Download citation
Download citation
link to html
The benzoannelated diaza­polyether macrocycles 6,7,9,10,17,18-hexa­hydro-5H,11H-8,16,19-trioxa-5,11-diaza­dibenzo­[a,g]­cyclo­penta­decene, C18H22N2O3, (I), 6,7,9,10,12,13,20,21-octa­hydro-5H,14H-8,11,19,22-tetra­oxa-5,14-diaza­dibenzo­[a,g]­cyclo­octa­decene, C20H26N2O4, (II), and 6,7,9,10,17,18,20,21-octa­hydro-16H,22H-5,8,11,19-tetra­oxa-16,22-diaza­dibenzo­[a,j]­cyclo­octa­decene 0.3-hydrate, C20H26N2O4·0.304H2O, (III), show different patterns of hydrogen bonding. In (I), the amine H atoms participate only in intra­molecular hydrogen bonds with ether O atoms. In (II), the amine H atoms form intra­molecular hydrogen bonds with the phen­oxy ether O atoms and inter­molecular hydrogen bonds with alkyl ether O atoms in an adjacent mol­ecule, forming a chain linking the macrocycles together via an R22(10) motif. Mol­ecules of (II) were found on a crystallographic twofold axis. In (III), the amine H atoms participate in a hydrogen-bond network with adjacent ether O atoms and with a water mol­ecule [having a partial occupancy of 0.304 (6)] that links the mol­ecules together via a C22(7) motif.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107022160/gz3082sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107022160/gz3082Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107022160/gz3082IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107022160/gz3082IIIsup4.hkl
Contains datablock III

CCDC references: 655500; 655501; 655502

Comment top

Macrocyclic diaminopolyethers, which serve as precursors in the synthesis of cryptands, also are of interest for their potential as receptors for molecules and anions (Kang et al., 2006). In the process of preparing cryptands with aniline-type nitrogen as the bridgehead atoms we have isolated several related benzoannelated macrocyclic diamines, and we report the structures of (I)–(III) here. These closely related compounds reveal the effects of ring size [comparing (I) and (II)] and position of the benzo groups [comparing (II) and (III)] on the orientation of the NH H atoms, an important consideration for the design of anion and molecular receptors. Among the factors that contribute to the conformation of the macrocycle, and thus the orientation of the NH H atoms, are the torsion angles for the X—CH2—CH2—O (X = N and O) segments, macrocycle ring size and the position of the benzo groups in the macrocycle backbone. For (I)–(III) the torsion angles for the alkyl X—CH2—CH2—O groups lie in the range 54.77 (13)–76.9 (6)° [cf. values in CIF, should this be 55.00 (15)–74.6 (5)?], thus adopting the gauche conformation preferred when such subunits contain N or O atoms (Herceg & Weiss, 1970; Wolf et al., 1987). The N—CC—O torsion angles for the heteroatoms attached to the benzene ring are geometrically restricted and range from 1.50 (6)° to 6.23 (14)° [or 1.6 (6)–6.27 (18)?]. The N atoms are essentially coplanar with the associated benzo group [with deviations of 0.0055 (13)–0.071 (6) Å], while the amino H atoms show a slightly greater range of deviation (0.0478 (13)–0.193 (6) Å]. Therefore, the orientation of the NH H atoms will be defined by the associated benzo group, and, as shown in Figs. 1–3, the NH H atoms have an endodentate conformation with respect to the macrocycle cavity.

For (I) the gauche conformation of the X—CH2—CH2—O subunits, the smaller ring size and the short five-atom bridge (CCOCC) connecting atoms N5 and N11 result in the molecule adopting a relatively flat conformation (Fig. 1), although the least-squares plane defined by the atoms N5, O8, N11, O16 and O19 [the mean deviation is 0.4288 (14) Å] is the least well defined among the three compounds. Benzene rings A and B have dihedral angles of 28.5 (2) and 137.7 (2)°, respectively, with the plane defined by the heteroatoms and 166.2 (2)° with each other. Atom H5 forms hydrogen bonds with atoms O8 and O19, while H11 has reasonable hydrogen bond geometry only with O16 (Fig. 1 and Table 1).

Molecule (II) lies on a twofold rotation axis. The eight-atom chain (CCOCCOCC) between the N atoms allows the benzo groups to rotate out the plane defined by atoms N5, O8 and O22 [the mean deviation is 0.2513 (12) Å] to a much greater extent than for (I). The resulting conformation has the benzo groups on opposite sides of the hetero-atom plane (Fig. 4), forming a dihedral angle of 72.9 (2)° with one another and 112.1 (2)° with the hetero-atom plane. As a result, one NH H atom is oriented above and the other below the hetero-atom plane. Each forms an intramolecular hydrogen bond with the proximal phenoxy ether O atom (Fig. 2 and Table 2). In addition, each NH H atom forms a hydrogen bond to ether atom O8(1 - x, 1 - y, 1 - z) in an adjacent molecule, linking the macrocycles together in a chain-like fashion via an R22(10) motif (Bernstein et al., 1995) along the c axis (Fig. 4).

The macrocycle ring size of (III) is the same as that of (II) but the position of the benzo groups and N atoms in the ring differs, and a molecule of water [with a fractional occupancy of 0.304 (6)] is present above the center of the macrocycle cavity. The positions of the benzo groups and gauche conformation of all the X—CH2—CH2—O subunits allow the molecule to adopt a folded conformation defined by an axis passing through O8 and O19 (Fig. 5). The benzo groups are located on the same side of the plane defined by atoms O5, O8, O11, N16, O19 and N22 [the mean deviation is 0.0557 (6) Å]. Benzene rings A and B form dihedral angles of 33.5 (2) and 148.0 (2)°, respectively, with the hetero-atom plane and 114.6 (2)° with one another. Both NH H atoms are on the same side of the macrocycle plane and are oriented toward, but above, the center of the cavity. Each NH H atom forms an intramolecular hydrogen bond with the adjacent phenoxy ether O atom (Fig. 3 and Table 3). In addition, both NH H atoms interact with atom O1S of the water molecule. Atom H1S1 forms a hydrogen bond to atom O8, while H1S2 forms a hydrogen bond with atom O19(x, 1 + y, z) in an adjacent molecule, linking the crown ethers in a chain via a C22(7) motif (Bernstein et al., 1995) along the b axis (Fig. 5).

The NH H atoms for (I)–(III) all form weak intramolecular hydrogen bonds with one or more ether O atoms in the macrocycle; however, the N—H···O angles [106.0 (14)–116 (3)°] cannot achieve optimal geometry due to conformational restrictions imposed by the ring structure and the presence of the benzo groups in the macrocycle backbone. The intermolecular N—H···O angels for (III) [152 (4)–173 (13)°] fall in the conventional range except for O1S—H1S···O11 [117 (11)°], while those for (II) [134.9 (11)°] are somewhat lower. Comparison of the structural characteristics of (I)–(III) suggests that a macrocycle with NH groups separated by a five-atom bridge and a ring size of 18 atoms, as in (III), provides hydrogen-bond donors with the spacing and orientation suitable to interact preferably with an external hydrogen-bond acceptor guest.

Related literature top

For related literature, see: Aguilar et al. (2001); Bernstein et al. (1995); Crossley et al. (1994); Dietrich et al. (1973); Flack & Schwarzenbach (1988); Formanovskii & Murakhovskaya (1985); Formanovskii et al. (1988); Herceg & Weiss (1970); Kang et al. (2006); Lockhart & Thompson (1977); Smith et al. (1986, 1988, 2006); Wolf, Hartman, Storey, Foxman & Cooper (1987).

Experimental top

Monocyclic diamines (I), (II) and (III) were prepared by condensation of the appropriate α,ω-polyoxadianiline with the corresponding diacid chloride ether under high-dilution conditions (Dietrich et al., 1973) according to reported methods (Lockhart & Thompson, 1977; Aguilar et al., 2001; Formanovskii & Murakhovskaya, 1985; Formanovskii et al., 1988; Crossley et al., 1994). The resulting dilactams were purified by recrystallization from ethanol [for (I) and (II)] or benzene/toluene [for (III)] (Smith et al., 2006). Reduction of the dilactams using BH3 in THF and subsequent work-up (Smith et al., 1986, 1988) gave the title compounds. Compound (I) was obtained in 58% overall yield; ESI–MS: m/z = 315.2 (M+H+), 337.2 (M+Na+), 651.4 (2M+Na+). Compound (II) was obtained in 51% overall yield; ESI–MS: m/z = 359.2 (M+H+), 381.2 (M+Na+). Compound (III) was obtained in 70% overall yield; ESI–MS: m/z = 359.2 (M+H+), 381.2 (M+Na+). 1H NMR spectra were consistent with previously reported values for (I) (Formanovskii & Murakhovskaya, 1985) and (III) (Aguilar et al., 2001). Crystals suitable for X-ray crystallographic analysis were grown by vapor diffusion of heptane into a solution of (I) in benzene, by vapor diffusion of water into a solution of (II) in benzene, and by slow evaporation of a solution of (III) in methanol.

Refinement top

H atoms attached to C were positioned geometrically and refined using a riding model, with C—H distances of 0.95 (phenyl) or 0.99 Å (ethylene). H atoms attached to N or O atoms were located initially in a difference map and refined independently in (I) and (II) and with distances restraints applied in (III). The Uiso(H) parameters for all H atoms were set to 1.2Ueq(C,N,O). The water O atom in (III) was located in a difference map. After initial refinements that lead to an implausibly large displacement parameter for this O atom, the occupancy of the atom was refined with a fixed displacement parameter. After a converged refinement with both occupancy and isotropic displacement parameter for the water O atom, a difference map revealed two peaks in chemically reasonable positions for the H atoms. The positional parameters of the water H atoms were restrained to be 0.82 (2) Å and have a nearly tetrahedral angle in the molecule. The N—H bonds in (III) were restrained to be 0.85 (2) Å. One polar axis restraint for (III) was applied in the manner of Flack & Schwarzenbach (1988).

Computing details top

For all compounds, data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular structure of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. The molecular structure of (III), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 4] Fig. 4. Part of the crystal structure of (II), showing the formation of a chain of hydrogen-bonded R22(10) rings along the c axis. H atoms attached to C atoms have been omitted for clarity. Atoms marked with an asterisk (*) are related by the symmetry operation (1 - x, 1 - y, 1 - z). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 5] Fig. 5. Part of the crystal structure of (III), showing the formation of a hydrogen-bonded C22(7) chain along the b axis involving the amine H atoms, water molecule and ether O atom. Atoms marked with an asterisk (*) or a hash (#) are related by the symmetry operations (x, 1 + y, z) and (x, 1 - y, z), respectively. H atoms attached to carbon have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.
(I) 6,7,9,10,17,18-hexahydro-5H,11H-8,16,19-trioxa-5,11- diazadibenzo[a,g]cyclopentadecene top
Crystal data top
C18H22N2O3F(000) = 672
Mr = 314.38Dx = 1.316 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5823 reflections
a = 7.8995 (8) Åθ = 3.2–26.9°
b = 9.5228 (10) ŵ = 0.09 mm1
c = 21.093 (2) ÅT = 100 K
V = 1586.7 (3) Å3Prism, colourless
Z = 40.32 × 0.26 × 0.20 mm
Data collection top
Bruker APEX CCD
diffractometer
1809 independent reflections
Radiation source: fine-focus sealed tube1788 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 99
Tmin = 0.971, Tmax = 0.984k = 1111
16397 measured reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.048P)2 + 0.240P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1809 reflectionsΔρmax = 0.17 e Å3
215 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (2)
Crystal data top
C18H22N2O3V = 1586.7 (3) Å3
Mr = 314.38Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.8995 (8) ŵ = 0.09 mm1
b = 9.5228 (10) ÅT = 100 K
c = 21.093 (2) Å0.32 × 0.26 × 0.20 mm
Data collection top
Bruker APEX CCD
diffractometer
1809 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
1788 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.984Rint = 0.014
16397 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.17 e Å3
1809 reflectionsΔρmin = 0.18 e Å3
215 parameters
Special details top

Experimental. All intensity X-ray data were collected on a Bruker diffractometer with a D8 goniometer, an APEX CCD detector, a sealed-tube Mo Kα source, and an Oxford Cryosystems Cryostream 700 low temperature device (Bruker, 1998).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Although the Flack parameter was refined, the lack of a strong anomalous scatter makes this parameter inappropriate. The Friedel related data were merged.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.34334 (19)0.51249 (16)0.31794 (7)0.0241 (3)
H10.24960.45060.31400.029*
C20.3866 (2)0.60177 (16)0.26794 (7)0.0267 (3)
H20.32250.60100.22980.032*
C30.5232 (2)0.69111 (16)0.27429 (7)0.0268 (3)
H30.55290.75140.24020.032*
C40.6182 (2)0.69411 (16)0.33005 (7)0.0248 (3)
H40.71150.75650.33360.030*
N50.66061 (16)0.60605 (13)0.43879 (6)0.0220 (3)
H50.635 (2)0.531 (2)0.4616 (8)0.026*
C60.83714 (19)0.64872 (16)0.44346 (7)0.0258 (3)
H6A0.85110.74500.42660.031*
H6B0.90910.58450.41820.031*
C70.8900 (2)0.64430 (16)0.51234 (7)0.0264 (3)
H7A1.01230.66520.51630.032*
H7B0.82610.71520.53690.032*
O80.85488 (13)0.50656 (10)0.53601 (5)0.0231 (2)
C90.87951 (19)0.49346 (17)0.60301 (7)0.0254 (3)
H9A0.99290.53020.61420.031*
H9B0.87610.39290.61480.031*
C100.74524 (18)0.57277 (16)0.64093 (7)0.0248 (3)
H10A0.76350.55490.68670.030*
H10B0.75950.67480.63360.030*
N110.57172 (16)0.53277 (14)0.62434 (6)0.0221 (3)
H110.549 (2)0.551 (2)0.5837 (8)0.027*
C120.55390 (18)0.33648 (16)0.70008 (7)0.0223 (3)
H120.64090.37630.72540.027*
C130.47728 (19)0.21172 (15)0.71933 (6)0.0237 (3)
H130.51240.16740.75750.028*
C140.3503 (2)0.15238 (15)0.68306 (6)0.0236 (3)
H140.29860.06710.69610.028*
C150.29838 (19)0.21812 (15)0.62724 (6)0.0217 (3)
H150.21000.17820.60260.026*
O160.33415 (14)0.41261 (10)0.55285 (4)0.0218 (2)
C170.23723 (18)0.33597 (15)0.50683 (6)0.0198 (3)
H17A0.11970.32310.52200.024*
H17B0.28790.24220.49980.024*
C180.23809 (17)0.41882 (15)0.44624 (6)0.0209 (3)
H18A0.16320.37380.41460.025*
H18B0.19660.51540.45410.025*
O190.40834 (12)0.42266 (11)0.42325 (5)0.0229 (2)
C200.43795 (18)0.51466 (15)0.37326 (7)0.0210 (3)
C210.57665 (17)0.60541 (15)0.38088 (7)0.0206 (3)
C220.50516 (18)0.40398 (14)0.64422 (6)0.0196 (3)
C230.37543 (18)0.34158 (14)0.60772 (6)0.0195 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0235 (7)0.0238 (7)0.0251 (7)0.0028 (6)0.0005 (6)0.0012 (6)
C20.0296 (7)0.0274 (7)0.0232 (7)0.0083 (7)0.0008 (6)0.0027 (6)
C30.0302 (8)0.0251 (7)0.0251 (7)0.0079 (7)0.0085 (6)0.0056 (6)
C40.0239 (7)0.0206 (7)0.0299 (7)0.0026 (6)0.0063 (6)0.0021 (6)
N50.0204 (6)0.0201 (6)0.0254 (6)0.0007 (5)0.0019 (5)0.0006 (5)
C60.0226 (7)0.0255 (7)0.0293 (7)0.0055 (6)0.0024 (6)0.0022 (6)
C70.0251 (7)0.0232 (7)0.0309 (7)0.0065 (7)0.0016 (6)0.0049 (6)
O80.0236 (5)0.0216 (5)0.0242 (5)0.0016 (4)0.0022 (4)0.0043 (4)
C90.0215 (7)0.0288 (8)0.0260 (7)0.0012 (6)0.0049 (6)0.0040 (6)
C100.0241 (7)0.0247 (7)0.0256 (7)0.0061 (7)0.0011 (6)0.0048 (6)
N110.0224 (6)0.0208 (6)0.0232 (6)0.0031 (5)0.0020 (5)0.0006 (5)
C120.0202 (6)0.0251 (7)0.0215 (6)0.0018 (6)0.0025 (5)0.0046 (6)
C130.0268 (8)0.0248 (7)0.0196 (6)0.0047 (7)0.0004 (6)0.0005 (6)
C140.0281 (7)0.0197 (7)0.0232 (6)0.0022 (6)0.0036 (6)0.0005 (5)
C150.0221 (7)0.0217 (6)0.0211 (6)0.0032 (6)0.0003 (5)0.0028 (6)
O160.0270 (5)0.0191 (5)0.0194 (5)0.0040 (4)0.0046 (4)0.0002 (4)
C170.0174 (6)0.0232 (7)0.0189 (6)0.0035 (6)0.0006 (5)0.0019 (5)
C180.0157 (6)0.0246 (7)0.0224 (6)0.0001 (6)0.0007 (5)0.0006 (6)
O190.0171 (5)0.0268 (5)0.0249 (5)0.0016 (4)0.0019 (4)0.0079 (4)
C200.0210 (7)0.0193 (6)0.0228 (6)0.0047 (6)0.0038 (5)0.0027 (6)
C210.0203 (6)0.0179 (6)0.0236 (6)0.0058 (6)0.0051 (5)0.0014 (5)
C220.0181 (6)0.0183 (6)0.0225 (6)0.0006 (6)0.0024 (5)0.0048 (5)
C230.0214 (7)0.0188 (6)0.0183 (6)0.0027 (6)0.0001 (5)0.0030 (5)
Geometric parameters (Å, º) top
C1—C201.386 (2)C10—H10B0.9900
C1—C21.397 (2)N11—C221.3988 (19)
C1—H10.9500N11—H110.893 (17)
C2—C31.380 (2)C12—C131.394 (2)
C2—H20.9500C12—C221.396 (2)
C3—C41.396 (2)C12—H120.9500
C3—H30.9500C13—C141.382 (2)
C4—C211.4037 (19)C13—H130.9500
C4—H40.9500C14—C151.395 (2)
N5—C211.3900 (18)C14—H140.9500
N5—C61.4558 (19)C15—C231.386 (2)
N5—H50.887 (19)C15—H150.9500
C6—C71.512 (2)O16—C231.3796 (16)
C6—H6A0.9900O16—C171.4357 (16)
C6—H6B0.9900C17—C181.5018 (18)
C7—O81.4306 (18)C17—H17A0.9900
C7—H7A0.9900C17—H17B0.9900
C7—H7B0.9900C18—O191.4301 (16)
O8—C91.4319 (17)C18—H18A0.9900
C9—C101.528 (2)C18—H18B0.9900
C9—H9A0.9900O19—C201.3906 (17)
C9—H9B0.9900C20—C211.405 (2)
C10—N111.4651 (18)C22—C231.4129 (19)
C10—H10A0.9900
C20—C1—C2119.63 (14)C22—N11—H11112.7 (12)
C20—C1—H1120.2C10—N11—H11111.5 (12)
C2—C1—H1120.2C13—C12—C22121.23 (14)
C3—C2—C1119.55 (14)C13—C12—H12119.4
C3—C2—H2120.2C22—C12—H12119.4
C1—C2—H2120.2C14—C13—C12120.16 (13)
C2—C3—C4120.97 (13)C14—C13—H13119.9
C2—C3—H3119.5C12—C13—H13119.9
C4—C3—H3119.5C13—C14—C15119.81 (13)
C3—C4—C21120.38 (14)C13—C14—H14120.1
C3—C4—H4119.8C15—C14—H14120.1
C21—C4—H4119.8C23—C15—C14120.13 (13)
C21—N5—C6121.18 (12)C23—C15—H15119.9
C21—N5—H5111.5 (12)C14—C15—H15119.9
C6—N5—H5113.8 (12)C23—O16—C17116.36 (10)
N5—C6—C7108.76 (12)O16—C17—C18107.81 (11)
N5—C6—H6A109.9O16—C17—H17A110.1
C7—C6—H6A109.9C18—C17—H17A110.1
N5—C6—H6B109.9O16—C17—H17B110.1
C7—C6—H6B109.9C18—C17—H17B110.1
H6A—C6—H6B108.3H17A—C17—H17B108.5
O8—C7—C6107.91 (12)O19—C18—C17107.84 (11)
O8—C7—H7A110.1O19—C18—H18A110.1
C6—C7—H7A110.1C17—C18—H18A110.1
O8—C7—H7B110.1O19—C18—H18B110.1
C6—C7—H7B110.1C17—C18—H18B110.1
H7A—C7—H7B108.4H18A—C18—H18B108.5
C7—O8—C9113.46 (11)C20—O19—C18115.56 (10)
O8—C9—C10112.28 (12)C1—C20—O19122.57 (13)
O8—C9—H9A109.1C1—C20—C21121.74 (13)
C10—C9—H9A109.1O19—C20—C21115.60 (12)
O8—C9—H9B109.1N5—C21—C4123.85 (13)
C10—C9—H9B109.1N5—C21—C20118.38 (13)
H9A—C9—H9B107.9C4—C21—C20117.73 (13)
N11—C10—C9113.32 (12)C12—C22—N11123.57 (13)
N11—C10—H10A108.9C12—C22—C23117.79 (13)
C9—C10—H10A108.9N11—C22—C23118.56 (13)
N11—C10—H10B108.9O16—C23—C15124.14 (12)
C9—C10—H10B108.9O16—C23—C22114.99 (12)
H10A—C10—H10B107.7C15—C23—C22120.88 (13)
C22—N11—C10120.53 (13)
C20—C1—C2—C30.0 (2)C6—N5—C21—C20154.70 (13)
C1—C2—C3—C40.3 (2)C3—C4—C21—N5177.33 (13)
C2—C3—C4—C210.2 (2)C3—C4—C21—C200.2 (2)
C21—N5—C6—C7177.61 (13)C1—C20—C21—N5177.12 (13)
N5—C6—C7—O855.00 (15)O19—C20—C21—N56.27 (18)
C6—C7—O8—C9172.63 (12)C1—C20—C21—C40.5 (2)
C7—O8—C9—C1070.25 (16)O19—C20—C21—C4176.07 (12)
O8—C9—C10—N1154.75 (17)C13—C12—C22—N11176.67 (13)
C9—C10—N11—C2274.11 (17)C13—C12—C22—C230.0 (2)
C22—C12—C13—C140.1 (2)C10—N11—C22—C1230.1 (2)
C12—C13—C14—C150.3 (2)C10—N11—C22—C23153.20 (13)
C13—C14—C15—C230.9 (2)C17—O16—C23—C1515.83 (19)
C23—O16—C17—C18168.02 (11)C17—O16—C23—C22164.22 (12)
O16—C17—C18—O1965.29 (14)C14—C15—C23—O16179.01 (13)
C17—C18—O19—C20169.60 (11)C14—C15—C23—C221.0 (2)
C2—C1—C20—O19175.91 (13)C12—C22—C23—O16179.44 (12)
C2—C1—C20—C210.5 (2)N11—C22—C23—O163.68 (18)
C18—O19—C20—C153.32 (18)C12—C22—C23—C150.6 (2)
C18—O19—C20—C21130.10 (13)N11—C22—C23—C15176.28 (12)
C6—N5—C21—C427.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O80.887 (19)2.349 (18)2.7310 (16)106.0 (14)
N5—H5···O190.887 (19)2.220 (19)2.6699 (17)111.0 (14)
N11—H11···O160.893 (17)2.246 (18)2.6655 (16)108.3 (14)
(II) 6,7,9,10,12,13,20,21-octahydro-5H,14H-8,11,19,22-tetraoxa- 5,14-diazadibenzo[a,g]cyclooctadecene top
Crystal data top
C20H26N2O4F(000) = 768
Mr = 358.43Dx = 1.272 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5690 reflections
a = 11.837 (2) Åθ = 2.1–26.4°
b = 18.116 (3) ŵ = 0.09 mm1
c = 9.2565 (18) ÅT = 120 K
β = 109.485 (5)°Prism, colourless
V = 1871.3 (6) Å30.28 × 0.18 × 0.14 mm
Z = 4
Data collection top
Bruker APEX CCD
diffractometer
1839 independent reflections
Radiation source: fine-focus sealed tube1726 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1414
Tmin = 0.973, Tmax = 0.989k = 2222
9314 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.054P)2 + 1.P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1839 reflectionsΔρmax = 0.24 e Å3
122 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0083 (10)
Crystal data top
C20H26N2O4V = 1871.3 (6) Å3
Mr = 358.43Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.837 (2) ŵ = 0.09 mm1
b = 18.116 (3) ÅT = 120 K
c = 9.2565 (18) Å0.28 × 0.18 × 0.14 mm
β = 109.485 (5)°
Data collection top
Bruker APEX CCD
diffractometer
1839 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
1726 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.989Rint = 0.018
9314 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.24 e Å3
1839 reflectionsΔρmin = 0.21 e Å3
122 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.18564 (9)0.31043 (6)0.63215 (11)0.0262 (2)
H10.20850.26820.69610.031*
C20.06692 (10)0.33518 (6)0.58493 (12)0.0302 (3)
H20.00920.31010.61770.036*
C30.03388 (9)0.39600 (6)0.49067 (13)0.0300 (3)
H30.04680.41270.45850.036*
C40.11801 (9)0.43320 (6)0.44222 (12)0.0254 (2)
H40.09390.47500.37720.030*
N50.32358 (8)0.44260 (5)0.44061 (10)0.0237 (2)
H50.3953 (12)0.4283 (7)0.4856 (14)0.028*
C60.30872 (9)0.51483 (6)0.36939 (11)0.0250 (2)
H6A0.23120.51610.28440.030*
H6B0.37310.52240.32470.030*
C70.31192 (9)0.57776 (6)0.47855 (12)0.0258 (2)
H7A0.28990.62460.42080.031*
H7B0.25360.56850.53220.031*
O80.42944 (6)0.58316 (4)0.58670 (8)0.0255 (2)
C90.43885 (10)0.64274 (6)0.68967 (12)0.0280 (3)
H9A0.37670.63790.73890.034*
H9B0.42560.69000.63280.034*
C210.43311 (9)0.26993 (5)0.73029 (11)0.0239 (2)
H21A0.39880.22270.68120.029*
H21B0.41130.27660.82380.029*
O220.38886 (6)0.33012 (4)0.62683 (8)0.0249 (2)
C230.26966 (9)0.34751 (5)0.58562 (10)0.0216 (2)
C240.23705 (8)0.40991 (5)0.48789 (11)0.0208 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0311 (5)0.0257 (5)0.0206 (5)0.0069 (4)0.0070 (4)0.0027 (4)
C20.0293 (5)0.0345 (6)0.0308 (5)0.0102 (4)0.0152 (4)0.0074 (4)
C30.0223 (5)0.0325 (6)0.0362 (6)0.0007 (4)0.0109 (4)0.0081 (4)
C40.0232 (5)0.0245 (5)0.0270 (5)0.0013 (4)0.0063 (4)0.0027 (4)
N50.0197 (4)0.0242 (5)0.0263 (4)0.0023 (3)0.0066 (3)0.0044 (3)
C60.0247 (5)0.0266 (5)0.0227 (5)0.0004 (4)0.0064 (4)0.0057 (4)
C70.0237 (5)0.0240 (5)0.0288 (5)0.0032 (4)0.0074 (4)0.0066 (4)
O80.0238 (4)0.0258 (4)0.0266 (4)0.0008 (3)0.0081 (3)0.0013 (3)
C90.0356 (6)0.0218 (5)0.0277 (5)0.0032 (4)0.0121 (5)0.0019 (4)
C210.0290 (6)0.0183 (5)0.0202 (5)0.0010 (4)0.0027 (4)0.0013 (4)
O220.0218 (4)0.0231 (4)0.0258 (4)0.0008 (3)0.0026 (3)0.0053 (3)
C230.0222 (5)0.0223 (5)0.0179 (4)0.0024 (4)0.0035 (4)0.0047 (3)
C240.0219 (5)0.0217 (5)0.0182 (4)0.0015 (4)0.0057 (4)0.0041 (4)
Geometric parameters (Å, º) top
C1—C231.3826 (14)C6—H6B0.9900
C1—C21.3990 (15)C7—O81.4205 (12)
C1—H10.9500C7—H7A0.9900
C2—C31.3786 (16)C7—H7B0.9900
C2—H20.9500O8—C91.4196 (12)
C3—C41.3946 (15)C9—C9i1.505 (2)
C3—H30.9500C9—H9A0.9900
C4—C241.3946 (14)C9—H9B0.9900
C4—H40.9500C21—O221.4303 (11)
N5—C241.3749 (13)C21—C21i1.502 (2)
N5—C61.4493 (13)C21—H21A0.9900
N5—H50.851 (14)C21—H21B0.9900
C6—C71.5155 (14)O22—C231.3699 (12)
C6—H6A0.9900C23—C241.4185 (14)
C23—C1—C2119.93 (10)O8—C7—H7B109.9
C23—C1—H1120.0C6—C7—H7B109.9
C2—C1—H1120.0H7A—C7—H7B108.3
C3—C2—C1119.81 (9)C9—O8—C7111.39 (8)
C3—C2—H2120.1O8—C9—C9i109.81 (8)
C1—C2—H2120.1O8—C9—H9A109.7
C2—C3—C4120.50 (10)C9i—C9—H9A109.7
C2—C3—H3119.8O8—C9—H9B109.7
C4—C3—H3119.8C9i—C9—H9B109.7
C24—C4—C3120.93 (10)H9A—C9—H9B108.2
C24—C4—H4119.5O22—C21—C21i106.48 (7)
C3—C4—H4119.5O22—C21—H21A110.4
C24—N5—C6122.91 (8)C21i—C21—H21A110.4
C24—N5—H5116.1 (9)O22—C21—H21B110.4
C6—N5—H5116.6 (9)C21i—C21—H21B110.4
N5—C6—C7113.81 (8)H21A—C21—H21B108.6
N5—C6—H6A108.8C23—O22—C21118.35 (8)
C7—C6—H6A108.8O22—C23—C1125.63 (9)
N5—C6—H6B108.8O22—C23—C24113.38 (8)
C7—C6—H6B108.8C1—C23—C24120.99 (9)
H6A—C6—H6B107.7N5—C24—C4123.91 (9)
O8—C7—C6108.81 (8)N5—C24—C23118.23 (9)
O8—C7—H7A109.9C4—C24—C23117.83 (9)
C6—C7—H7A109.9
C23—C1—C2—C30.74 (15)C2—C1—C23—O22178.24 (9)
C1—C2—C3—C40.14 (15)C2—C1—C23—C241.14 (15)
C2—C3—C4—C240.06 (15)C6—N5—C24—C415.54 (15)
C24—N5—C6—C770.84 (12)C6—N5—C24—C23166.26 (9)
N5—C6—C7—O867.58 (10)C3—C4—C24—N5177.90 (9)
C6—C7—O8—C9178.31 (8)C3—C4—C24—C230.31 (14)
C7—O8—C9—C9i175.21 (9)O22—C23—C24—N53.15 (12)
C21i—C21—O22—C23173.01 (8)C1—C23—C24—N5177.40 (9)
C21—O22—C23—C11.91 (14)O22—C23—C24—C4178.54 (8)
C21—O22—C23—C24177.52 (8)C1—C23—C24—C40.91 (14)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O8ii0.851 (14)2.392 (13)3.0530 (12)134.9 (11)
N5—H5···O220.851 (14)2.223 (13)2.6138 (11)107.9 (10)
Symmetry code: (ii) x+1, y+1, z+1.
(III) 6,7,9,10,17,18,20,21-octahydro-16H,22H-5,8,11,19-tetraoxa-16,22- diazadibenzo[a,j]cyclooctadecene 0.3-hydrate top
Crystal data top
C20H26N2O4·0.304H2OF(000) = 390
Mr = 363.92Dx = 1.287 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 13.507 (8) ÅCell parameters from 972 reflections
b = 5.133 (3) Åθ = 2.6–24.6°
c = 14.644 (8) ŵ = 0.09 mm1
β = 112.336 (9)°T = 100 K
V = 939.1 (9) Å3Needle, colourless
Z = 20.22 × 0.05 × 0.04 mm
Data collection top
Bruker APEX CCD
diffractometer
2037 independent reflections
Radiation source: fine-focus sealed tube1223 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1616
Tmin = 0.979, Tmax = 0.997k = 56
4546 measured reflectionsl = 1814
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.032P)2]
where P = (Fo2 + 2Fc2)/3
2037 reflections(Δ/σ)max < 0.001
257 parametersΔρmax = 0.23 e Å3
6 restraintsΔρmin = 0.20 e Å3
Crystal data top
C20H26N2O4·0.304H2OV = 939.1 (9) Å3
Mr = 363.92Z = 2
Monoclinic, P21Mo Kα radiation
a = 13.507 (8) ŵ = 0.09 mm1
b = 5.133 (3) ÅT = 100 K
c = 14.644 (8) Å0.22 × 0.05 × 0.04 mm
β = 112.336 (9)°
Data collection top
Bruker APEX CCD
diffractometer
2037 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
1223 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.997Rint = 0.064
4546 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0536 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.23 e Å3
2037 reflectionsΔρmin = 0.20 e Å3
257 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Although the Flack parameter was refined, the lack of a strong anomalous scatter makes this parameter inappropriate. The Friedel related data were merged.

Restraints on the N—H and O—H distances were required.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6694 (4)0.2589 (10)1.1212 (3)0.0355 (13)
H10.61530.12931.09870.043*
C20.7342 (4)0.2733 (10)1.2211 (3)0.0357 (13)
H20.72420.15391.26640.043*
C30.8125 (4)0.4597 (11)1.2542 (3)0.0340 (13)
H30.85630.47011.32240.041*
C40.8282 (4)0.6343 (10)1.1877 (3)0.0331 (13)
H40.88270.76281.21060.040*
O50.7732 (2)0.7817 (6)1.0176 (2)0.0330 (8)
C60.8615 (3)0.9623 (10)1.0469 (3)0.0284 (12)
H6A0.93010.86711.07570.034*
H6B0.85621.08441.09720.034*
C70.8565 (4)1.1092 (10)0.9569 (3)0.0296 (12)
H7A0.78371.18070.92230.036*
H7B0.90771.25620.97620.036*
O80.8825 (2)0.9370 (7)0.89319 (19)0.0329 (8)
C90.8712 (4)1.0595 (9)0.8038 (3)0.0264 (12)
H9A0.91661.21750.81740.032*
H9B0.79581.11310.76840.032*
C100.9037 (3)0.8757 (9)0.7409 (3)0.0260 (12)
H10A0.91740.97300.68850.031*
H10B0.97010.78290.78160.031*
O110.8187 (2)0.6939 (6)0.6979 (2)0.0315 (8)
C120.9164 (4)0.4963 (9)0.6039 (3)0.0323 (13)
H120.97640.60770.63330.039*
C130.9170 (4)0.3112 (9)0.5354 (3)0.0312 (12)
H130.97690.29800.51670.037*
C140.8319 (4)0.1473 (10)0.4944 (3)0.0343 (12)
H140.83350.02000.44790.041*
C150.7425 (4)0.1646 (10)0.5200 (3)0.0324 (12)
H150.68400.04900.49110.039*
N160.6530 (3)0.3813 (8)0.6161 (2)0.0254 (9)
H160.670 (3)0.484 (7)0.666 (2)0.030*
C170.5757 (3)0.1761 (10)0.5971 (3)0.0327 (12)
H17A0.61300.00840.62050.039*
H17B0.53440.16200.52510.039*
C180.5006 (3)0.2295 (10)0.6490 (3)0.0325 (12)
H18A0.47160.40830.63350.039*
H18B0.43990.10580.62560.039*
O190.5558 (2)0.2027 (7)0.7526 (2)0.0371 (9)
C200.4862 (3)0.2611 (10)0.8032 (3)0.0326 (12)
H20A0.42290.14540.77890.039*
H20B0.46110.44350.78960.039*
C210.5446 (3)0.2233 (10)0.9127 (3)0.0321 (12)
H21A0.49220.21620.94500.038*
H21B0.58380.05570.92510.038*
N220.6186 (3)0.4321 (8)0.9545 (2)0.0269 (10)
H220.650 (3)0.523 (7)0.925 (3)0.032*
C230.6832 (3)0.4316 (9)1.0546 (3)0.0258 (11)
C240.7644 (4)0.6197 (9)1.0891 (3)0.0254 (12)
C250.8270 (4)0.5186 (9)0.6298 (3)0.0254 (12)
C260.7392 (3)0.3500 (9)0.5874 (3)0.0259 (12)
O1S0.6568 (8)0.703 (2)0.7943 (8)0.032 (4)0.304 (6)
H1S0.7225 (19)0.72 (2)0.818 (9)0.038*0.304 (6)
H2S0.623 (8)0.840 (14)0.779 (10)0.038*0.304 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.045 (3)0.040 (4)0.030 (3)0.005 (3)0.024 (3)0.003 (3)
C20.037 (3)0.045 (3)0.028 (3)0.005 (3)0.016 (2)0.008 (3)
C30.038 (3)0.043 (3)0.019 (3)0.009 (3)0.008 (2)0.003 (3)
C40.030 (3)0.039 (3)0.030 (3)0.002 (3)0.010 (2)0.002 (3)
O50.040 (2)0.033 (2)0.0262 (18)0.0023 (17)0.0134 (16)0.0036 (16)
C60.026 (3)0.031 (3)0.027 (3)0.003 (3)0.008 (2)0.002 (2)
C70.032 (3)0.032 (3)0.026 (3)0.003 (2)0.012 (2)0.002 (2)
O80.045 (2)0.035 (2)0.0232 (17)0.0066 (17)0.0183 (16)0.0059 (17)
C90.031 (3)0.027 (3)0.019 (3)0.002 (2)0.006 (2)0.002 (2)
C100.023 (3)0.028 (3)0.023 (3)0.002 (2)0.004 (2)0.002 (2)
O110.040 (2)0.030 (2)0.0269 (17)0.0042 (18)0.0152 (16)0.0038 (16)
C120.046 (3)0.027 (3)0.027 (3)0.000 (3)0.018 (3)0.007 (2)
C130.046 (3)0.028 (3)0.030 (3)0.005 (3)0.026 (3)0.008 (2)
C140.048 (3)0.032 (3)0.028 (3)0.009 (3)0.019 (3)0.003 (3)
C150.037 (3)0.034 (3)0.023 (3)0.002 (3)0.009 (2)0.002 (3)
N160.026 (2)0.024 (2)0.023 (2)0.003 (2)0.006 (2)0.0111 (19)
C170.035 (3)0.035 (3)0.025 (3)0.000 (3)0.007 (2)0.002 (2)
C180.027 (3)0.039 (3)0.026 (3)0.004 (3)0.003 (2)0.002 (3)
O190.0320 (18)0.054 (2)0.0220 (17)0.0037 (19)0.0059 (16)0.0026 (18)
C200.030 (3)0.039 (3)0.031 (3)0.000 (2)0.014 (2)0.001 (3)
C210.030 (3)0.038 (3)0.028 (3)0.003 (3)0.010 (2)0.003 (3)
N220.030 (2)0.035 (3)0.017 (2)0.010 (2)0.0096 (19)0.0043 (19)
C230.027 (3)0.024 (3)0.027 (3)0.007 (2)0.012 (2)0.003 (2)
C240.031 (3)0.028 (3)0.020 (3)0.005 (3)0.013 (2)0.003 (2)
C250.040 (3)0.019 (3)0.019 (3)0.001 (2)0.013 (2)0.002 (2)
C260.030 (3)0.026 (3)0.019 (3)0.003 (2)0.006 (2)0.002 (2)
O1S0.039 (7)0.032 (8)0.028 (7)0.002 (6)0.016 (6)0.003 (6)
Geometric parameters (Å, º) top
C1—C231.382 (6)C13—C141.365 (6)
C1—C21.393 (6)C13—H130.9500
C1—H10.9500C14—C151.396 (6)
C2—C31.371 (7)C14—H140.9500
C2—H20.9500C15—C261.384 (6)
C3—C41.397 (6)C15—H150.9500
C3—H30.9500N16—C261.390 (5)
C4—C241.373 (5)N16—C171.433 (6)
C4—H40.9500N16—H160.861 (19)
O5—C241.378 (5)C17—C181.506 (5)
O5—C61.441 (5)C17—H17A0.9900
C6—C71.498 (5)C17—H17B0.9900
C6—H6A0.9900C18—O191.419 (4)
C6—H6B0.9900C18—H18A0.9900
C7—O81.423 (5)C18—H18B0.9900
C7—H7A0.9900O19—C201.432 (4)
C7—H7B0.9900C20—C211.507 (5)
O8—C91.407 (4)C20—H20A0.9900
C9—C101.495 (5)C20—H20B0.9900
C9—H9A0.9900C21—N221.434 (6)
C9—H9B0.9900C21—H21A0.9900
C10—O111.427 (5)C21—H21B0.9900
C10—H10A0.9900N22—C231.393 (5)
C10—H10B0.9900N22—H220.842 (19)
O11—C251.379 (5)C23—C241.403 (6)
C12—C131.385 (6)C25—C261.407 (6)
C12—C251.400 (6)O1S—H1S0.83 (2)
C12—H120.9500O1S—H2S0.82 (2)
C23—C1—C2120.5 (5)C26—C15—C14120.1 (5)
C23—C1—H1119.7C26—C15—H15120.0
C2—C1—H1119.7C14—C15—H15120.0
C3—C2—C1120.0 (5)C26—N16—C17119.2 (4)
C3—C2—H2120.0C26—N16—H16110 (3)
C1—C2—H2120.0C17—N16—H16123 (3)
C2—C3—C4120.2 (4)N16—C17—C18110.4 (4)
C2—C3—H3119.9N16—C17—H17A109.6
C4—C3—H3119.9C18—C17—H17A109.6
C24—C4—C3119.8 (5)N16—C17—H17B109.6
C24—C4—H4120.1C18—C17—H17B109.6
C3—C4—H4120.1H17A—C17—H17B108.1
C24—O5—C6117.5 (3)O19—C18—C17110.0 (3)
O5—C6—C7107.8 (3)O19—C18—H18A109.7
O5—C6—H6A110.1C17—C18—H18A109.7
C7—C6—H6A110.1O19—C18—H18B109.7
O5—C6—H6B110.1C17—C18—H18B109.7
C7—C6—H6B110.1H18A—C18—H18B108.2
H6A—C6—H6B108.5C18—O19—C20110.6 (3)
O8—C7—C6109.0 (4)O19—C20—C21110.1 (4)
O8—C7—H7A109.9O19—C20—H20A109.6
C6—C7—H7A109.9C21—C20—H20A109.6
O8—C7—H7B109.9O19—C20—H20B109.6
C6—C7—H7B109.9C21—C20—H20B109.6
H7A—C7—H7B108.3H20A—C20—H20B108.2
C9—O8—C7111.5 (3)N22—C21—C20110.8 (4)
O8—C9—C10109.7 (4)N22—C21—H21A109.5
O8—C9—H9A109.7C20—C21—H21A109.5
C10—C9—H9A109.7N22—C21—H21B109.5
O8—C9—H9B109.7C20—C21—H21B109.5
C10—C9—H9B109.7H21A—C21—H21B108.1
H9A—C9—H9B108.2C23—N22—C21120.3 (4)
O11—C10—C9108.0 (3)C23—N22—H22108 (3)
O11—C10—H10A110.1C21—N22—H22127 (3)
C9—C10—H10A110.1C1—C23—N22123.1 (4)
O11—C10—H10B110.1C1—C23—C24118.9 (4)
C9—C10—H10B110.1N22—C23—C24118.0 (4)
H10A—C10—H10B108.4C4—C24—O5124.5 (4)
C25—O11—C10118.3 (3)C4—C24—C23120.6 (4)
C13—C12—C25119.6 (5)O5—C24—C23115.0 (4)
C13—C12—H12120.2O11—C25—C12124.3 (4)
C25—C12—H12120.2O11—C25—C26115.6 (4)
C14—C13—C12120.4 (4)C12—C25—C26120.0 (4)
C14—C13—H13119.8C15—C26—N16123.6 (4)
C12—C13—H13119.8C15—C26—C25119.1 (4)
C13—C14—C15120.8 (5)N16—C26—C25117.3 (4)
C13—C14—H14119.6H1S—O1S—H2S114 (6)
C15—C14—H14119.6
C23—C1—C2—C30.0 (7)C21—N22—C23—C24171.3 (4)
C1—C2—C3—C40.5 (7)C3—C4—C24—O5179.9 (4)
C2—C3—C4—C240.4 (7)C3—C4—C24—C230.4 (7)
C24—O5—C6—C7178.0 (3)C6—O5—C24—C46.0 (6)
O5—C6—C7—O869.7 (4)C6—O5—C24—C23174.2 (4)
C6—C7—O8—C9175.5 (4)C1—C23—C24—C40.9 (6)
C7—O8—C9—C10177.6 (3)N22—C23—C24—C4177.8 (4)
O8—C9—C10—O1177.0 (4)C1—C23—C24—O5179.3 (4)
C9—C10—O11—C25174.4 (3)N22—C23—C24—O52.0 (6)
C25—C12—C13—C141.3 (6)C10—O11—C25—C123.9 (6)
C12—C13—C14—C150.6 (7)C10—O11—C25—C26177.9 (4)
C13—C14—C15—C260.2 (7)C13—C12—C25—O11179.2 (4)
C26—N16—C17—C18170.3 (4)C13—C12—C25—C261.2 (6)
N16—C17—C18—O1969.9 (5)C14—C15—C26—N16179.4 (4)
C17—C18—O19—C20178.2 (4)C14—C15—C26—C250.3 (6)
C18—O19—C20—C21178.1 (4)C17—N16—C26—C1516.9 (6)
O19—C20—C21—N2274.6 (5)C17—N16—C26—C25163.3 (4)
C20—C21—N22—C23178.2 (4)O11—C25—C26—C15178.6 (4)
C2—C1—C23—N22177.9 (4)C12—C25—C26—C150.4 (6)
C2—C1—C23—C240.7 (6)O11—C25—C26—N161.6 (6)
C21—N22—C23—C110.1 (6)C12—C25—C26—N16179.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N16—H16···O110.86 (2)2.17 (4)2.643 (5)114 (3)
N16—H16···O1S0.86 (2)2.25 (3)3.073 (11)160 (4)
N22—H22···O50.84 (2)2.16 (4)2.639 (5)116 (3)
N22—H22···O1S0.84 (2)2.17 (3)2.937 (11)152 (4)
O1S—H1S···O80.83 (2)2.30 (6)3.078 (10)157 (12)
O1S—H1S···O110.83 (2)2.56 (12)3.021 (10)117 (11)
O1S—H2S···O19i0.82 (2)2.04 (3)2.859 (12)173 (13)
Symmetry code: (i) x, y+1, z.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC18H22N2O3C20H26N2O4C20H26N2O4·0.304H2O
Mr314.38358.43363.92
Crystal system, space groupOrthorhombic, P212121Monoclinic, C2/cMonoclinic, P21
Temperature (K)100120100
a, b, c (Å)7.8995 (8), 9.5228 (10), 21.093 (2)11.837 (2), 18.116 (3), 9.2565 (18)13.507 (8), 5.133 (3), 14.644 (8)
α, β, γ (°)90, 90, 9090, 109.485 (5), 9090, 112.336 (9), 90
V3)1586.7 (3)1871.3 (6)939.1 (9)
Z442
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.090.090.09
Crystal size (mm)0.32 × 0.26 × 0.200.28 × 0.18 × 0.140.22 × 0.05 × 0.04
Data collection
DiffractometerBruker APEX CCD
diffractometer
Bruker APEX CCD
diffractometer
Bruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Multi-scan
(SADABS; Sheldrick, 2002)
Multi-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.971, 0.9840.973, 0.9890.979, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
16397, 1809, 1788 9314, 1839, 1726 4546, 2037, 1223
Rint0.0140.0180.064
(sin θ/λ)max1)0.6170.6170.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.071, 1.07 0.033, 0.091, 1.00 0.053, 0.095, 1.00
No. of reflections180918392037
No. of parameters215122257
No. of restraints006
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.180.24, 0.210.23, 0.20

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2000), SHELXTL.

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O80.887 (19)2.349 (18)2.7310 (16)106.0 (14)
N5—H5···O190.887 (19)2.220 (19)2.6699 (17)111.0 (14)
N11—H11···O160.893 (17)2.246 (18)2.6655 (16)108.3 (14)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O8i0.851 (14)2.392 (13)3.0530 (12)134.9 (11)
N5—H5···O220.851 (14)2.223 (13)2.6138 (11)107.9 (10)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N16—H16···O110.861 (19)2.17 (4)2.643 (5)114 (3)
N16—H16···O1S0.861 (19)2.25 (3)3.073 (11)160 (4)
N22—H22···O50.842 (19)2.16 (4)2.639 (5)116 (3)
N22—H22···O1S0.842 (19)2.17 (3)2.937 (11)152 (4)
O1S—H1S···O80.83 (2)2.30 (6)3.078 (10)157 (12)
O1S—H1S···O110.83 (2)2.56 (12)3.021 (10)117 (11)
O1S—H2S···O19i0.82 (2)2.04 (3)2.859 (12)173 (13)
Symmetry code: (i) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds