H12B109.6C35—C40—H40A109.4
C11—C12—H12B109.6C44—C40—H40A109.4
H12A—C12—H12B108.1C36—C41—C43108.9 (3)
C46—N1—H1F110 (3)C36—C41—H41A109.9
C46—N1—H1E110 (3)C43—C41—H41A109.9
H1F—N1—H1E110 (4)C36—C41—H41B109.9
C46—N1—H1D115 (3)C43—C41—H41B109.9
H1F—N1—H1D103 (4)H41A—C41—H41B108.3
H1E—N1—H1D108 (4)C43—C42—C38108.6 (3)
C46—C45—C54108.7 (3)C43—C42—H42A110.0
C46—C45—H45A109.9C38—C42—H42A110.0
C54—C45—H45A109.9C43—C42—H42B110.0
C46—C45—H45B109.9C38—C42—H42B110.0
C54—C45—H45B109.9H42A—C42—H42B108.4
H45A—C45—H45B108.3N2—C43—C44109.2 (3)
N1—C46—C48108.7 (3)N2—C43—C42108.7 (3)
N1—C46—C47108.9 (3)C44—C43—C42109.8 (3)
C48—C46—C47110.3 (3)N2—C43—C41108.6 (3)
N1—C46—C45108.9 (3)C44—C43—C41110.0 (3)
C48—C46—C45110.1 (3)C42—C43—C41110.3 (3)
C47—C46—C45110.0 (3)C43—C44—C40108.8 (3)
C46—C47—C51108.6 (3)C43—C44—H44A109.9
C46—C47—H47A110.0C40—C44—H44A109.9
C51—C47—H47A110.0C43—C44—H44B109.9
C46—C47—H47B110.0C40—C44—H44B109.9
C51—C47—H47B110.0H44A—C44—H44B108.3
H47A—C47—H47B108.3Cl2—Zn1—Cl3115.96 (4)
C46—C48—C50108.7 (3)Cl2—Zn1—Cl1110.31 (4)
C46—C48—H48A109.9Cl3—Zn1—Cl1104.53 (4)
C50—C48—H48A109.9Cl2—Zn1—Cl4108.63 (4)
C46—C48—H48B109.9Cl3—Zn1—Cl4106.45 (4)
C50—C48—H48B109.9Cl1—Zn1—Cl4110.85 (4)
H48A—C48—H48B108.3H1WA—O1W—H1WB110 (3)
C51—C49—C50110.0 (3)
C12—O6—C1—C2171.3 (3)C48—C50—C52—C5460.3 (4)
C3—O1—C2—C1170.3 (3)C49—C51—C53—C5459.5 (4)
O6—C1—C2—O161.9 (4)C47—C51—C53—C5460.6 (4)
C2—O1—C3—C4168.3 (3)C51—C53—C54—C5259.5 (4)
C5—O2—C4—C3177.9 (3)C51—C53—C54—C4560.3 (4)
O1—C3—C4—O265.6 (4)C50—C52—C54—C5359.4 (4)
C4—O2—C5—C6174.2 (3)C50—C52—C54—C4560.3 (4)
C7—O3—C6—C5166.2 (3)C46—C45—C54—C5359.9 (4)
O2—C5—C6—O364.6 (4)C46—C45—C54—C5260.1 (4)
C6—O3—C7—C8172.0 (3)C40—C35—C36—C4160.0 (4)
C9—O4—C8—C7176.6 (3)C40—C35—C36—C3760.2 (4)
O3—C7—C8—O462.0 (4)C41—C36—C37—C3860.2 (4)
C8—O4—C9—C10174.9 (3)C35—C36—C37—C3860.0 (4)
C11—O5—C10—C9166.5 (3)C36—C37—C38—C4260.3 (4)
O4—C9—C10—O562.3 (4)C36—C37—C38—C3959.5 (4)
C10—O5—C11—C12170.1 (3)C42—C38—C39—C4060.5 (4)
C1—O6—C12—C11175.9 (3)C37—C38—C39—C4059.2 (4)
O5—C11—C12—O664.4 (4)C38—C39—C40—C3559.6 (4)
C54—C45—C46—N1180.0 (3)C38—C39—C40—C4460.7 (4)
C54—C45—C46—C4860.9 (4)C36—C35—C40—C3960.2 (4)
C54—C45—C46—C4760.8 (4)C36—C35—C40—C4459.6 (4)
N1—C46—C47—C51179.5 (3)C37—C36—C41—C4359.9 (4)
C48—C46—C47—C5160.4 (4)C35—C36—C41—C4360.0 (4)
C45—C46—C47—C5161.2 (4)C39—C38—C42—C4359.8 (4)
N1—C46—C48—C50180.0 (3)C37—C38—C42—C4360.1 (4)
C47—C46—C48—C5060.7 (4)C38—C42—C43—N2179.7 (3)
C45—C46—C48—C5060.8 (4)C38—C42—C43—C4460.8 (4)
C51—C49—C50—C5259.6 (4)C38—C42—C43—C4160.7 (4)
C51—C49—C50—C4860.1 (4)C36—C41—C43—N2179.8 (3)
C46—C48—C50—C4959.8 (4)C36—C41—C43—C4460.7 (4)
C46—C48—C50—C5260.0 (4)C36—C41—C43—C4260.6 (4)
C50—C49—C51—C5359.6 (4)N2—C43—C44—C40179.5 (3)
C50—C49—C51—C4760.2 (4)C42—C43—C44—C4061.3 (4)
C46—C47—C51—C4959.5 (4)C41—C43—C44—C4060.3 (4)
C46—C47—C51—C5360.5 (4)C39—C40—C44—C4360.8 (4)
C49—C50—C52—C5459.3 (4)C35—C40—C44—C4359.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···Cl30.85 (2)2.57 (2)3.312 (3)146 (4)
N2—H2F···O1W0.91 (3)1.86 (3)2.767 (5)171 (5)
N2—H2D···Cl40.88 (3)2.33 (3)3.201 (4)172 (5)
N1—H1E···O20.91 (3)2.11 (3)2.983 (4)161 (4)
N1—H1D···O40.89 (3)2.16 (3)2.993 (4)155 (5)
N1—H1F···O60.87 (3)2.16 (3)2.996 (4)161 (5)
O1W—H1WA···Cl4i0.86 (2)2.39 (2)3.234 (3)167 (4)
N2—H2E···Cl1ii0.89 (3)2.38 (3)3.233 (3)160 (4)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula(C10H18N)2[ZnCl4]·C12H24O6·H2O
Mr794.03
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)293
a, b, c (Å)26.9702 (12), 11.4912 (7), 24.9646 (18)
V3)7737.0 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.716, 0.826
No. of measured, independent and
observed [I > 2σ(I)] reflections
72972, 7595, 6098
Rint0.094
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.134, 1.15
No. of reflections7595
No. of parameters439
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0495P)2 + 10.437P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.87, 0.46

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected torsion angles (º) top
C12—O6—C1—C2171.3 (3)C6—O3—C7—C8172.0 (3)
C3—O1—C2—C1170.3 (3)C9—O4—C8—C7176.6 (3)
O6—C1—C2—O161.9 (4)O3—C7—C8—O462.0 (4)
C2—O1—C3—C4168.3 (3)C8—O4—C9—C10174.9 (3)
C5—O2—C4—C3177.9 (3)C11—O5—C10—C9166.5 (3)
O1—C3—C4—O265.6 (4)O4—C9—C10—O562.3 (4)
C4—O2—C5—C6174.2 (3)C10—O5—C11—C12170.1 (3)
C7—O3—C6—C5166.2 (3)C1—O6—C12—C11175.9 (3)
O2—C5—C6—O364.6 (4)O5—C11—C12—O664.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···Cl30.851 (18)2.57 (2)3.312 (3)146 (4)
N2—H2F···O1W0.91 (3)1.86 (3)2.767 (5)171 (5)
N2—H2D···Cl40.88 (3)2.33 (3)3.201 (4)172 (5)
N1—H1E···O20.91 (3)2.11 (3)2.983 (4)161 (4)
N1—H1D···O40.89 (3)2.16 (3)2.993 (4)155 (5)
N1—H1F···O60.87 (3)2.16 (3)2.996 (4)161 (5)
O1W—H1WA···Cl4i0.857 (18)2.394 (19)3.234 (3)167 (4)
N2—H2E···Cl1ii0.89 (3)2.38 (3)3.233 (3)160 (4)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y1/2, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds