Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The trimetallic compound catena-poly[dipotassium(I) [bis­(2,2′-bipyridine)di-μ3-trifluoro­acetato-dodeca-μ2-trifluoro­acetato-diplatinum(II)octa­silver(I)]], K2[Pt2Ag8(C2F3O2)14(C10H8N2)2], forms an extended structure in the solid state. Electrostatic inter­actions involving the K+ ions play a key role in the formation of the extended structure in three dimensions. The AgI ions form one-dimensional coordination polymers, with alternating Ag2 and Ag6 units linked by CF3CO2 ligands. Pt...Pt inter­actions perpendicular to the one-dimensional polymerization axis provide another element of long-range order, and electrostatic inter­actions with K+ ions provide connectivity between adjacent polymeric structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010902839X/gz3165sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010902839X/gz3165Isup2.hkl
Contains datablock I

CCDC reference: 746051

Comment top

Coordination polymers are of current interest in materials science due to their potential applications as, for example, luminescent materials (Brandys & Puddephatt, 2001; Shyu et al., 2009), catalysts (Bordoloi et al., 2007) and materials for hydrogen storage (Jeon et al., 2008). Nonetheless, controlling the chemical structure of extended heterometallic networks remains a challenge. Aggregates of Ag(O2CR) are well documented in the literature, and are known to form [Ag(O2CR)]n aggregates via bridging carboxylate moieties (see, for example, Karpova et al., 1999; Zhao et al., 2003; Zhao & Mak, 2005). We have recently reported the synthesis and structural characterization of several bimetallic complexes with the AgI:PtII ratio ranging from 1:1 to 3:1, in which Pt(2,2'-bipy) acts as a terminator for aggregates of Ag(O2CCF3) (Sun et al., 2009). Therein we have demonstrated that by controlling the stoichiometry of the reaction between Pt(2,2'-bipy)(O2CCF3)2 and Ag(O2CCF3), bimetallic structures with well defined geometries may be synthesized reproducibly.

Notably, none of the previously reported Pt(bipy)–Ag(O2CCF3) bimetallic complexes form extended one- or two-dimensional structures via the carboxylate bridging ligand, due to the terminating effect of the Pt(bipy) group. Instead, they form one-dimensional extended structures via intramolecular Pt···Pt interactions. In addition, despite the use of large excesses of Ag(O2CCF3) relative to PtII, complexes with an Ag:Pt ratio greater than 3:1 were not achieved. We have since discovered the title compound, (I), with the formula K2[Pt2Ag8(2,2'-bipy)2(O2CCF3)14], obtained serendipitously from the reaction of Pt(2,2'-bipy)(O2CCF3)2 with Ag(O2CCF3) in the presence of KCl. We have found that the presence of K+ ions drastically alters the crystal structure of the coordination polymer, forming structures that are extended in three dimensions as opposed to only one. The repeat unit of (I) is illustrated in the scheme, and consists of two asymmetric units of K[PtAg4(bipy)(O2CCF3)7] related by an inversion centre.

The structure of the asymmetric unit is shown in Fig. 1, where the PtII centre is in a typical square-planar environment, with normal Pt—O and Pt—N bond lengths. However, the O1—Pt1—O13 and N1—Pt1—N2 bond angles [83.5 (1) and 81.0 (1)°, respectively] do show significant deviation from an ideal square-planar geometry. The Ag4···Ag4A separation distance of 2.8671 (7) Å is approximately equal to the Ag—Ag distance in metallic silver (2.889 Å; Emsley, 1991), indicative of metal–metal bonding interactions. Meanwhile, the Ag1···Ag2 and Ag2···Ag3 distances are 3.3140 (5) and 2.9702 (5) Å, respectively, and thus represent only weak interactions between these metal centres. The coordination numbers around the AgI centres vary considerably, with Ag1 and Ag2 in distorted tetrahedral geometries, Ag3 in a distorted trigonal–bipyramidal geometry, and Ag4 adopting a distorted trigonal-planar geometry.

In the repeat unit of the [Pt2Ag8(2,2'-bipy)2(O2CCF3)14]2- anion of (I), six AgI ions and two PtII ions are joined together by ten carboxylate ligands, as shown in Fig. 2(a). Four of the ten carboxylate ligands adopt a µ2,η2-bridging mode, four adopt a µ3,η2-bridging mode and the remaining two adopt an uncommon µ4,η2-bridging mode. This Pt2Ag6 unit is quite different from the neutral Pt2Ag6(bipy)2(O2CCF3)10 complex, (II), which we reported earlier (Sun et al., 2009), in terms of the Ag6 arrangement and carboxylate coordination modes. In (II), four carboxylates act as µ3,η2-bridging ligands while the rest are µ2,η2-type ligands. Interestingly, the Pt2Ag6 unit in (I) is further linked to an Ag2(O2CCF3)2 unit via a µ2,η2-carboxylate group that binds to Ag3 and Ag4A, forming an extended one-dimensional coordination polymer, as shown in Fig. 2(b). This extra µ2,η2-carboxylate associated with the K+ cation thus allows the anionic cluster to form extended structures with a Pt:Ag ratio of 1:4.

Neighbouring polymer chains in this system are held together by two distinct interactions. First, chains stack on top of one another via attractive Pt···Pt interactions, in a similar manner to those observed previously by our group (Sun et al., 2009). The Pt···Pt separation distance in this case is 3.4804 (3) Å, which is typical of previously reported one-dimensional PtII chains (Du et al., 2008; Wadas et al., 2004). These interactions are shown in Fig. 3. In addition, electrostatic interactions with K+ ions join adjacent chains together in a direction perpendicular to the 110 plane, as shown in Fig. 4. These K+ ions are found in an octahedral coordination environment, depicted in Fig. 5.

In summary, we have reported a unique PtII–AgI coordination polymer supported by -O2CCF3 bridging ligands and K+ ions. We have also demonstrated that the presence of K+ ions has a significant impact on the formation of PtII–AgI heterometallic complexes. While previously reported complexes of this type form linear chains, the introduction of K+ causes these compounds to exhibit long-range order in three dimensions. Future avenues for research include the use of alternative cations to synthesize a wider variety of coordination polymers and metal–organic frameworks.

Experimental top

Pt(2,2'-bipyridine)Cl2 (20 mg) was treated with Ag(O2CCF3) (42 mg) (\sim 1:4 ratio) in the presence of KCl (3.6 mg, ~1 equivalent) in CH2Cl2 (20 ml). The reaction mixture was stirred for 2 h at room temperature in the dark. After filtration, the yellow solution was evaporated slowly to give yellow crystals of (I) as a minor product.

Refinement top

The disorder associated with atoms F7, F8 and F9 was modelled as two orientations with occupancies which summed to unity, of 0.617 (7) and 0.383 (7) for parts A and B, respectively. Atoms F13, F14 and F15 were modelled similarly, with occupancies of 0.542 (7) and 0.458 (7) for parts A and B, respectively. Atoms F10, F11 and F12 were modelled as three orientations with occupancies which summed to unity, of 0.460 (9), 0.306 (7) and 0.234 (9) for F10/F11/F12 parts A, B and C, respectively. The C—F bond lengths for atom F10–F15 were restrained to 1.330 (5) Å to stabilize the refinement, and F atoms from all three disordered –CF3 groups were each constrained to common displacement parameters. F···F distances in these cases were further modelled using distance restraints [SADI, FLAT (SHELXL97; Sheldrick, 2008)] as necessary. All H atoms were assigned to geometrically idealized positions with C—H bond lengths of 0.93 Å, and were constrained to ride on their parent C atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SMART (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level at ca 296 K and H atoms are shown as small spheres of arbitrary radii. The minor components of the disordered F atoms have been omitted.
[Figure 2] Fig. 2. (a) The structure of the Pt2Ag6 cluster. (b) The Ag2(O2CCF3)2 bridge. F atoms have been omitted for clarity. Pt and Ag atoms are depicted as small spheres. Thin lines denote intermetallic interactions. Primed atoms are generated by the symmetry operator (?, ?, ?) [Please check and complete]
[Figure 3] Fig. 3. The extended structure of (I), showing the Pt···Pt interactions, projected in the 110 plane. Pt and Ag atoms are depicted as small spheres. F atoms have been omitted.
[Figure 4] Fig. 4. Packing diagram showing the coordination polymer structure of (I), with K+ ions shown as small spheres. F atoms have been omitted.
[Figure 5] Fig. 5. The coordination environment of the K+ ion, depicted as a small sphere. Interactions with six nearby O2CCF3 groups are shown.
catena-poly[dipotassium(I) [bis(2,2'-bipyridine)di-µ3-trifluoroacetato-dodeca-µ2-trifluoroacetato-diplatinum(II)octasilver(I)]] top
Crystal data top
K2[Pt2Ag8(C10H8N2)2(C2F3O2)14]Z = 1
Mr = 3225.98F(000) = 1504
Triclinic, P1Dx = 2.705 Mg m3
a = 11.9829 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.4737 (6) ÅCell parameters from 9980 reflections
c = 14.4368 (7) Åθ = 2.4–27.9°
α = 77.378 (1)°µ = 5.73 mm1
β = 70.132 (1)°T = 296 K
γ = 86.305 (1)°Block, yellow
V = 1980.28 (17) Å30.10 × 0.10 × 0.05 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
7748 independent reflections
Radiation source: sealed tube7189 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.598, Tmax = 0.763k = 1515
20732 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0247P)2 + 5.4864P]
where P = (Fo2 + 2Fc2)/3
7748 reflections(Δ/σ)max = 0.011
609 parametersΔρmax = 0.97 e Å3
112 restraintsΔρmin = 1.24 e Å3
Crystal data top
K2[Pt2Ag8(C10H8N2)2(C2F3O2)14]γ = 86.305 (1)°
Mr = 3225.98V = 1980.28 (17) Å3
Triclinic, P1Z = 1
a = 11.9829 (6) ÅMo Kα radiation
b = 12.4737 (6) ŵ = 5.73 mm1
c = 14.4368 (7) ÅT = 296 K
α = 77.378 (1)°0.10 × 0.10 × 0.05 mm
β = 70.132 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
7748 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
7189 reflections with I > 2σ(I)
Tmin = 0.598, Tmax = 0.763Rint = 0.018
20732 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024112 restraints
wR(F2) = 0.058H-atom parameters constrained
S = 1.03Δρmax = 0.97 e Å3
7748 reflectionsΔρmin = 1.24 e Å3
609 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt10.508344 (14)0.462548 (13)0.120846 (12)0.02291 (5)
K10.71700 (8)0.09964 (8)0.32322 (7)0.0294 (2)
Ag10.50746 (3)0.33688 (3)0.31804 (3)0.03095 (8)
Ag20.45421 (3)0.16602 (3)0.53951 (3)0.03641 (9)
Ag30.40367 (3)0.38620 (3)0.59063 (3)0.03883 (9)
Ag40.11801 (3)0.04212 (3)0.48116 (3)0.03432 (9)
C10.4210 (5)0.6544 (4)0.2127 (4)0.0364 (11)
H1A0.50050.67060.19890.044*
C20.3344 (5)0.7209 (4)0.2613 (4)0.0453 (13)
H2A0.35550.78050.28120.054*
C30.2178 (5)0.6991 (4)0.2800 (4)0.0420 (12)
H3A0.15900.74430.31150.050*
C40.1881 (4)0.6096 (4)0.2517 (4)0.0358 (11)
H4A0.10890.59350.26430.043*
C50.2765 (4)0.5437 (4)0.2044 (3)0.0274 (9)
C60.2584 (4)0.4466 (4)0.1694 (3)0.0276 (9)
C70.1491 (4)0.4064 (4)0.1790 (4)0.0372 (11)
H7A0.07970.44150.20950.045*
C80.1442 (5)0.3148 (5)0.1431 (4)0.0447 (13)
H8A0.07130.28640.14980.054*
C90.2478 (5)0.2646 (4)0.0970 (4)0.0406 (12)
H9A0.24550.20250.07180.049*
C100.3550 (4)0.3075 (4)0.0887 (3)0.0306 (10)
H10A0.42510.27400.05710.037*
C110.7974 (5)0.2539 (5)0.0205 (4)0.0486 (14)
C120.6888 (4)0.2978 (4)0.0955 (3)0.0297 (10)
C130.3730 (5)0.0708 (4)0.2911 (4)0.0378 (11)
C140.3921 (4)0.0600 (4)0.3928 (3)0.0280 (9)
C150.1169 (4)0.3183 (3)0.4796 (3)0.0383 (11)
C160.2513 (4)0.3222 (4)0.4586 (4)0.0310 (10)
C170.0114 (4)0.0384 (3)0.7861 (4)0.0491 (14)
C180.0074 (4)0.0223 (4)0.6826 (4)0.0334 (10)
C190.3244 (4)0.0900 (4)0.8708 (4)0.0554 (16)
C200.3595 (4)0.1486 (4)0.7593 (4)0.0357 (11)
C210.8005 (4)0.3563 (4)0.4246 (4)0.0353 (11)
C220.6650 (4)0.3463 (4)0.4570 (3)0.0269 (9)
C230.8241 (4)0.5726 (5)0.1532 (4)0.0409 (12)
C240.6953 (4)0.5311 (4)0.1865 (4)0.0302 (10)
N10.3926 (3)0.5676 (3)0.1853 (3)0.0259 (8)
N20.3602 (3)0.3960 (3)0.1250 (3)0.0249 (7)
O10.6232 (3)0.3549 (3)0.0505 (2)0.0309 (7)
O20.6786 (3)0.2775 (3)0.1848 (2)0.0324 (7)
O30.4766 (3)0.1142 (3)0.3910 (2)0.0333 (7)
O40.3205 (3)0.0008 (3)0.4652 (3)0.0444 (9)
O50.3101 (3)0.3469 (3)0.3685 (3)0.0499 (10)
O60.2820 (3)0.2963 (3)0.5336 (3)0.0454 (9)
O70.0758 (3)0.0349 (3)0.6416 (3)0.0401 (8)
O80.0877 (3)0.0675 (3)0.6532 (2)0.0359 (8)
O90.3728 (4)0.0859 (3)0.7002 (3)0.0454 (9)
O100.3731 (3)0.2486 (3)0.7426 (3)0.0429 (9)
O110.6306 (3)0.2661 (3)0.4343 (2)0.0318 (7)
O120.6067 (3)0.4149 (3)0.5036 (2)0.0332 (7)
O130.6597 (3)0.5364 (3)0.1117 (2)0.0308 (7)
O140.6440 (3)0.4944 (3)0.2755 (2)0.0334 (7)
F10.8703 (3)0.3362 (3)0.0368 (3)0.0692 (11)
F20.8565 (4)0.1821 (4)0.0679 (3)0.0849 (14)
F30.7661 (3)0.2044 (3)0.0397 (2)0.0631 (10)
F40.4565 (3)0.1324 (3)0.2148 (2)0.0546 (8)
F50.2691 (3)0.1174 (3)0.2945 (3)0.0567 (9)
F60.3717 (4)0.0255 (3)0.2677 (3)0.0633 (10)
F7B0.0821 (9)0.2171 (5)0.4859 (8)0.0581 (10)0.383 (7)
F8B0.0545 (8)0.3464 (8)0.5667 (5)0.0581 (10)0.383 (7)
F9B0.0806 (9)0.3859 (7)0.4107 (6)0.0581 (10)0.383 (7)
F7A0.0902 (5)0.2382 (4)0.4422 (5)0.0581 (10)0.62
F8A0.0522 (5)0.2993 (5)0.5765 (3)0.0581 (10)0.62
F9A0.0800 (6)0.4128 (4)0.4365 (5)0.0581 (10)0.62
F10A0.0838 (8)0.0011 (10)0.8108 (7)0.0623 (13)0.460 (9)
F11A0.0153 (11)0.1460 (4)0.7871 (6)0.0623 (13)0.460 (9)
F12A0.1102 (7)0.0031 (9)0.8583 (5)0.0623 (13)0.460 (9)
F10B0.1004 (6)0.0386 (11)0.7888 (9)0.0623 (13)0.306 (8)
F11B0.0558 (12)0.1303 (8)0.8137 (9)0.0623 (13)0.306 (8)
F12B0.0592 (12)0.0494 (7)0.8577 (6)0.0623 (13)0.306 (8)
F10C0.0326 (18)0.0455 (11)0.8353 (10)0.0623 (13)0.234 (9)
F11C0.0293 (15)0.1363 (8)0.7805 (10)0.0623 (13)0.234 (9)
F12C0.1270 (6)0.0424 (17)0.8429 (10)0.0623 (13)0.234 (9)
F13B0.3643 (8)0.0125 (5)0.8879 (6)0.0692 (12)0.458 (7)
F14B0.3815 (8)0.1445 (6)0.9136 (7)0.0692 (12)0.458 (7)
F15B0.2127 (6)0.0941 (7)0.9279 (7)0.0692 (12)0.458 (7)
F13A0.3060 (8)0.0178 (4)0.8807 (5)0.0692 (12)0.54
F14A0.3965 (7)0.1056 (6)0.9176 (6)0.0692 (12)0.54
F15A0.2151 (5)0.1245 (6)0.9160 (6)0.0692 (12)0.54
F160.8556 (3)0.3324 (3)0.3356 (3)0.0653 (10)
F170.8387 (3)0.2843 (3)0.4909 (3)0.0541 (8)
F180.8387 (3)0.4544 (3)0.4208 (3)0.0624 (10)
F190.8969 (3)0.4935 (3)0.1213 (3)0.0719 (11)
F200.8508 (3)0.5955 (3)0.2279 (3)0.0626 (10)
F210.8486 (3)0.6605 (3)0.0799 (3)0.0635 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02069 (8)0.02421 (9)0.02130 (8)0.00181 (6)0.00703 (6)0.00005 (6)
K10.0294 (5)0.0276 (5)0.0322 (5)0.0048 (4)0.0126 (4)0.0058 (4)
Ag10.02294 (16)0.03481 (19)0.02878 (17)0.00196 (13)0.00763 (13)0.00529 (14)
Ag20.0409 (2)0.0391 (2)0.02886 (18)0.00081 (16)0.00902 (15)0.01014 (15)
Ag30.0392 (2)0.0329 (2)0.0426 (2)0.00174 (16)0.01206 (17)0.00598 (16)
Ag40.02935 (18)0.0429 (2)0.03540 (19)0.00666 (15)0.01387 (15)0.01473 (16)
C10.038 (3)0.026 (2)0.047 (3)0.000 (2)0.018 (2)0.005 (2)
C20.055 (3)0.031 (3)0.054 (3)0.007 (2)0.020 (3)0.017 (2)
C30.050 (3)0.035 (3)0.041 (3)0.019 (2)0.014 (2)0.014 (2)
C40.029 (2)0.040 (3)0.035 (3)0.009 (2)0.009 (2)0.005 (2)
C50.028 (2)0.031 (2)0.023 (2)0.0040 (18)0.0120 (18)0.0007 (18)
C60.026 (2)0.031 (2)0.024 (2)0.0019 (18)0.0104 (18)0.0001 (18)
C70.029 (2)0.045 (3)0.037 (3)0.005 (2)0.014 (2)0.003 (2)
C80.037 (3)0.055 (3)0.047 (3)0.008 (2)0.023 (2)0.005 (3)
C90.058 (3)0.036 (3)0.035 (3)0.007 (2)0.026 (2)0.005 (2)
C100.040 (3)0.027 (2)0.025 (2)0.0008 (19)0.013 (2)0.0017 (18)
C110.048 (3)0.050 (3)0.035 (3)0.024 (3)0.007 (2)0.001 (3)
C120.027 (2)0.027 (2)0.029 (2)0.0002 (18)0.0044 (19)0.0001 (18)
C130.044 (3)0.036 (3)0.035 (3)0.008 (2)0.018 (2)0.002 (2)
C140.028 (2)0.026 (2)0.031 (2)0.0051 (18)0.0133 (19)0.0055 (18)
C150.030 (2)0.041 (3)0.037 (3)0.002 (2)0.005 (2)0.003 (2)
C160.030 (2)0.027 (2)0.037 (3)0.0005 (19)0.014 (2)0.0039 (19)
C170.056 (3)0.053 (3)0.038 (3)0.028 (3)0.017 (3)0.015 (3)
C180.035 (3)0.033 (2)0.032 (2)0.004 (2)0.011 (2)0.006 (2)
C190.082 (5)0.037 (3)0.036 (3)0.006 (3)0.001 (3)0.012 (2)
C200.043 (3)0.034 (3)0.031 (2)0.003 (2)0.012 (2)0.007 (2)
C210.028 (2)0.036 (3)0.040 (3)0.003 (2)0.011 (2)0.007 (2)
C220.027 (2)0.027 (2)0.026 (2)0.0008 (18)0.0124 (18)0.0023 (18)
C230.028 (2)0.054 (3)0.039 (3)0.011 (2)0.016 (2)0.005 (2)
C240.028 (2)0.023 (2)0.037 (3)0.0013 (18)0.012 (2)0.0008 (19)
N10.0266 (18)0.0249 (18)0.0256 (18)0.0033 (15)0.0107 (15)0.0021 (15)
N20.0256 (18)0.0276 (19)0.0194 (17)0.0001 (15)0.0081 (14)0.0004 (14)
O10.0280 (16)0.0364 (18)0.0259 (16)0.0104 (13)0.0095 (13)0.0036 (13)
O20.0335 (17)0.0319 (17)0.0283 (17)0.0065 (14)0.0102 (14)0.0010 (13)
O30.0309 (17)0.0386 (18)0.0335 (17)0.0029 (14)0.0111 (14)0.0120 (14)
O40.0366 (19)0.058 (2)0.0352 (19)0.0107 (17)0.0165 (16)0.0068 (17)
O50.0274 (18)0.073 (3)0.039 (2)0.0029 (17)0.0082 (16)0.0047 (19)
O60.050 (2)0.047 (2)0.047 (2)0.0044 (17)0.0269 (18)0.0088 (17)
O70.0387 (19)0.051 (2)0.0352 (18)0.0203 (17)0.0163 (15)0.0184 (16)
O80.0328 (17)0.0426 (19)0.0363 (18)0.0130 (15)0.0137 (15)0.0164 (15)
O90.066 (2)0.0370 (19)0.0316 (18)0.0085 (17)0.0092 (17)0.0125 (15)
O100.064 (2)0.0292 (18)0.0376 (19)0.0118 (16)0.0207 (18)0.0017 (15)
O110.0334 (17)0.0272 (16)0.0357 (18)0.0002 (13)0.0119 (14)0.0078 (14)
O120.0315 (17)0.0300 (17)0.0366 (18)0.0046 (14)0.0081 (14)0.0102 (14)
O130.0248 (15)0.0373 (18)0.0273 (16)0.0042 (13)0.0097 (13)0.0025 (13)
O140.0367 (18)0.0313 (17)0.0299 (17)0.0090 (14)0.0115 (14)0.0018 (14)
F10.0355 (18)0.080 (3)0.064 (2)0.0046 (17)0.0084 (16)0.001 (2)
F20.082 (3)0.097 (3)0.061 (2)0.068 (2)0.021 (2)0.011 (2)
F30.085 (3)0.055 (2)0.0394 (18)0.0247 (19)0.0071 (17)0.0181 (16)
F40.061 (2)0.066 (2)0.0328 (16)0.0203 (17)0.0163 (15)0.0063 (15)
F50.054 (2)0.067 (2)0.054 (2)0.0038 (16)0.0371 (17)0.0065 (17)
F60.094 (3)0.050 (2)0.059 (2)0.0105 (19)0.034 (2)0.0236 (17)
F7B0.0400 (13)0.059 (2)0.067 (2)0.0038 (14)0.0103 (14)0.0076 (15)
F8B0.0400 (13)0.059 (2)0.067 (2)0.0038 (14)0.0103 (14)0.0076 (15)
F9B0.0400 (13)0.059 (2)0.067 (2)0.0038 (14)0.0103 (14)0.0076 (15)
F7A0.0400 (13)0.059 (2)0.067 (2)0.0038 (14)0.0103 (14)0.0076 (15)
F8A0.0400 (13)0.059 (2)0.067 (2)0.0038 (14)0.0103 (14)0.0076 (15)
F9A0.0400 (13)0.059 (2)0.067 (2)0.0038 (14)0.0103 (14)0.0076 (15)
F10A0.069 (3)0.082 (3)0.043 (2)0.030 (2)0.025 (2)0.0246 (19)
F11A0.069 (3)0.082 (3)0.043 (2)0.030 (2)0.025 (2)0.0246 (19)
F12A0.069 (3)0.082 (3)0.043 (2)0.030 (2)0.025 (2)0.0246 (19)
F10B0.069 (3)0.082 (3)0.043 (2)0.030 (2)0.025 (2)0.0246 (19)
F11B0.069 (3)0.082 (3)0.043 (2)0.030 (2)0.025 (2)0.0246 (19)
F12B0.069 (3)0.082 (3)0.043 (2)0.030 (2)0.025 (2)0.0246 (19)
F10C0.069 (3)0.082 (3)0.043 (2)0.030 (2)0.025 (2)0.0246 (19)
F11C0.069 (3)0.082 (3)0.043 (2)0.030 (2)0.025 (2)0.0246 (19)
F12C0.069 (3)0.082 (3)0.043 (2)0.030 (2)0.025 (2)0.0246 (19)
F13B0.100 (2)0.055 (2)0.0388 (15)0.0058 (18)0.0148 (15)0.0073 (15)
F14B0.100 (2)0.055 (2)0.0388 (15)0.0058 (18)0.0148 (15)0.0073 (15)
F15B0.100 (2)0.055 (2)0.0388 (15)0.0058 (18)0.0148 (15)0.0073 (15)
F13A0.100 (2)0.055 (2)0.0388 (15)0.0058 (18)0.0148 (15)0.0073 (15)
F14A0.100 (2)0.055 (2)0.0388 (15)0.0058 (18)0.0148 (15)0.0073 (15)
F15A0.100 (2)0.055 (2)0.0388 (15)0.0058 (18)0.0148 (15)0.0073 (15)
F160.0357 (17)0.102 (3)0.050 (2)0.0014 (18)0.0008 (15)0.023 (2)
F170.0382 (17)0.059 (2)0.065 (2)0.0098 (15)0.0288 (16)0.0025 (17)
F180.0377 (17)0.0452 (19)0.105 (3)0.0101 (14)0.0281 (19)0.0073 (19)
F190.0286 (17)0.083 (3)0.100 (3)0.0053 (17)0.0149 (18)0.024 (2)
F200.054 (2)0.086 (3)0.054 (2)0.0278 (18)0.0305 (17)0.0004 (18)
F210.0496 (19)0.076 (2)0.055 (2)0.0338 (18)0.0228 (16)0.0268 (18)
Geometric parameters (Å, º) top
Pt1—N11.982 (4)C12—O11.272 (5)
Pt1—N21.985 (4)C13—F61.320 (6)
Pt1—O12.034 (3)C13—F51.330 (6)
Pt1—O132.038 (3)C13—F41.336 (6)
Pt1—Ag12.9315 (4)C13—C141.538 (6)
K1—O22.772 (3)C14—O41.238 (6)
K1—O32.718 (3)C14—O31.243 (5)
K1—O4i2.923 (4)C15—F8A1.325 (4)
K1—O7i2.738 (3)C15—F7B1.330 (5)
K1—O9i2.745 (4)C15—F9A1.331 (4)
K1—O112.829 (3)C15—F9B1.331 (5)
K1—F10Ai2.926 (7)C15—F8B1.334 (5)
K1—F10Bi2.950 (11)C15—F7A1.337 (4)
K1—F10Ci3.232 (17)C15—C161.536 (6)
Ag1—O52.230 (3)C16—O51.230 (6)
Ag1—O142.474 (3)C16—O61.231 (6)
Ag1—O22.490 (3)C17—F11B1.316 (5)
Ag1—O112.578 (3)C17—F10C1.318 (5)
Ag1—Ag23.3140 (5)C17—F11C1.321 (5)
Ag2—O92.215 (3)C17—F12A1.326 (5)
Ag2—O32.298 (3)C17—F12B1.334 (5)
Ag2—O112.379 (3)C17—F10A1.334 (5)
Ag2—O62.556 (4)C17—F11A1.343 (5)
Ag2—Ag32.9702 (5)C17—F12C1.352 (5)
Ag3—O122.337 (3)C17—F10B1.354 (5)
Ag3—O62.344 (4)C17—C181.535 (7)
Ag3—O102.405 (3)C18—O81.235 (5)
Ag3—O12ii2.573 (3)C18—O71.244 (6)
Ag3—O14ii2.584 (3)C19—F14A1.310 (5)
Ag4—O8iii2.181 (3)C19—F15B1.317 (5)
Ag4—O72.218 (3)C19—F13B1.337 (5)
Ag4—O42.436 (3)C19—F15A1.340 (5)
Ag4—Ag4iii2.8671 (7)C19—F13A1.345 (5)
C1—N11.331 (6)C19—F14B1.357 (5)
C1—C21.381 (7)C19—C201.539 (7)
C1—H1A0.9300C20—O101.228 (6)
C2—C31.363 (8)C20—O91.245 (6)
C2—H2A0.9300C21—F181.317 (6)
C3—C41.375 (7)C21—F161.318 (6)
C3—H3A0.9300C21—F171.342 (6)
C4—C51.380 (6)C21—C221.534 (6)
C4—H4A0.9300C22—O121.236 (5)
C5—N11.363 (6)C22—O111.252 (5)
C5—C61.465 (6)C23—F211.316 (6)
C6—N21.357 (6)C23—F201.316 (6)
C6—C71.385 (6)C23—F191.328 (7)
C7—C81.366 (8)C23—C241.540 (6)
C7—H7A0.9300C24—O141.217 (5)
C8—C91.377 (8)C24—O131.277 (5)
C8—H8A0.9300O4—K1i2.923 (4)
C9—C101.381 (7)O7—K1i2.738 (3)
C9—H9A0.9300O8—Ag4iii2.181 (3)
C10—N21.336 (6)O9—K1i2.745 (4)
C10—H10A0.9300O12—Ag3ii2.573 (3)
C11—F21.324 (6)O14—Ag3ii2.584 (3)
C11—F11.325 (7)F10A—K1i2.926 (7)
C11—F31.327 (7)F10B—K1i2.950 (11)
C11—C121.541 (7)F10C—K1i3.232 (17)
C12—O21.223 (5)
N1—Pt1—N281.04 (15)C9—C8—H8A120.2
N1—Pt1—O1177.55 (13)C8—C9—C10119.2 (5)
N2—Pt1—O197.16 (14)C8—C9—H9A120.4
N1—Pt1—O1398.17 (14)C10—C9—H9A120.4
N2—Pt1—O13177.49 (13)N2—C10—C9121.4 (5)
O1—Pt1—O1383.56 (13)N2—C10—H10A119.3
N1—Pt1—Ag190.97 (10)C9—C10—H10A119.3
N2—Pt1—Ag195.74 (10)F2—C11—F1108.3 (5)
O1—Pt1—Ag190.87 (8)F2—C11—F3107.7 (5)
O13—Pt1—Ag186.64 (8)F1—C11—F3107.8 (5)
O3—K1—O7i150.09 (11)F2—C11—C12111.4 (4)
O3—K1—O9i72.60 (11)F1—C11—C12109.9 (5)
O7i—K1—O9i105.10 (12)F3—C11—C12111.7 (5)
O3—K1—O278.09 (10)O2—C12—O1129.8 (4)
O7i—K1—O2128.61 (11)O2—C12—C11118.9 (4)
O9i—K1—O2108.54 (11)O1—C12—C11111.3 (4)
O3—K1—O1166.03 (9)F6—C13—F5106.9 (4)
O7i—K1—O11104.37 (10)F6—C13—F4107.2 (4)
O9i—K1—O11136.71 (11)F5—C13—F4107.3 (4)
O2—K1—O1175.30 (9)F6—C13—C14112.1 (4)
O3—K1—O4i82.77 (10)F5—C13—C14110.2 (4)
O7i—K1—O4i67.36 (10)F4—C13—C14112.8 (4)
O9i—K1—O4i90.44 (11)O4—C14—O3129.1 (4)
O2—K1—O4i147.23 (11)O4—C14—C13115.4 (4)
O11—K1—O4i72.68 (11)O3—C14—C13115.5 (4)
O3—K1—F10Ai143.6 (2)F8A—C15—F7B83.3 (5)
O7i—K1—F10Ai54.81 (14)F8A—C15—F9A106.9 (5)
O9i—K1—F10Ai73.9 (3)F7B—C15—F9A127.9 (6)
O2—K1—F10Ai99.6 (2)F8A—C15—F9B121.7 (7)
O11—K1—F10Ai149.3 (3)F7B—C15—F9B107.8 (6)
O4i—K1—F10Ai111.47 (19)F7B—C15—F8B106.6 (6)
O3—K1—F10Bi138.2 (2)F9A—C15—F8B85.5 (5)
O7i—K1—F10Bi54.23 (18)F9B—C15—F8B105.0 (6)
O9i—K1—F10Bi66.3 (2)F8A—C15—F7A106.5 (4)
O2—K1—F10Bi107.8 (3)F9A—C15—F7A108.0 (5)
O11—K1—F10Bi155.70 (19)F9B—C15—F7A85.1 (5)
O4i—K1—F10Bi104.2 (2)F8B—C15—F7A126.6 (6)
F10Ai—K1—F10Bi10.0 (3)F8A—C15—C16114.3 (4)
O3—K1—F10Ci153.3 (3)F7B—C15—C16110.5 (5)
O7i—K1—F10Ci51.7 (2)F9A—C15—C16110.8 (4)
O9i—K1—F10Ci87.4 (4)F9B—C15—C16114.2 (6)
O2—K1—F10Ci92.24 (16)F8B—C15—C16112.4 (6)
O11—K1—F10Ci135.9 (4)F7A—C15—C16110.1 (4)
O4i—K1—F10Ci115.69 (15)O5—C16—O6131.1 (5)
O3—K1—Ag146.86 (7)O5—C16—C15113.7 (4)
O7i—K1—Ag1142.91 (8)O6—C16—C15115.1 (4)
O9i—K1—Ag1111.70 (9)F11B—C17—F10C129.1 (9)
O2—K1—Ag141.46 (6)F10C—C17—F11C115.9 (8)
O11—K1—Ag143.25 (6)F11B—C17—F12A81.8 (7)
O4i—K1—Ag1107.11 (8)F10C—C17—F12A80.1 (8)
F10Ai—K1—Ag1141.0 (2)F11C—C17—F12A121.3 (8)
F10Bi—K1—Ag1148.6 (2)F11B—C17—F12B111.6 (7)
F10Ci—K1—Ag1132.89 (17)F10C—C17—F12B46.0 (9)
O3—K1—Ag2i63.55 (7)F11C—C17—F12B137.5 (9)
O7i—K1—Ag2i96.84 (8)F11B—C17—F10A115.6 (8)
O9i—K1—Ag2i35.25 (7)F11C—C17—F10A84.6 (8)
O2—K1—Ag2i132.33 (7)F12A—C17—F10A110.8 (5)
O11—K1—Ag2i110.24 (7)F12B—C17—F10A80.2 (7)
O4i—K1—Ag2i56.33 (7)F10C—C17—F11A131.6 (8)
F10Ai—K1—Ag2i95.7 (3)F12A—C17—F11A104.4 (5)
F10Bi—K1—Ag2i85.9 (2)F12B—C17—F11A131.8 (7)
F10Ci—K1—Ag2i109.2 (3)F10A—C17—F11A105.1 (6)
Ag1—K1—Ag2i110.38 (3)F11B—C17—F12C60.0 (9)
O3—K1—Ag236.72 (7)F10C—C17—F12C105.4 (8)
O7i—K1—Ag2118.53 (8)F11C—C17—F12C102.9 (7)
O9i—K1—Ag298.76 (8)F12B—C17—F12C61.9 (9)
O2—K1—Ag293.41 (7)F10A—C17—F12C131.5 (8)
O11—K1—Ag238.65 (6)F11A—C17—F12C82.3 (8)
O4i—K1—Ag256.57 (8)F11B—C17—F10B103.3 (7)
F10Ai—K1—Ag2166.6 (2)F10C—C17—F10B57.3 (11)
F10Bi—K1—Ag2156.9 (3)F11C—C17—F10B65.5 (10)
F10Ci—K1—Ag2169.9 (3)F12A—C17—F10B129.3 (7)
Ag1—K1—Ag251.970 (15)F12B—C17—F10B101.8 (7)
Ag2i—K1—Ag272.78 (2)F11A—C17—F10B87.6 (8)
O5—Ag1—O14124.99 (14)F12C—C17—F10B143.1 (9)
O5—Ag1—O2141.28 (13)F11B—C17—C18118.2 (6)
O14—Ag1—O280.29 (11)F10C—C17—C18112.8 (7)
O5—Ag1—O11125.17 (12)F11C—C17—C18111.6 (7)
O14—Ag1—O1179.09 (10)F12A—C17—C18111.8 (5)
O2—Ag1—O1184.91 (10)F12B—C17—C18110.8 (6)
O5—Ag1—Pt187.19 (9)F10A—C17—C18114.2 (5)
O14—Ag1—Pt174.04 (7)F11A—C17—C18109.9 (5)
O2—Ag1—Pt171.18 (7)F12C—C17—C18107.3 (7)
O11—Ag1—Pt1146.44 (7)F10B—C17—C18109.5 (6)
O5—Ag1—Ag282.91 (9)O8—C18—O7129.9 (5)
O14—Ag1—Ag2118.65 (7)O8—C18—C17115.2 (4)
O2—Ag1—Ag2112.13 (7)O7—C18—C17114.9 (4)
O11—Ag1—Ag245.55 (7)F14A—C19—F15B111.3 (9)
Pt1—Ag1—Ag2167.005 (15)F14A—C19—F13B81.2 (6)
O5—Ag1—K1132.74 (11)F15B—C19—F13B109.8 (6)
O14—Ag1—K1101.17 (8)F14A—C19—F15A110.6 (6)
O2—Ag1—K147.48 (7)F13B—C19—F15A126.2 (6)
O11—Ag1—K148.75 (7)F14A—C19—F13A111.1 (5)
Pt1—Ag1—K1117.771 (19)F15B—C19—F13A87.0 (6)
Ag2—Ag1—K164.676 (17)F15A—C19—F13A102.2 (5)
O9—Ag2—O3133.48 (12)F15B—C19—F14B102.5 (7)
O9—Ag2—O11137.93 (13)F13B—C19—F14B102.9 (6)
O3—Ag2—O1180.53 (11)F15A—C19—F14B96.5 (7)
O9—Ag2—O695.43 (13)F13A—C19—F14B131.9 (6)
O3—Ag2—O695.45 (12)F14A—C19—C20115.6 (5)
O11—Ag2—O6106.31 (12)F15B—C19—C20117.9 (6)
O9—Ag2—Ag390.59 (9)F13B—C19—C20115.4 (5)
O3—Ag2—Ag3129.37 (8)F15A—C19—C20106.1 (5)
O11—Ag2—Ag377.88 (8)F13A—C19—C20110.3 (4)
O6—Ag2—Ag349.50 (8)F14B—C19—C20106.3 (5)
O9—Ag2—Ag1162.57 (10)O10—C20—O9130.5 (5)
O3—Ag2—Ag155.10 (8)O10—C20—C19115.4 (4)
O11—Ag2—Ag150.66 (8)O9—C20—C19114.1 (4)
O6—Ag2—Ag167.42 (9)F18—C21—F16106.8 (4)
Ag3—Ag2—Ag176.010 (14)F18—C21—F17107.3 (4)
O9—Ag2—K1i45.67 (9)F16—C21—F17106.5 (4)
O3—Ag2—K1i87.90 (8)F18—C21—C22114.0 (4)
O11—Ag2—K1i152.19 (8)F16—C21—C22113.0 (4)
O6—Ag2—K1i99.87 (9)F17—C21—C22108.9 (4)
Ag3—Ag2—K1i127.79 (2)O12—C22—O11129.8 (4)
Ag1—Ag2—K1i137.293 (19)O12—C22—C21116.5 (4)
O9—Ag2—K1134.06 (10)O11—C22—C21113.6 (4)
O3—Ag2—K145.01 (8)F21—C23—F20107.5 (4)
O11—Ag2—K147.96 (8)F21—C23—F19107.9 (5)
O6—Ag2—K1129.10 (9)F20—C23—F19106.5 (4)
Ag3—Ag2—K1124.95 (2)F21—C23—C24113.6 (4)
Ag1—Ag2—K163.354 (17)F20—C23—C24112.3 (4)
K1i—Ag2—K1107.22 (2)F19—C23—C24108.7 (4)
O12—Ag3—O6122.40 (12)O14—C24—O13129.1 (4)
O12—Ag3—O10110.06 (12)O14—C24—C23118.8 (4)
O6—Ag3—O1093.80 (12)O13—C24—C23112.0 (4)
O12—Ag3—O12ii82.14 (11)C1—N1—C5120.0 (4)
O6—Ag3—O12ii100.62 (12)C1—N1—Pt1124.7 (3)
O10—Ag3—O12ii152.04 (11)C5—N1—Pt1115.2 (3)
O12—Ag3—O14ii104.20 (11)C10—N2—C6119.6 (4)
O6—Ag3—O14ii132.21 (12)C10—N2—Pt1125.0 (3)
O10—Ag3—O14ii78.46 (11)C6—N2—Pt1115.4 (3)
O12ii—Ag3—O14ii74.09 (10)C12—O1—Pt1118.8 (3)
O12—Ag3—Ag283.13 (8)C12—O2—Ag1123.8 (3)
O6—Ag3—Ag256.01 (9)C12—O2—K1136.9 (3)
O10—Ag3—Ag270.58 (8)Ag1—O2—K191.06 (10)
O12ii—Ag3—Ag2137.12 (7)C14—O3—Ag2114.7 (3)
O14ii—Ag3—Ag2148.76 (7)C14—O3—K1135.9 (3)
O8iii—Ag4—O7157.85 (13)Ag2—O3—K198.27 (11)
O8iii—Ag4—O4117.26 (12)C14—O4—Ag4126.1 (3)
O7—Ag4—O484.82 (13)C14—O4—K1i139.8 (3)
O8iii—Ag4—Ag4iii80.91 (8)Ag4—O4—K1i92.61 (11)
O7—Ag4—Ag4iii81.33 (8)C16—O5—Ag1120.3 (3)
O4—Ag4—Ag4iii144.66 (10)C16—O6—Ag3131.4 (3)
O8iii—Ag4—K1i152.68 (8)C16—O6—Ag2122.2 (3)
O7—Ag4—K1i43.33 (8)Ag3—O6—Ag274.50 (10)
O4—Ag4—K1i48.65 (8)C18—O7—Ag4120.4 (3)
Ag4iii—Ag4—K1i124.59 (2)C18—O7—K1i132.1 (3)
N1—C1—C2121.0 (5)Ag4—O7—K1i102.90 (12)
N1—C1—H1A119.5C18—O8—Ag4iii123.3 (3)
C2—C1—H1A119.5C20—O9—Ag2113.8 (3)
C3—C2—C1119.8 (5)C20—O9—K1i143.3 (3)
C3—C2—H2A120.1Ag2—O9—K1i99.08 (12)
C1—C2—H2A120.1C20—O10—Ag3131.0 (3)
C2—C3—C4119.3 (5)C22—O11—Ag2121.9 (3)
C2—C3—H3A120.4C22—O11—Ag1108.9 (3)
C4—C3—H3A120.4Ag2—O11—Ag183.80 (10)
C3—C4—C5119.6 (5)C22—O11—K1141.6 (3)
C3—C4—H4A120.2Ag2—O11—K193.39 (10)
C5—C4—H4A120.2Ag1—O11—K188.00 (9)
N1—C5—C4120.2 (4)C22—O12—Ag3120.1 (3)
N1—C5—C6114.1 (4)C22—O12—Ag3ii119.8 (3)
C4—C5—C6125.6 (4)Ag3—O12—Ag3ii97.86 (11)
N2—C6—C7120.8 (4)C24—O13—Pt1123.9 (3)
N2—C6—C5114.2 (4)C24—O14—Ag1116.9 (3)
C7—C6—C5125.0 (4)C24—O14—Ag3ii122.3 (3)
C8—C7—C6119.3 (5)Ag1—O14—Ag3ii115.14 (12)
C8—C7—H7A120.4C17—F10A—K1i122.4 (5)
C6—C7—H7A120.4C17—F10B—K1i119.9 (7)
C7—C8—C9119.7 (5)C17—F10C—K1i106.0 (9)
C7—C8—H8A120.2
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaK2[Pt2Ag8(C10H8N2)2(C2F3O2)14]
Mr3225.98
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)11.9829 (6), 12.4737 (6), 14.4368 (7)
α, β, γ (°)77.378 (1), 70.132 (1), 86.305 (1)
V3)1980.28 (17)
Z1
Radiation typeMo Kα
µ (mm1)5.73
Crystal size (mm)0.10 × 0.10 × 0.05
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.598, 0.763
No. of measured, independent and
observed [I > 2σ(I)] reflections
20732, 7748, 7189
Rint0.018
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.058, 1.03
No. of reflections7748
No. of parameters609
No. of restraints112
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.97, 1.24

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008).

Selected geometry (Å, °) top
Pt1—Ag12.9314 (3)Pt1···Pt1A3.4804 (3)
Ag1—Ag23.3140 (5)Ag3···Ag3A3.7053 (7)
Ag2—Ag32.9702 (5)Ag4—Ag4A2.8671 (7)
Ag3—O62.345 (3)Ag3—O12A2.572 (3)
Pt—O12.033 (3)K1—O22.771 (3)
Pt1—O132.038 (3)K1—O32.717 (3)
Pt1—N11.981 (3)K1—O112.829 (3)
Pt1—N21.985 (3)
O1—Pt1—O1383.5 (1)N1—Pt1—N281.0 (1)
O1—Pt1—N297.2 (1)O13—Pt1—N198.2 (1)
O2—Ag1—O5141.2 (1)O2—Ag1—O1480.38 (9)
O5—Ag1—O14124.9 (1)Pt1—Ag1—Ag2167.00 (1)
Ag1—Ag2—Ag376.01 (1)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds