Download citation
Download citation
link to html
The title compound, C6H12N4, has four crystallographically independent mol­ecules in the asymmetric unit. Inter­molecular N—H...N hydrogen bonds involving amino groups and triazole N atoms form a three-dimensional framework involving R44(10) and R44(20) rings. The hydrogen bonding is supported by weak C—H...π inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107026339/gz3081sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107026339/gz3081Isup2.hkl
Contains datablock I

CCDC reference: 655517

Comment top

1,2,4-Triazole and its derivatives have been used as starting materials for the synthesis of many heterocycles (Desenko, 1995). The triazole ring, having strong σ-donor and weak π-acceptor properties, potentially has two different coordination modes through three N donor atoms coordinating to metal ions (Van Diemen et al., 1991; Ding et al., 2004; Yi et al., 2004; Ren et al., 2006). Recent interest in substituted 1,2,4-triazoles has arisen in part from their transition metal complexes with intriguing structures and specific magnetic properties (Zhou et al., 2005, 2006). Many metal complexes containing substituted 1,2,4-triazole have potential applications in molecular-based memory devices, displays and optical switches owing to their spin crossover properties (Garcia et al., 1997; Kahn & Martinez, 1998). Apart from their chemical significance, 1,2,4-triazole derivatives have been found to be associated with diverse pharmacological properties, such as anti-inflammatory, antifungal and antiviral (Massa et al., 1992; Mahomed et al., 1993; Mullican et al., 1993). Some of them are also known to exhibit analgesic, anticonvulsant, tranquilizing, antidepressant, anxiolytic (Bradbury & Rivett, 1991; Sughen & Yoloye, 1978; Stillings et al., 1986; Kane et al., 1988) or even antitumour activities (Hatheway et al., 1978) and are applied in therapy (e.g. alprazolam, estazolam, triazolam and adinazolam; Budavari et al., 1996). In spite of the chemical and medicinal importance of this class of compounds, relatively few crystal structure of 1,2,4-triazole derivatives have been reported (Cambridge Structural Database, Version 5.27 of November, 2005; Allen, 2002). In order to clarify the structure of this type of compound, an X-ray structure determination of the title compound, (I), has been carried out, and the results are presented here. The structure of this compound has been confirmed by IR, 1H NMR and 13C NMR spectroscopies and by elemental analysis.

The molecular structure and atom-numbering scheme are shown in Fig. 1; selected bond lengths are given in Table 1. Compound (I) crystallizes in space group C2/c with Z' = 4, and the hydrogen bonding was analysed with the aid of PLATON (Spek, 2003). The asymmetric unit of (I) contains four independent molecules with statistically equivalent metrical parameters but different conformations. The N1—N4, N5—N8, N9—N12 and N13—N16 bond lengths (Table 1) indicate single-bond character, whereas the N2—N3, N6—N7, N10—N11 and N14—N15 bond lengths are indicative of significant double-bond character. Similar N—N and NN bond length values have been observed in 4-amino-3-methyl-5-(p-tolyl)-4H-1,2,4-triazole and 4-amino-3-methyl-5-phenyl-4H-1,2,4-triazole [N—N = 1.4090 (16) and 1.4081 (18) Å, and NN = 1.3859 (19) and 1.396 (2) Å; Şahin et al., 2006]. The H atoms of the amino group form hydrogen bonds with N atoms of neighbouring triazole rings. The geometric parameters of the N—H···N hydrogen-bonding interactions are given in Table 2.

Amino atom N4 in the reference molecule at (x, y, z) acts as a hydrogen-bond donor, via H4B, to atom N7 within the asymmetric unit and, via H4A, to atom N6v (symmetry codes are described in the footnote of Table 2), so forming a centrosymmetric R44(10) (A) (Bernstein et al., 1995) ring centred at (1/4, 3/4, 1/2). Similarly, amino atom N12 acts as a hydrogen-bond donor, via H12D, to atom N14 within the asymmetric unit and, via H12F, to atom N15ii, so forming a second centrosymmetric ring motif, this time of R44(10) (B) type, centred at (1/2, 0, 1/2). The arrangement of the N8—H8C···N10, N8—H8D···N3i, N16iii—H16Aiii···N11 and N16iii—H16Biii···N2i interactions can be described by the graph-set notation R44(10) (C). At the same time, the N16—H16A···N11iii, N16—H16B···N2iv, N8iii—H8Ciii···N10iii and N8iii—H8Diii···N3iv interactions constitute an R44(10) ring (D). Finally, the N12—H12D···N14, N16—H16A···N11iii, N12iii—H12Diii···N14iii and N16iii—H16Aiii···N11 interactions produce an R44(20) (E) ring (Fig. 2).

Propagation of pairs of four eight [please clarify] hydrogen bonds then forms a chain of edge-fused rings, containing R44(10)[A]R44(10)[B]R44(10)[C]R44(10)[D] sequences of four edge-fused rings. Similarly, edge-fused R44(10) (C) and R44(20) (E) rings form a chain running along the c axis. In compound (I), interlinked C44(20) antiparallel chains zigzagging along the a axis are formed through N4v—H4Av···N6, N8—H8C···N10, N12—H12D···N14 and N16—H16B···N2iv interactions. Amino atom N16 in the molecule at (x, -y, -1/2 + z) acts as hydrogen-bond donor, via H16A, to N11ii, while N12ii acts as donor to N15, and in this manner a C22(10) chain running parallel to the [001] direction is generated.

These intermolecular interactions, namely an extensive network of hydrogen bonds and π-ring interactions, are responsible for constructing an infinite three-dimensional framework.

Related literature top

For related literature, see: Allen (2002); Bradbury & Rivett (1991); Budavari et al. (1996); Desenko (1995); Garcia et al. (1997); Hatheway et al. (1978); Kahn & Martinez (1998); Kane et al. (1988); Mahomed et al. (1993); Massa et al. (1992); Mullican et al. (1993); Spek (2003); Stillings et al. (1986); Sughen & Yoloye (1978); Şahin et al. (2006); Van Diemen, Haasnoot, Hage, Reedijk, Vos & Wang (1991).

Experimental top

Propionic acid (18.5 g, 0.25 mol) was added to a solution of hydrazine hydrate (21.5 g, 0.4 mol) and the mixture was refluxed for 5 h. On cooling, a precipitate was formed, and this product was filtered off and dried. Recrystalization from ethyl acetate gave a white [final crystals are colourless according to CIF] product. Yield 62%. Single crystals of (I) were obtained from ethyl acetate at room temperature by slow evaporation (m.p. 438–439 K). IR (KBr, cm-1): 3235–3120 (vNH2), 1664 (vC=N); 1H NMR (CDCl3, p.p.m.): δ 1.30 (t, 6H, 2CH3), 2.76 (g, 4H, 2CH2), 5.02 (s, 2H, NH2); 13C NMR (CDCl3, p.p.m.): δ 156.21 (triazole C3 and triazole C5), 17.87 (CH2), 11.40 (CH3). Elemental analysis, calculated for C6H12N4: C 51.41, H 8.63, N 39.97%; found: C 52.40, H 8.61, N 39.75%.

Refinement top

All H atoms bound to carbon were refined using a riding model with C—H = 0.97 Å [Uiso(H) = 1.2Ueq(parent atom)] for methylene H atoms and C—H = 0.96 Å [Uiso(H) = 1.5Ueq(parent atom)] for methyl H atoms. The amino H atoms were located in a difference map and refined freely (distances given in Table 2).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. The packing of (I), showing the R44(10) and R44(20) ring patterns. Dashed lines indicate hydrogen bonds. H atoms not involved in these interactions and ethyl groups have been omitted for clarity. [Symmetry codes are provided in Table 2.]
4-Amino-3,5-diethyl-4H-1,2,4-triazole top
Crystal data top
C6H12N4F(000) = 2432
Mr = 140.20Dx = 1.154 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2 ycCell parameters from 16583 reflections
a = 37.782 (2) Åθ = 1.5–28.0°
b = 9.2996 (4) ŵ = 0.08 mm1
c = 18.4055 (12) ÅT = 100 K
β = 93.067 (5)°Prism, colourless
V = 6457.6 (7) Å30.50 × 0.48 × 0.41 mm
Z = 32
Data collection top
Stoe IPDS II
diffractometer
4902 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 26.0°, θmin = 2.2°
Detector resolution: 6.67 pixels mm-1h = 4646
ω scansk = 1111
16583 measured reflectionsl = 2218
6331 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0495P)2 + 0.9309P]
where P = (Fo2 + 2Fc2)/3
6331 reflections(Δ/σ)max = 0.001
393 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C6H12N4V = 6457.6 (7) Å3
Mr = 140.20Z = 32
Monoclinic, C2/cMo Kα radiation
a = 37.782 (2) ŵ = 0.08 mm1
b = 9.2996 (4) ÅT = 100 K
c = 18.4055 (12) Å0.50 × 0.48 × 0.41 mm
β = 93.067 (5)°
Data collection top
Stoe IPDS II
diffractometer
4902 reflections with I > 2σ(I)
16583 measured reflectionsRint = 0.027
6331 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.16 e Å3
6331 reflectionsΔρmin = 0.23 e Å3
393 parameters
Special details top

Experimental. X-RED32; Stoe & Cie, 2002.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.31694 (4)0.96729 (15)0.39692 (8)0.0336 (3)
H1A0.31051.05090.42370.050*
H1B0.31350.98580.34570.050*
H1C0.34140.94490.40830.050*
C20.29403 (3)0.84128 (13)0.41746 (7)0.0256 (3)
H2A0.29730.82450.46940.031*
H2B0.26930.86530.40670.031*
C30.30261 (3)0.70765 (13)0.37815 (7)0.0231 (3)
C40.29939 (3)0.48548 (13)0.34005 (7)0.0241 (3)
C50.28663 (3)0.33614 (14)0.32738 (8)0.0301 (3)
H5A0.28030.29480.37330.036*
H5B0.30570.27890.30920.036*
C60.25475 (4)0.32883 (17)0.27340 (9)0.0412 (4)
H6A0.24750.23050.26700.062*
H6B0.26100.36770.22750.062*
H6C0.23560.38370.29160.062*
C70.36281 (4)0.93835 (14)0.59295 (8)0.0336 (3)
H7A0.37301.02800.60930.050*
H7B0.34550.95580.55390.050*
H7C0.38110.87700.57610.050*
C80.34518 (4)0.86572 (14)0.65563 (8)0.0310 (3)
H8A0.36270.85010.69540.037*
H8B0.32700.92850.67300.037*
C90.32905 (3)0.72596 (13)0.63330 (7)0.0234 (3)
C100.32105 (3)0.49621 (13)0.61520 (7)0.0225 (3)
C110.32627 (3)0.33771 (13)0.61911 (8)0.0281 (3)
H11A0.32160.30440.66760.034*
H11B0.35070.31510.61020.034*
C120.30196 (4)0.25975 (15)0.56387 (9)0.0397 (4)
H12A0.30600.15800.56770.060*
H12B0.30680.29140.51580.060*
H12C0.27770.28050.57320.060*
C130.42040 (4)0.61533 (15)0.54323 (9)0.0371 (3)
H13A0.42490.69910.51470.056*
H13B0.41980.64190.59360.056*
H13C0.39800.57420.52730.056*
C140.44956 (3)0.50620 (14)0.53408 (8)0.0271 (3)
H14A0.45030.48170.48300.033*
H14B0.47210.54930.54920.033*
C150.44475 (3)0.37224 (13)0.57667 (7)0.0226 (3)
C160.45081 (3)0.15023 (13)0.61341 (7)0.0234 (3)
C170.46318 (3)0.00189 (14)0.61739 (8)0.0283 (3)
H17A0.48870.00390.61310.034*
H17B0.45240.05470.57650.034*
C180.45432 (4)0.07662 (15)0.68739 (8)0.0335 (3)
H18A0.46280.17380.68690.050*
H18B0.42910.07690.69150.050*
H18C0.46540.02640.72810.050*
C190.53415 (4)0.41111 (16)0.66671 (9)0.0408 (4)
H19A0.53560.50960.68220.061*
H19B0.52010.35780.69930.061*
H19C0.52340.40640.61840.061*
C200.57101 (3)0.34738 (14)0.66725 (8)0.0292 (3)
H20A0.58520.40340.63520.035*
H20B0.58190.35420.71600.035*
C210.57113 (3)0.19427 (13)0.64361 (7)0.0236 (3)
C220.58647 (3)0.03132 (13)0.63621 (7)0.0238 (3)
C230.60557 (4)0.16930 (14)0.65157 (7)0.0292 (3)
H23A0.59350.22180.68840.035*
H23B0.62930.14800.67120.035*
C240.60801 (5)0.26362 (17)0.58526 (10)0.0490 (4)
H24A0.62050.35050.59850.074*
H24B0.62050.21340.54900.074*
H24C0.58460.28700.56610.074*
N10.28425 (2)0.58223 (11)0.38425 (6)0.0220 (2)
N20.32771 (3)0.68948 (12)0.33260 (6)0.0272 (2)
N30.32573 (3)0.54690 (12)0.30837 (6)0.0290 (2)
N40.25588 (3)0.55081 (12)0.42869 (6)0.0234 (2)
H4A0.2408 (4)0.6234 (17)0.4222 (9)0.034 (4)*
H4B0.2648 (4)0.5509 (17)0.4765 (10)0.036 (4)*
N50.34293 (2)0.59425 (11)0.64996 (6)0.0208 (2)
N60.30038 (3)0.71067 (11)0.59104 (6)0.0275 (2)
N70.29537 (3)0.56346 (11)0.57896 (6)0.0260 (2)
N80.37256 (3)0.56973 (12)0.69838 (6)0.0237 (2)
H8C0.3871 (4)0.5086 (17)0.6754 (9)0.032 (4)*
H8D0.3636 (4)0.5240 (18)0.7379 (10)0.045 (5)*
N90.46129 (3)0.24589 (11)0.56290 (6)0.0214 (2)
N100.42495 (3)0.35608 (11)0.63246 (6)0.0253 (2)
N110.42889 (3)0.21348 (11)0.65618 (6)0.0258 (2)
N120.48385 (3)0.22413 (12)0.50525 (6)0.0238 (2)
H12D0.5051 (4)0.1925 (17)0.5276 (9)0.034 (4)*
H12E0.4732 (4)0.1495 (17)0.4763 (9)0.034 (4)*
N130.59398 (3)0.09351 (11)0.67216 (6)0.0220 (2)
N140.55054 (3)0.13502 (11)0.59243 (6)0.0273 (2)
N150.56043 (3)0.00943 (12)0.58750 (6)0.0271 (2)
N160.61984 (3)0.10815 (11)0.72996 (6)0.0235 (2)
H16A0.6081 (4)0.1479 (17)0.7683 (9)0.039 (4)*
H16B0.6364 (4)0.1755 (18)0.7143 (9)0.036 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0429 (8)0.0259 (7)0.0328 (8)0.0036 (6)0.0105 (6)0.0034 (6)
C20.0259 (6)0.0256 (6)0.0256 (7)0.0005 (5)0.0031 (5)0.0022 (5)
C30.0225 (6)0.0240 (6)0.0226 (6)0.0017 (5)0.0005 (5)0.0007 (5)
C40.0236 (6)0.0244 (6)0.0243 (7)0.0018 (5)0.0013 (5)0.0017 (5)
C50.0336 (7)0.0251 (7)0.0321 (8)0.0000 (5)0.0056 (6)0.0049 (6)
C60.0462 (8)0.0406 (8)0.0364 (9)0.0099 (7)0.0005 (7)0.0091 (7)
C70.0367 (7)0.0239 (7)0.0396 (8)0.0051 (6)0.0029 (6)0.0010 (6)
C80.0391 (7)0.0230 (6)0.0304 (8)0.0018 (5)0.0038 (6)0.0014 (5)
C90.0276 (6)0.0227 (6)0.0198 (6)0.0009 (5)0.0001 (5)0.0018 (5)
C100.0204 (5)0.0233 (6)0.0240 (7)0.0019 (5)0.0034 (5)0.0005 (5)
C110.0281 (6)0.0218 (6)0.0341 (8)0.0007 (5)0.0001 (5)0.0002 (5)
C120.0449 (8)0.0260 (7)0.0475 (10)0.0062 (6)0.0054 (7)0.0048 (6)
C130.0449 (8)0.0263 (7)0.0415 (9)0.0080 (6)0.0153 (7)0.0099 (6)
C140.0283 (6)0.0246 (6)0.0289 (7)0.0010 (5)0.0055 (5)0.0021 (5)
C150.0192 (5)0.0228 (6)0.0257 (7)0.0007 (5)0.0012 (5)0.0020 (5)
C160.0209 (6)0.0240 (6)0.0256 (7)0.0017 (5)0.0029 (5)0.0003 (5)
C170.0259 (6)0.0243 (6)0.0353 (8)0.0014 (5)0.0075 (5)0.0004 (6)
C180.0319 (7)0.0284 (7)0.0406 (8)0.0047 (6)0.0054 (6)0.0069 (6)
C190.0429 (8)0.0322 (7)0.0480 (10)0.0047 (6)0.0104 (7)0.0036 (7)
C200.0350 (7)0.0236 (6)0.0283 (7)0.0007 (5)0.0051 (6)0.0012 (5)
C210.0219 (6)0.0248 (6)0.0243 (7)0.0011 (5)0.0016 (5)0.0028 (5)
C220.0243 (6)0.0246 (6)0.0226 (6)0.0029 (5)0.0031 (5)0.0008 (5)
C230.0326 (7)0.0254 (6)0.0294 (7)0.0005 (5)0.0003 (5)0.0002 (6)
C240.0621 (10)0.0365 (8)0.0466 (10)0.0170 (7)0.0140 (8)0.0138 (7)
N10.0213 (5)0.0231 (5)0.0218 (5)0.0009 (4)0.0033 (4)0.0016 (4)
N20.0275 (5)0.0264 (6)0.0282 (6)0.0014 (4)0.0061 (5)0.0032 (5)
N30.0309 (6)0.0272 (6)0.0293 (6)0.0002 (4)0.0068 (5)0.0040 (5)
N40.0204 (5)0.0263 (6)0.0239 (6)0.0007 (4)0.0052 (4)0.0010 (4)
N50.0189 (5)0.0213 (5)0.0222 (5)0.0004 (4)0.0005 (4)0.0004 (4)
N60.0302 (5)0.0232 (5)0.0284 (6)0.0023 (4)0.0036 (5)0.0001 (5)
N70.0249 (5)0.0234 (5)0.0294 (6)0.0001 (4)0.0015 (4)0.0007 (4)
N80.0195 (5)0.0282 (5)0.0232 (6)0.0015 (4)0.0011 (4)0.0014 (5)
N90.0201 (5)0.0216 (5)0.0228 (5)0.0010 (4)0.0034 (4)0.0016 (4)
N100.0255 (5)0.0218 (5)0.0290 (6)0.0009 (4)0.0047 (4)0.0013 (4)
N110.0261 (5)0.0231 (5)0.0286 (6)0.0011 (4)0.0064 (4)0.0023 (5)
N120.0214 (5)0.0273 (6)0.0231 (6)0.0006 (4)0.0048 (4)0.0034 (5)
N130.0212 (5)0.0232 (5)0.0215 (5)0.0017 (4)0.0003 (4)0.0007 (4)
N140.0262 (5)0.0262 (5)0.0292 (6)0.0012 (4)0.0024 (5)0.0006 (5)
N150.0268 (5)0.0249 (5)0.0293 (6)0.0021 (4)0.0001 (4)0.0013 (5)
N160.0225 (5)0.0273 (6)0.0204 (6)0.0016 (4)0.0020 (4)0.0002 (5)
Geometric parameters (Å, º) top
C1—C21.5166 (18)C15—N91.3609 (15)
C1—H1A0.9600C16—N111.3118 (16)
C1—H1B0.9600C16—N91.3609 (16)
C1—H1C0.9600C16—C171.4905 (17)
C2—C31.4824 (17)C17—C181.5170 (19)
C2—H2A0.9700C17—H17A0.9700
C2—H2B0.9700C17—H17B0.9700
C3—N21.3099 (16)C18—H18A0.9600
C3—N11.3648 (16)C18—H18B0.9600
C4—N31.3111 (17)C18—H18C0.9600
C4—N11.3596 (16)C19—C201.5129 (19)
C4—C51.4844 (17)C19—H19A0.9600
C5—C61.521 (2)C19—H19B0.9600
C5—H5A0.9700C19—H19C0.9600
C5—H5B0.9700C20—C211.4889 (18)
C6—H6A0.9600C20—H20A0.9700
C6—H6B0.9600C20—H20B0.9700
C6—H6C0.9600C21—N141.3106 (17)
C7—C81.521 (2)C21—N131.3605 (16)
C7—H7A0.9600C22—N151.3111 (17)
C7—H7B0.9600C22—N131.3586 (16)
C7—H7C0.9600C22—C231.4918 (18)
C8—C91.4841 (17)C23—C241.510 (2)
C8—H8A0.9700C23—H23A0.9700
C8—H8B0.9700C23—H23B0.9700
C9—N61.3071 (17)C24—H24A0.9600
C9—N51.3608 (16)C24—H24B0.9600
C10—N71.3072 (16)C24—H24C0.9600
C10—N51.3664 (15)N1—N41.4130 (14)
C10—C111.4883 (17)N2—N31.3997 (15)
C11—C121.5175 (19)N4—H4A0.888 (16)
C11—H11A0.9700N4—H4B0.925 (18)
C11—H11B0.9700N5—N81.4118 (14)
C12—H12A0.9600N6—N71.3981 (15)
C12—H12B0.9600N8—H8C0.910 (17)
C12—H12C0.9600N8—H8D0.923 (19)
C13—C141.5140 (18)N9—N121.4109 (14)
C13—H13A0.9600N10—N111.4016 (14)
C13—H13B0.9600N12—H12D0.929 (16)
C13—H13C0.9600N12—H12E0.952 (16)
C14—C151.4883 (17)N13—N161.4119 (14)
C14—H14A0.9700N14—N151.3984 (15)
C14—H14B0.9700N16—H16A0.931 (17)
C15—N101.3110 (16)N16—H16B0.942 (17)
C2—C1—H1A109.5N11—C16—C17127.05 (11)
C2—C1—H1B109.5N9—C16—C17123.51 (11)
H1A—C1—H1B109.5C16—C17—C18113.18 (11)
C2—C1—H1C109.5C16—C17—H17A108.9
H1A—C1—H1C109.5C18—C17—H17A108.9
H1B—C1—H1C109.5C16—C17—H17B108.9
C3—C2—C1112.56 (11)C18—C17—H17B108.9
C3—C2—H2A109.1H17A—C17—H17B107.8
C1—C2—H2A109.1C17—C18—H18A109.5
C3—C2—H2B109.1C17—C18—H18B109.5
C1—C2—H2B109.1H18A—C18—H18B109.5
H2A—C2—H2B107.8C17—C18—H18C109.5
N2—C3—N1109.33 (11)H18A—C18—H18C109.5
N2—C3—C2127.23 (11)H18B—C18—H18C109.5
N1—C3—C2123.43 (11)C20—C19—H19A109.5
N3—C4—N1109.37 (11)C20—C19—H19B109.5
N3—C4—C5125.84 (11)H19A—C19—H19B109.5
N1—C4—C5124.72 (11)C20—C19—H19C109.5
C4—C5—C6112.56 (12)H19A—C19—H19C109.5
C4—C5—H5A109.1H19B—C19—H19C109.5
C6—C5—H5A109.1C21—C20—C19112.96 (11)
C4—C5—H5B109.1C21—C20—H20A109.0
C6—C5—H5B109.1C19—C20—H20A109.0
H5A—C5—H5B107.8C21—C20—H20B109.0
C5—C6—H6A109.5C19—C20—H20B109.0
C5—C6—H6B109.5H20A—C20—H20B107.8
H6A—C6—H6B109.5N14—C21—N13109.15 (11)
C5—C6—H6C109.5N14—C21—C20126.94 (11)
H6A—C6—H6C109.5N13—C21—C20123.90 (11)
H6B—C6—H6C109.5N15—C22—N13109.27 (11)
C8—C7—H7A109.5N15—C22—C23126.93 (12)
C8—C7—H7B109.5N13—C22—C23123.80 (11)
H7A—C7—H7B109.5C22—C23—C24113.35 (12)
C8—C7—H7C109.5C22—C23—H23A108.9
H7A—C7—H7C109.5C24—C23—H23A108.9
H7B—C7—H7C109.5C22—C23—H23B108.9
C9—C8—C7111.65 (11)C24—C23—H23B108.9
C9—C8—H8A109.3H23A—C23—H23B107.7
C7—C8—H8A109.3C23—C24—H24A109.5
C9—C8—H8B109.3C23—C24—H24B109.5
C7—C8—H8B109.3H24A—C24—H24B109.5
H8A—C8—H8B108.0C23—C24—H24C109.5
N6—C9—N5109.46 (11)H24A—C24—H24C109.5
N6—C9—C8125.10 (11)H24B—C24—H24C109.5
N5—C9—C8125.33 (11)C4—N1—C3106.52 (10)
N7—C10—N5109.49 (11)C4—N1—N4124.47 (10)
N7—C10—C11126.25 (11)C3—N1—N4128.97 (10)
N5—C10—C11124.27 (11)C3—N2—N3107.34 (10)
C10—C11—C12111.53 (11)C4—N3—N2107.44 (10)
C10—C11—H11A109.3N1—N4—H4A105.5 (10)
C12—C11—H11A109.3N1—N4—H4B107.4 (10)
C10—C11—H11B109.3H4A—N4—H4B109.1 (14)
C12—C11—H11B109.3C9—N5—C10106.20 (10)
H11A—C11—H11B108.0C9—N5—N8124.79 (10)
C11—C12—H12A109.5C10—N5—N8128.84 (10)
C11—C12—H12B109.5C9—N6—N7107.58 (10)
H12A—C12—H12B109.5C10—N7—N6107.26 (10)
C11—C12—H12C109.5N5—N8—H8C106.6 (10)
H12A—C12—H12C109.5N5—N8—H8D105.0 (10)
H12B—C12—H12C109.5H8C—N8—H8D109.6 (14)
C14—C13—H13A109.5C16—N9—C15106.49 (10)
C14—C13—H13B109.5C16—N9—N12129.02 (10)
H13A—C13—H13B109.5C15—N9—N12124.46 (10)
C14—C13—H13C109.5C15—N10—N11107.27 (10)
H13A—C13—H13C109.5C16—N11—N10107.29 (10)
H13B—C13—H13C109.5N9—N12—H12D104.7 (10)
C15—C14—C13113.10 (11)N9—N12—H12E105.7 (9)
C15—C14—H14A109.0H12D—N12—H12E110.3 (13)
C13—C14—H14A109.0C22—N13—C21106.77 (10)
C15—C14—H14B109.0C22—N13—N16124.57 (10)
C13—C14—H14B109.0C21—N13—N16128.60 (10)
H14A—C14—H14B107.8C21—N14—N15107.47 (10)
N10—C15—N9109.50 (11)C22—N15—N14107.33 (10)
N10—C15—C14126.83 (11)N13—N16—H16A105.7 (10)
N9—C15—C14123.67 (11)N13—N16—H16B106.1 (10)
N11—C16—N9109.44 (11)H16A—N16—H16B108.7 (14)
C1—C2—C3—N23.02 (19)C11—C10—N5—C9179.51 (12)
C1—C2—C3—N1176.05 (11)N7—C10—N5—N8175.80 (11)
N3—C4—C5—C697.49 (16)C11—C10—N5—N84.1 (2)
N1—C4—C5—C679.22 (17)N5—C9—N6—N70.50 (14)
C7—C8—C9—N672.20 (17)C8—C9—N6—N7175.86 (12)
C7—C8—C9—N5103.58 (15)N5—C10—N7—N60.64 (14)
N7—C10—C11—C1210.99 (19)C11—C10—N7—N6179.21 (12)
N5—C10—C11—C12169.17 (12)C9—N6—N7—C100.71 (14)
C13—C14—C15—N1019.36 (19)N11—C16—N9—C150.13 (14)
C13—C14—C15—N9161.51 (12)C17—C16—N9—C15179.70 (12)
N11—C16—C17—C1812.44 (19)N11—C16—N9—N12178.20 (11)
N9—C16—C17—C18167.36 (12)C17—C16—N9—N122.0 (2)
C19—C20—C21—N1437.34 (19)N10—C15—N9—C160.25 (14)
C19—C20—C21—N13144.16 (13)C14—C15—N9—C16179.02 (11)
N15—C22—C23—C2431.6 (2)N10—C15—N9—N12178.18 (10)
N13—C22—C23—C24148.35 (13)C14—C15—N9—N122.56 (18)
N3—C4—N1—C30.15 (14)N9—C15—N10—N110.27 (13)
C5—C4—N1—C3177.02 (12)C14—C15—N10—N11178.97 (12)
N3—C4—N1—N4177.70 (11)N9—C16—N11—N100.03 (13)
C5—C4—N1—N45.12 (19)C17—C16—N11—N10179.86 (12)
N2—C3—N1—C40.08 (14)C15—N10—N11—C160.18 (13)
C2—C3—N1—C4179.29 (12)N15—C22—N13—C210.34 (14)
N2—C3—N1—N4177.80 (11)C23—C22—N13—C21179.68 (11)
C2—C3—N1—N43.0 (2)N15—C22—N13—N16177.83 (11)
N1—C3—N2—N30.26 (14)C23—C22—N13—N162.19 (19)
C2—C3—N2—N3179.44 (12)N14—C21—N13—C220.14 (14)
N1—C4—N3—N20.31 (14)C20—C21—N13—C22178.87 (12)
C5—C4—N3—N2176.82 (12)N14—C21—N13—N16177.50 (11)
C3—N2—N3—C40.35 (14)C20—C21—N13—N163.77 (19)
N6—C9—N5—C100.11 (14)N13—C21—N14—N150.10 (14)
C8—C9—N5—C10176.23 (12)C20—C21—N14—N15178.58 (12)
N6—C9—N5—N8175.57 (11)N13—C22—N15—N140.39 (14)
C8—C9—N5—N88.08 (19)C23—C22—N15—N14179.63 (12)
N7—C10—N5—C90.35 (14)C21—N14—N15—C220.31 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8C···N100.910 (17)2.192 (17)3.0975 (15)173.4 (14)
N8—H8D···N3i0.923 (19)2.088 (19)2.9645 (16)158.2 (15)
N12—H12D···N140.929 (16)2.108 (16)3.0295 (15)171.6 (14)
N12—H12E···N15ii0.952 (16)2.127 (17)3.0650 (16)168.0 (13)
N16—H16A···N11iii0.931 (17)2.112 (18)3.0256 (16)166.7 (14)
N16—H16B···N2iv0.942 (17)2.070 (17)3.0066 (15)172.9 (14)
N4—H4A···N6v0.888 (16)2.195 (17)3.0803 (15)174.8 (14)
N4—H4B···N70.925 (18)2.161 (18)3.0736 (16)168.8 (14)
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1, y, z+1; (iii) x+1, y, z+3/2; (iv) x+1, y+1, z+1; (v) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC6H12N4
Mr140.20
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)37.782 (2), 9.2996 (4), 18.4055 (12)
β (°) 93.067 (5)
V3)6457.6 (7)
Z32
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.48 × 0.41
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16583, 6331, 4902
Rint0.027
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.091, 1.04
No. of reflections6331
No. of parameters393
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.23

Computer programs: X-AREA (Stoe & Cie, 2002), X-AREA, X-RED (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
N1—N41.4130 (14)N9—N121.4109 (14)
N2—N31.3997 (15)N10—N111.4016 (14)
N5—N81.4118 (14)N13—N161.4119 (14)
N6—N71.3981 (15)N14—N151.3984 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8C···N100.910 (17)2.192 (17)3.0975 (15)173.4 (14)
N8—H8D···N3i0.923 (19)2.088 (19)2.9645 (16)158.2 (15)
N12—H12D···N140.929 (16)2.108 (16)3.0295 (15)171.6 (14)
N12—H12E···N15ii0.952 (16)2.127 (17)3.0650 (16)168.0 (13)
N16—H16A···N11iii0.931 (17)2.112 (18)3.0256 (16)166.7 (14)
N16—H16B···N2iv0.942 (17)2.070 (17)3.0066 (15)172.9 (14)
N4—H4A···N6v0.888 (16)2.195 (17)3.0803 (15)174.8 (14)
N4—H4B···N70.925 (18)2.161 (18)3.0736 (16)168.8 (14)
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1, y, z+1; (iii) x+1, y, z+3/2; (iv) x+1, y+1, z+1; (v) x+1/2, y+3/2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds