Download citation
Download citation
link to html
In the crystal structure, the title compound {systematic name: [2,5-bis­(4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene­meth­yl)-1H-pyrrolato](trifluoroacetato)palladium(II)}, [Pd(C2F3O2)(C27H34N3)], forms chiral mol­ecules with a helical distortion of the tripyrrinate ligand backbone and an essentially planar PdN3O core, with Pd-N distances ranging from 1.977 (3) to 2.045 (3) Å and a Pd-O distance of 2.051 (2) Å. This distortion of the organic ligand is considered as the conformational answer to the steric inter­action of the terminal methyl groups of the tripyrrinate ligand with the donor O atom of the trifluoro­acetate group.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010605579X/gz3060sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010605579X/gz3060Isup2.hkl
Contains datablock I

CCDC reference: 638308

Comment top

The structure of the title complex, (I), was determined as part of a continuing study (Bröring et al., 2001, 2002, 2003) of neutral palladium(II) complexes of tripyrrinate ligands, (trpy)PdX. Neutral palladium(II) complexes of such α,ω-dimethyltripyrrinate ligands are typically characterized by the steric repulsion that is present between the formally negatively charged coligand (in particular the donor atom of that coligand) and the two methyl groups C1 and C16 situated at the termini of the open-chain tripyrrole (methyl termini). The steric overcrowding at the open site of the linear tripyrrole which can be quantified by an analysis of the van der Waals radii of the involved methyl groups and ligand donor atom (Bröring et al., 2007) leads to strained, nonplanar structures for trifluoracetato(2,15-dimethyl-3,4,7,8,13,14-hexaethyltripyrrinato)palladium(II) and the azido, chlorido, bromido and iodido complexes of the same (trpy)Pd fragment (Bröring et al., 2001, 2002, 2003), and in the case of trifluoracetato(2,15-dimethyl-3,4,13,14-tetraethyltripyrrinato)palladium(II) even a fluxional behaviour has been observed, i.e. a dynamic interconversion process between two different non-planar conformations in solution (Scheme 2). These two limiting conformations have so far been the only ones observed for (trpy)PdX species, and they have been named pseudoplanar and helical in accordance with the respective tripyrrole conformations. In the pseudoplanar conformation (Cs symmetry of the tripyrrin ligand), the PdII centre is bound in an intermediate situation between distorted square-planar and distorted tetrahedral, while for the helical form (C2 symmetry of the tripyrrin ligand) a planar coordination of the palladium(II) ion results. The pseudoplanar scenario is present in the majority of compounds, while the helical form has been observed in only two cases so far, both of which employ the trifluoracetate ligand.

(trpy)PdOAcF, (I), crystallizes in the monoclinic system, space group P21/c, with Z = 4. The CF3 group of the trifluoracetate ligand shows disorder and is refined in two orientations with occupancies of 60.0 (4) and 40.0 (4)%. The PdII atom is bound in an almost square-planar fashion with a deviation of the Pd atom from the mean PdN3O plane of 0.0177 (3) Å and bond angles N2—Pd1—O1 and N1—Pd1—N3 of 178.79 (11) and 177.08 (11)°, respectively. Two long and one short Pd—N bond, the latter being the one to the central nitrogen donor N2, are present in the coordination unit. The alternating C—C bond lengths of the tripyrrolic ligand perimeter C2–C15 indicate an unequal charge distribution, and it can be proposed that the negative charge of the deprotonated trpy ligand is located mainly at the central C4N unit. This interpretation would also be in agreement with the above mentioned finding of a short Pd1—N2 bond and with the differences in the C—N bond lengths of N1 and N3 that indicate the presence of imino-like substructures at these positions. In order to create a sufficiently large binding pocket for atom O1 of the trifluoracetate ligand within a square-planar coordination geometry, the positions of the terminal methyl groups C1H3 and C16H3 of (I) are characterized by displacements of 1.127 (4) and -1.364 (5) Å from the mean PdN3O plane. These displacements are achieved by a pronounced helical twist and nonplanar structure of the trpy ligand similar to the ruffled conformation shown by a number of metalloporphyrins (Senge, 2000) which can be quantified by the dihedral angles between the mean planes of adjacent C4N moieties of 35.4 (2) and 28.0 (2)° (Fig. 2). The overall twist as measured by the dihedral angle between the mean planes of the opposite C4N rings is as large as 57.8 (2)°. These values are within the data ranges of 25.7 (2)–38.3 (2)° and 54.8 (2)–63.8 (2)°, respectively, found earlier for related compounds (Bröring et al., 2001, 2002).

The pronounced non-planarity of (I) in the crystal seems to be in contrast to the apparent planarity and C2v symmetry observed by ambient temperature 1H NMR spectroscopy. More explicitly, the protons of the methylene groups from the trpy ligands' ethyl groups do not split diastereotopically but give a simple quartett signal, and the F atoms produce a singlet in the 19F NMR spectrum. These data indicate a racemization process in addition to the rotation of the trifluoroacetate around the Pd1—O1 and the C27—C28 bonds in solution, all of which are fast on the NMR time scale. Obviously, the nonplanar structure is caused by the steric influence of the terminal methyl groups of the tripyrrin on the anionic coligand. Only through a severe twist of the tripyrrin system can the binding atom O1 of the trifluoracetate group find enough space to coordinate to the central PdII metal as part of a distorted square-planar geometry. The bound O atom of the trifluoracetate ligand is thereby located almost ideally amid the terminal methyl groups with distances C1···C16, C1···O1 and C16···O1 of 5.861 (6), 2.933 (5) and 2.935 (5) Å, respectively. These Cmethyl—O values undercut the sum of the van der Waals values (Bondi, 1964) by as much as 17.2%, thus indicating significant intramolecular strain being stored in the compound. Owing to the helicity of the trpy ligand the complex is chiral in the solid state, and both enantiomers are found in the unit cell in a 1:1 ratio.

Related literature top

For related literature, see: Bondi (1964); Bröring & Brandt (2001, 2002); Bröring et al. (2003, 2007); Senge (2000); Sheldrick (1997).

Experimental top

3,4-Diethyl-2,5-diformylpyrrole (175 mg, 1.4 mmol) and 3-ethyl-2,4-dimethylpyrrole (354 mg, 2.8 mmol) were dissolved in trifluoroacetic acid (10 ml) and heated to reflux for 10 h. After cooling to room temperature all volatiles were removed in vacuo, and the resulting dark residue was treated with a slurry of palladium(II) acetate (317 mg, 1.4 mmol) and sodium acetate (347 mg, 4.23 mmol) in dichloromethane (50 ml). After stirring at room temperature for 16 h, the mixture was again taken to dryness, then redissolved in dichloromethane and filtered. From the filtrate, the title compound can be isolated by chromatography on silica with dichloromethane (dark green fraction) and subsequent recrystallization from dichloromethane/hexane. The compound yields a green, air-stable powder. Yield 50%.

Combustion analysis: found C 54.94, H 5.67, N 6.62%; C28H34F3N3O2Pd (608.01) requires C 55.31%, H 5.64%, N 6.91%. 1H NMR (400 MHz, CD2Cl2, p.p.m.): δ 6.75 (s, 2H), 2.53 (q, J = 7.6 Hz, 4H), 2.31 (q, J = 7.6 Hz, 4H), 2.30 (s, 6H), 2.15 (s, 6H), 1.12 (t, J = 7.6 Hz, 6H), 1.01 (t, J = 7.6 Hz, 6H). 13C-NMR (100 MHz, CD2Cl2): δ p.p.m. 173.6, 142.1,140.6, 138.3, 137.8, 136.8, 119.6, 18.2, 17.8, 17.2, 13.9, 9.8. 19F-NMR (376 MHz, CD2Cl2): δ p.p.m. -74.2. UV/Vis (CH2Cl2): λmax, nm (ε L mol-1 cm-1) = 270 (17000), 355 (42000), 446 (13000), 650 s h (32000), 679 nm (43000).

Suitable crystals for X-ray diffraction were grown by slow evaporation of a solution of (I) in dichloromethane/hexane.

Refinement top

H-atom refinement was performed as follows. The rotations of the idealized methyl H atoms around C1—C2, C4—C19, C13—C24, C15—C16, C17—C18, C20—C21, C22—C23 and C25—C26 were varied. All other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å.

The disordered CF3 group was refined with constrained equivalent anisotropic displacement parameters for both atom types C and F. Additionally the similarity restraint SAME (SHELXL97; Sheldrick, 1997) has been applied to the two parts of the disordered group.

Computing details top

Data collection: WinXpose in X-AREA (Stoe & Cie, 2003); cell refinement: Wincell in X-AREA; data reduction: WinIntegrate in X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Mercury (Version 1.4.1; Macrae et al., 2006).

Figures top
[Figure 1]
Scheme 1: Perspective representation of (I).

Scheme 2: Conformational dynamics of (trpy)PdX complexes.

Figure 1: A perspective drawing of the molecule of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Only the preferred orientation of the disordered CF3 group is shown.
Trifluoracetato-(1,3,12,14-tetramethyl-2,7,8,13- tetraethyltripyrrinato)palladium(II) top
Crystal data top
[Pd(CF3O)(C27H34N3O)]F(000) = 1248
Mr = 608.17Dx = 1.482 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8000 reflections
a = 8.9511 (6) Åθ = 1.7–26.0°
b = 24.128 (2) ŵ = 0.73 mm1
c = 12.6581 (9) ÅT = 193 K
β = 94.806 (8)°Block, violet
V = 2724.2 (4) Å30.34 × 0.20 × 0.13 mm
Z = 4
Data collection top
Stoe IPDS-1
diffractometer
5284 independent reflections
Radiation source: fine-focus sealed tube4084 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1110
Tmin = 0.886, Tmax = 0.906k = 2929
21198 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0584P)2]
where P = (Fo2 + 2Fc2)/3
5284 reflections(Δ/σ)max = 0.006
343 parametersΔρmax = 1.18 e Å3
6 restraintsΔρmin = 0.84 e Å3
Crystal data top
[Pd(CF3O)(C27H34N3O)]V = 2724.2 (4) Å3
Mr = 608.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9511 (6) ŵ = 0.73 mm1
b = 24.128 (2) ÅT = 193 K
c = 12.6581 (9) Å0.34 × 0.20 × 0.13 mm
β = 94.806 (8)°
Data collection top
Stoe IPDS-1
diffractometer
5284 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
4084 reflections with I > 2σ(I)
Tmin = 0.886, Tmax = 0.906Rint = 0.034
21198 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0396 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.19Δρmax = 1.18 e Å3
5284 reflectionsΔρmin = 0.84 e Å3
343 parameters
Special details top

Experimental. 1H NMR (400 MHz, CD2Cl2, p.p.m.): δ 6.75 (s, 2H), 2.53 (q, J = 7.6 Hz, 4H), 2.31 (q, J = 7.6 Hz, 4H), 2.30 (s, 6H), 2.15 (s, 6H), 1.12 (t, J = 7.6 Hz, 6H), 1.01 (t, J = 7.6 Hz, 6H). 13C-NMR (100 MHz, CD2Cl2): δ p.p.m. 173.6, 142.1,140.6, 138.3, 137.8, 136.8, 119.6, 18.2, 17.8, 17.2, 13.9, 9.8. 19F-NMR (376 MHz, CD2Cl2): δ p.p.m. -74.2. UV/Vis (CH2Cl2): λmax, nm (ε L mol-1 cm-1) = 270 (17000), 355 (42000), 446 (13000), 650 s h (32000), 679 nm (43000).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.0193 (4)0.87984 (16)0.4485 (3)0.0352 (9)
H1A0.00220.87460.52530.053*
H1B0.12570.88740.42960.053*
H1C0.04090.91110.42680.053*
C20.0253 (4)0.82847 (14)0.3931 (3)0.0229 (7)
C30.0477 (4)0.80908 (14)0.2951 (3)0.0257 (7)
C40.0166 (4)0.75945 (15)0.2731 (3)0.0250 (7)
C50.1277 (4)0.74840 (14)0.3603 (3)0.0232 (7)
C60.1983 (4)0.69884 (14)0.3823 (3)0.0235 (7)
H60.19140.67180.32760.028*
C70.2801 (4)0.68407 (13)0.4783 (3)0.0231 (7)
C80.3183 (4)0.62926 (14)0.5156 (3)0.0243 (7)
C90.3758 (4)0.63482 (14)0.6200 (3)0.0258 (7)
C100.3793 (3)0.69254 (14)0.6437 (3)0.0236 (7)
C110.4495 (4)0.71804 (14)0.7352 (3)0.0237 (7)
H110.46370.69590.79720.028*
C120.4986 (4)0.77140 (14)0.7430 (3)0.0236 (7)
C130.6053 (4)0.79441 (15)0.8242 (3)0.0267 (7)
C140.6555 (4)0.84295 (15)0.7838 (3)0.0286 (8)
C150.5791 (4)0.85018 (14)0.6801 (3)0.0271 (8)
C160.6151 (5)0.89392 (18)0.6037 (4)0.0417 (10)
H16A0.57980.92990.62770.063*
H16B0.56540.88540.53360.063*
H16C0.72380.89540.59930.063*
C170.1722 (4)0.83821 (17)0.2302 (3)0.0361 (9)
H17A0.24000.85560.27850.043*
H17B0.23110.81050.18650.043*
C180.1161 (6)0.8823 (2)0.1582 (5)0.0647 (16)
H18A0.06150.91070.20120.097*
H18B0.20150.89930.11690.097*
H18C0.04910.86530.11000.097*
C190.0237 (4)0.72260 (17)0.1802 (3)0.0344 (9)
H19A0.13140.71460.17580.052*
H19B0.03270.68790.18880.052*
H19C0.00110.74120.11510.052*
C200.2949 (4)0.57734 (14)0.4517 (3)0.0302 (8)
H20A0.36330.54840.48300.036*
H20B0.32230.58460.37880.036*
C210.1347 (4)0.55541 (17)0.4460 (4)0.0391 (10)
H21A0.10630.54810.51780.059*
H21B0.12820.52100.40470.059*
H21C0.06650.58300.41160.059*
C220.4266 (4)0.58932 (15)0.6963 (3)0.0315 (8)
H22A0.45570.55660.65550.038*
H22B0.51650.60200.74050.038*
C230.3085 (6)0.5723 (2)0.7675 (4)0.0509 (12)
H23A0.27460.60490.80500.076*
H23B0.35050.54500.81910.076*
H23C0.22330.55590.72480.076*
C240.6550 (4)0.76770 (17)0.9281 (3)0.0344 (9)
H24A0.61740.78920.98600.052*
H24B0.76470.76660.93690.052*
H24C0.61530.72990.92930.052*
C250.7705 (4)0.88188 (17)0.8349 (4)0.0373 (9)
H25A0.83470.89570.78060.045*
H25B0.83520.86160.88910.045*
C260.6984 (5)0.93064 (19)0.8866 (4)0.0512 (12)
H26A0.63470.91710.94030.077*
H26B0.63730.95160.83260.077*
H26C0.77670.95470.92020.077*
C270.2464 (4)0.91324 (16)0.6146 (3)0.0341 (8)
N10.1326 (3)0.79369 (11)0.4308 (2)0.0228 (6)
N20.3204 (3)0.72147 (12)0.5569 (2)0.0229 (6)
N30.4818 (3)0.80893 (11)0.6574 (2)0.0252 (6)
C280.2449 (13)0.9754 (6)0.6095 (9)0.0467 (15)0.600 (4)
F10.2586 (10)0.9951 (2)0.5114 (6)0.0886 (11)0.600 (4)
F20.1168 (8)0.9976 (2)0.6327 (6)0.0886 (11)0.600 (4)
F30.3494 (9)0.9972 (2)0.6756 (6)0.0886 (11)0.600 (4)
C28'0.2567 (19)0.9770 (9)0.5967 (12)0.0467 (15)0.400 (4)
F1'0.3777 (12)0.9935 (3)0.5478 (9)0.0886 (11)0.400 (4)
F2'0.1571 (13)0.9960 (3)0.5219 (10)0.0886 (11)0.400 (4)
F3'0.2672 (14)1.0066 (3)0.6838 (9)0.0886 (11)0.400 (4)
Pd10.30518 (3)0.803058 (10)0.54596 (2)0.02076 (10)
O10.2937 (3)0.88782 (10)0.5365 (2)0.0298 (6)
O20.1972 (4)0.89567 (12)0.6943 (2)0.0526 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.038 (2)0.034 (2)0.033 (2)0.0109 (16)0.0044 (17)0.0029 (17)
C20.0228 (15)0.0245 (16)0.0212 (18)0.0029 (13)0.0017 (13)0.0045 (14)
C30.0241 (16)0.0294 (18)0.0234 (19)0.0004 (13)0.0009 (14)0.0023 (15)
C40.0240 (16)0.0308 (18)0.0202 (19)0.0037 (13)0.0025 (14)0.0023 (14)
C50.0251 (16)0.0264 (17)0.0179 (18)0.0038 (13)0.0009 (14)0.0008 (14)
C60.0255 (15)0.0227 (16)0.0224 (18)0.0030 (13)0.0024 (13)0.0047 (14)
C70.0246 (16)0.0204 (16)0.0240 (19)0.0003 (12)0.0007 (14)0.0028 (13)
C80.0213 (15)0.0214 (16)0.030 (2)0.0006 (12)0.0006 (14)0.0008 (14)
C90.0212 (15)0.0242 (17)0.032 (2)0.0040 (13)0.0013 (14)0.0032 (15)
C100.0221 (15)0.0231 (16)0.0252 (19)0.0001 (13)0.0004 (13)0.0004 (14)
C110.0231 (16)0.0264 (17)0.0211 (19)0.0035 (13)0.0009 (13)0.0027 (14)
C120.0218 (16)0.0257 (17)0.0231 (19)0.0018 (13)0.0002 (14)0.0006 (14)
C130.0213 (15)0.0327 (19)0.0257 (19)0.0018 (13)0.0004 (14)0.0035 (15)
C140.0234 (16)0.0303 (18)0.032 (2)0.0005 (13)0.0006 (15)0.0060 (16)
C150.0230 (16)0.0270 (17)0.031 (2)0.0026 (13)0.0007 (15)0.0048 (15)
C160.040 (2)0.041 (2)0.044 (3)0.0114 (17)0.0015 (19)0.0055 (19)
C170.0310 (19)0.043 (2)0.033 (2)0.0048 (16)0.0084 (16)0.0047 (18)
C180.058 (3)0.069 (3)0.062 (4)0.003 (3)0.020 (3)0.040 (3)
C190.0343 (19)0.043 (2)0.025 (2)0.0032 (16)0.0017 (16)0.0035 (17)
C200.0318 (18)0.0217 (17)0.036 (2)0.0020 (14)0.0009 (16)0.0028 (15)
C210.0325 (19)0.031 (2)0.052 (3)0.0031 (16)0.0054 (18)0.0066 (18)
C220.0323 (18)0.0254 (17)0.035 (2)0.0033 (15)0.0074 (16)0.0023 (16)
C230.063 (3)0.049 (3)0.041 (3)0.006 (2)0.009 (2)0.017 (2)
C240.0338 (19)0.041 (2)0.027 (2)0.0008 (16)0.0040 (16)0.0002 (17)
C250.0281 (18)0.039 (2)0.043 (3)0.0075 (16)0.0064 (17)0.0061 (18)
C260.046 (2)0.042 (2)0.062 (3)0.0009 (19)0.018 (2)0.018 (2)
C270.046 (2)0.0274 (19)0.027 (2)0.0013 (16)0.0083 (17)0.0004 (16)
N10.0270 (14)0.0203 (14)0.0213 (15)0.0023 (11)0.0029 (12)0.0000 (11)
N20.0225 (13)0.0247 (14)0.0209 (16)0.0017 (11)0.0015 (12)0.0003 (12)
N30.0273 (14)0.0229 (14)0.0253 (16)0.0010 (11)0.0021 (12)0.0010 (12)
C280.085 (4)0.023 (2)0.030 (3)0.001 (2)0.006 (3)0.003 (2)
F10.114 (3)0.0288 (11)0.123 (3)0.0115 (18)0.009 (3)0.0021 (14)
F20.114 (3)0.0288 (11)0.123 (3)0.0115 (18)0.009 (3)0.0021 (14)
F30.114 (3)0.0288 (11)0.123 (3)0.0115 (18)0.009 (3)0.0021 (14)
C28'0.085 (4)0.023 (2)0.030 (3)0.001 (2)0.006 (3)0.003 (2)
F1'0.114 (3)0.0288 (11)0.123 (3)0.0115 (18)0.009 (3)0.0021 (14)
F2'0.114 (3)0.0288 (11)0.123 (3)0.0115 (18)0.009 (3)0.0021 (14)
F3'0.114 (3)0.0288 (11)0.123 (3)0.0115 (18)0.009 (3)0.0021 (14)
Pd10.02466 (14)0.01781 (14)0.01931 (15)0.00049 (10)0.00115 (9)0.00011 (11)
O10.0409 (14)0.0227 (12)0.0251 (14)0.0006 (10)0.0015 (11)0.0001 (11)
O20.096 (3)0.0341 (16)0.0284 (17)0.0068 (16)0.0122 (17)0.0010 (13)
Geometric parameters (Å, º) top
C1—C21.494 (5)C18—H18C0.98
C1—H1A0.98C19—H19A0.98
C1—H1B0.98C19—H19B0.98
C1—H1C0.98C19—H19C0.98
C2—N11.333 (4)C20—C211.525 (5)
C2—C31.432 (5)C20—H20A0.99
C3—C41.367 (5)C20—H20B0.99
C3—C171.503 (5)C21—H21A0.98
C4—C51.447 (5)C21—H21B0.98
C4—C191.494 (5)C21—H21C0.98
C5—C61.370 (5)C22—C231.502 (6)
C5—N11.410 (4)C22—H22A0.99
C6—C71.411 (5)C22—H22B0.99
C6—H60.9500C23—H23A0.98
C7—N21.369 (4)C23—H23B0.98
C7—C81.436 (5)C23—H23C0.98
C8—C91.384 (5)C24—H24A0.98
C8—C201.496 (5)C24—H24B0.98
C9—C101.424 (5)C24—H24C0.98
C9—C221.507 (5)C25—C261.516 (6)
C10—N21.369 (5)C25—H25A0.99
C10—C111.412 (5)C25—H25B0.99
C11—C121.361 (5)C26—H26A0.98
C11—H110.9500C26—H26B0.98
C12—N31.410 (5)C26—H26C0.98
C12—C131.453 (5)C27—O21.212 (5)
C13—C141.369 (5)C27—O11.266 (5)
C13—C241.498 (5)C27—C281.501 (15)
C14—C151.439 (6)C27—C28'1.56 (2)
C14—C251.500 (5)N1—Pd12.045 (3)
C15—N31.338 (4)N2—Pd11.977 (3)
C15—C161.485 (5)N3—Pd12.033 (3)
C16—H16A0.98C28—F11.344 (11)
C16—H16B0.98C28—F31.311 (11)
C16—H16C0.98C28—F21.321 (13)
C17—C181.513 (6)C28'—F3'1.312 (16)
C17—H17A0.99C28'—F2'1.327 (16)
C17—H17B0.99C28'—F1'1.352 (16)
C18—H18A0.98Pd1—O12.051 (2)
C18—H18B0.98
C2—C1—H1A109.5C21—C20—H20A108.8
C2—C1—H1B109.5C8—C20—H20B108.8
H1A—C1—H1B109.5C21—C20—H20B108.8
C2—C1—H1C109.5H20A—C20—H20B107.7
H1A—C1—H1C109.5C20—C21—H21A109.5
H1B—C1—H1C109.5C20—C21—H21B109.5
N1—C2—C3111.6 (3)H21A—C21—H21B109.5
N1—C2—C1124.5 (3)C20—C21—H21C109.5
C3—C2—C1123.9 (3)H21A—C21—H21C109.5
C4—C3—C2107.0 (3)H21B—C21—H21C109.5
C4—C3—C17127.2 (3)C23—C22—C9113.2 (3)
C2—C3—C17125.8 (3)C23—C22—H22A108.9
C3—C4—C5106.3 (3)C9—C22—H22A108.9
C3—C4—C19127.1 (3)C23—C22—H22B108.9
C5—C4—C19126.6 (3)C9—C22—H22B108.9
C6—C5—N1123.9 (3)H22A—C22—H22B107.8
C6—C5—C4126.3 (3)C22—C23—H23A109.5
N1—C5—C4108.9 (3)C22—C23—H23B109.5
C5—C6—C7126.4 (3)H23A—C23—H23B109.5
C5—C6—H6116.8C22—C23—H23C109.5
C7—C6—H6116.8H23A—C23—H23C109.5
N2—C7—C6123.0 (3)H23B—C23—H23C109.5
N2—C7—C8109.1 (3)C13—C24—H24A109.5
C6—C7—C8127.4 (3)C13—C24—H24B109.5
C9—C8—C7106.5 (3)H24A—C24—H24B109.5
C9—C8—C20128.4 (3)C13—C24—H24C109.5
C7—C8—C20125.1 (3)H24A—C24—H24C109.5
C8—C9—C10107.2 (3)H24B—C24—H24C109.5
C8—C9—C22127.6 (3)C14—C25—C26111.8 (3)
C10—C9—C22125.3 (3)C14—C25—H25A109.3
N2—C10—C11123.4 (3)C26—C25—H25A109.3
N2—C10—C9109.3 (3)C14—C25—H25B109.3
C11—C10—C9126.8 (3)C26—C25—H25B109.3
C12—C11—C10126.2 (3)H25A—C25—H25B107.9
C12—C11—H11116.9C25—C26—H26A109.5
C10—C11—H11116.9C25—C26—H26B109.5
C11—C12—N3122.6 (3)H26A—C26—H26B109.5
C11—C12—C13127.0 (3)C25—C26—H26C109.5
N3—C12—C13108.7 (3)H26A—C26—H26C109.5
C14—C13—C12106.2 (3)H26B—C26—H26C109.5
C14—C13—C24127.9 (3)O2—C27—O1130.5 (4)
C12—C13—C24125.9 (3)O2—C27—C28112.5 (5)
C13—C14—C15107.4 (3)O1—C27—C28116.9 (5)
C13—C14—C25127.5 (4)O2—C27—C28'119.8 (7)
C15—C14—C25125.0 (3)O1—C27—C28'109.7 (7)
N3—C15—C14110.9 (3)C28—C27—C28'7.4 (10)
N3—C15—C16124.2 (4)C2—N1—C5106.1 (3)
C14—C15—C16124.6 (3)C2—N1—Pd1131.6 (2)
C15—C16—H16A109.5C5—N1—Pd1121.2 (2)
C15—C16—H16B109.5C7—N2—C10107.9 (3)
H16A—C16—H16B109.5C7—N2—Pd1126.4 (2)
C15—C16—H16C109.5C10—N2—Pd1125.7 (2)
H16A—C16—H16C109.5C15—N3—C12106.7 (3)
H16B—C16—H16C109.5C15—N3—Pd1130.9 (3)
C3—C17—C18112.9 (3)C12—N3—Pd1121.0 (2)
C3—C17—H17A109.0F1—C28—F3109.4 (11)
C18—C17—H17A109.0F1—C28—F2102.1 (10)
C3—C17—H17B109.0F3—C28—F2106.4 (10)
C18—C17—H17B109.0F1—C28—C27113.0 (9)
H17A—C17—H17B107.8F3—C28—C27111.7 (9)
C17—C18—H18A109.5F2—C28—C27113.6 (9)
C17—C18—H18B109.5F3'—C28'—F2'114.1 (17)
H18A—C18—H18B109.5F3'—C28'—F1'102.7 (14)
C17—C18—H18C109.5F2'—C28'—F1'95.1 (12)
H18A—C18—H18C109.5F3'—C28'—C27114.7 (12)
H18B—C18—H18C109.5F2'—C28'—C27113.6 (13)
C4—C19—H19A109.5F1'—C28'—C27114.6 (14)
C4—C19—H19B109.5N2—Pd1—N388.62 (11)
H19A—C19—H19B109.5N2—Pd1—N189.04 (11)
C4—C19—H19C109.5N3—Pd1—N1177.10 (11)
H19A—C19—H19C109.5N2—Pd1—O1178.79 (11)
H19B—C19—H19C109.5N3—Pd1—O190.19 (11)
C8—C20—C21113.9 (3)N1—Pd1—O192.14 (10)
C8—C20—H20A108.8C27—O1—Pd1117.1 (2)
N1—C2—C3—C41.2 (4)C4—C5—N1—Pd1166.0 (2)
C1—C2—C3—C4175.9 (3)C6—C7—N2—C10171.7 (3)
N1—C2—C3—C17179.3 (3)C8—C7—N2—C101.5 (4)
C1—C2—C3—C173.6 (6)C6—C7—N2—Pd110.8 (5)
C2—C3—C4—C51.1 (4)C8—C7—N2—Pd1176.0 (2)
C17—C3—C4—C5178.4 (3)C11—C10—N2—C7172.0 (3)
C2—C3—C4—C19178.7 (3)C9—C10—N2—C70.4 (4)
C17—C3—C4—C190.8 (6)C11—C10—N2—Pd15.5 (4)
C3—C4—C5—C6166.3 (3)C9—C10—N2—Pd1177.9 (2)
C19—C4—C5—C611.3 (6)C14—C15—N3—C123.8 (4)
C3—C4—C5—N12.9 (4)C16—C15—N3—C12170.0 (3)
C19—C4—C5—N1179.4 (3)C14—C15—N3—Pd1162.5 (2)
N1—C5—C6—C72.9 (5)C16—C15—N3—Pd123.8 (5)
C4—C5—C6—C7164.8 (3)C11—C12—N3—C15161.4 (3)
C5—C6—C7—N211.2 (5)C13—C12—N3—C154.3 (4)
C5—C6—C7—C8160.7 (3)C11—C12—N3—Pd130.7 (4)
N2—C7—C8—C92.8 (4)C13—C12—N3—Pd1163.6 (2)
C6—C7—C8—C9170.0 (3)O2—C27—C28—F1162.6 (8)
N2—C7—C8—C20178.6 (3)O1—C27—C28—F115.8 (11)
C6—C7—C8—C208.6 (5)C28'—C27—C28—F126 (7)
C7—C8—C9—C102.9 (4)O2—C27—C28—F373.5 (10)
C20—C8—C9—C10178.5 (3)O1—C27—C28—F3108.1 (8)
C7—C8—C9—C22177.3 (3)C28'—C27—C28—F398 (8)
C20—C8—C9—C221.2 (6)O2—C27—C28—F246.8 (10)
C8—C9—C10—N22.1 (4)O1—C27—C28—F2131.6 (7)
C22—C9—C10—N2178.1 (3)C28'—C27—C28—F2142 (8)
C8—C9—C10—C11169.9 (3)O2—C27—C28'—F3'25.5 (16)
C22—C9—C10—C119.9 (5)O1—C27—C28'—F3'154.9 (11)
N2—C10—C11—C1215.6 (5)C28—C27—C28'—F3'35 (7)
C9—C10—C11—C12155.4 (4)O2—C27—C28'—F2'108.1 (12)
C10—C11—C12—N31.2 (5)O1—C27—C28'—F2'71.4 (14)
C10—C11—C12—C13161.8 (3)C28—C27—C28'—F2'99 (8)
C11—C12—C13—C14161.7 (3)O2—C27—C28'—F1'144.0 (10)
N3—C12—C13—C143.2 (4)O1—C27—C28'—F1'36.5 (13)
C11—C12—C13—C2415.0 (6)C28—C27—C28'—F1'153 (8)
N3—C12—C13—C24180.0 (3)C7—N2—Pd1—N3151.4 (3)
C12—C13—C14—C150.9 (4)C10—N2—Pd1—N325.7 (3)
C24—C13—C14—C15177.6 (3)C7—N2—Pd1—N126.9 (3)
C12—C13—C14—C25178.1 (3)C10—N2—Pd1—N1156.1 (3)
C24—C13—C14—C251.4 (6)C7—N2—Pd1—O1141 (5)
C13—C14—C15—N31.8 (4)C10—N2—Pd1—O136 (5)
C25—C14—C15—N3179.2 (3)C15—N3—Pd1—N2158.3 (3)
C13—C14—C15—C16171.9 (4)C12—N3—Pd1—N237.2 (3)
C25—C14—C15—C167.1 (6)C15—N3—Pd1—N1122 (2)
C4—C3—C17—C1897.2 (5)C12—N3—Pd1—N174 (2)
C2—C3—C17—C1883.4 (5)C15—N3—Pd1—O121.5 (3)
C9—C8—C20—C2198.0 (4)C12—N3—Pd1—O1143.1 (3)
C7—C8—C20—C2180.3 (5)C2—N1—Pd1—N2160.8 (3)
C8—C9—C22—C2396.5 (5)C5—N1—Pd1—N232.6 (3)
C10—C9—C22—C2383.8 (5)C2—N1—Pd1—N3163 (2)
C13—C14—C25—C2698.7 (5)C5—N1—Pd1—N34 (2)
C15—C14—C25—C2682.4 (5)C2—N1—Pd1—O119.5 (3)
C3—C2—N1—C53.0 (4)C5—N1—Pd1—O1147.2 (2)
C1—C2—N1—C5174.1 (3)O2—C27—O1—Pd14.7 (6)
C3—C2—N1—Pd1165.1 (2)C28—C27—O1—Pd1177.2 (5)
C1—C2—N1—Pd117.8 (5)C28'—C27—O1—Pd1175.8 (7)
C6—C5—N1—C2165.9 (3)N2—Pd1—O1—C2782 (5)
C4—C5—N1—C23.6 (4)N3—Pd1—O1—C2771.3 (3)
C6—C5—N1—Pd124.4 (4)N1—Pd1—O1—C27110.4 (3)

Experimental details

Crystal data
Chemical formula[Pd(CF3O)(C27H34N3O)]
Mr608.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)8.9511 (6), 24.128 (2), 12.6581 (9)
β (°) 94.806 (8)
V3)2724.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.34 × 0.20 × 0.13
Data collection
DiffractometerStoe IPDS1
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.886, 0.906
No. of measured, independent and
observed [I > 2σ(I)] reflections
21198, 5284, 4084
Rint0.034
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.103, 1.19
No. of reflections5284
No. of parameters343
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.18, 0.84

Computer programs: WinXpose in X-AREA (Stoe & Cie, 2003), Wincell in X-AREA, WinIntegrate in X-AREA, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), Mercury (Version 1.4.1; Macrae et al., 2006).

Selected geometric parameters (Å, º) top
N1—Pd12.045 (3)N3—Pd12.033 (3)
N2—Pd11.977 (3)Pd1—O12.051 (2)
N2—Pd1—N388.62 (11)N2—Pd1—O1178.79 (11)
N2—Pd1—N189.04 (11)N3—Pd1—O190.19 (11)
N3—Pd1—N1177.10 (11)N1—Pd1—O192.14 (10)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds