Download citation
Download citation
link to html
The title complex, [RhBr(C8H12)(C24H19F5N2)], has a distorted pseudo-square-planar geometry. The Rh—C bond distance between the N-heterocyclic ligand and the metal atom is 2.022 (3) Å. The angle between the carbene heterocycle and the coordination plane is 75.60 (11)°. It is shown that the average Rh—C(cyclo­octa­diene) distance is linearly dependent on the Rh—C(imidazole) distance in this type of compound. The crystal structure contains one intra­molecular and two inter­molecular types of C—H...F inter­actions, as well as one type of π–π stacking inter­action.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106016052/gz3014sup1.cif
Contains datablocks II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106016052/gz3014IIsup2.hkl
Contains datablock II

CCDC reference: 612441

Comment top

In the past decade, N-heterocyclic carbenes (NHCs) have been the subject of intense research in the field of organometallic chemistry (Scott & Nolan, 2005; Crudden & Allen, 2004; Bourissou et al., 2000; Herrmann & Köcher, 1997; Herrmann et al., 2001). NHCs and their metal complexes continue to attract interest as components in homogeneous catalysis (Herrmann, 2002a). Prompted by the novel properties of these carbene ligands, we decided to prepare the supercritical carbon dioxide (scCO2) soluble derivatives in the hope that the resulting carbene complex can be adapted for catalysis in scCO2, which is an attractive alternative to conventional organic liquids for clean synthesis. One of the major limitations of scCO2 as a reaction medium for homogeneous catalysis is its rather low solvent strength towards catalysts derived from common organometallic complexes (Jessop et al., 1999; Smart et al., 1997; Kainz et al., 1997). To solve this problem, the ligands are derivatized with varying number of fluorine containing groups. NHC complexes with fluorinated substituents are rare (Xu et al., 2000). In order to accomplish this goal, we required a ligand that has electronic properties similar to those of an NHC ligand but allows solubility in scCO2. The fluorinated precursor (I), [1-(2,3,4,5,6-pentafluorobenzyl)-3-(2,4,6-trimethylbenzyl)]benzimidazolium bromide, appear to meet the desired criteria. An additional feature of the ligand is that changing H substituents on the phenyl ring with fluorines slightly increases the steric hindrance in the ligand itself and the coordination compound (II).

Benzimidazole is an interesting heterocyclic ring because it is present in various naturally occurring drugs. For example, omeprazole and lansoprazole are useful drugs in the treatment of peptic ulcers (Nishina et al., 1996), pimobendan is a non-glucosidic cardiotonic drug (Güngör et al., 1992), emedastine difumarate (KG-2413; Sakai et al., 1989) and astemizole (Hismanal; Awouters et al., 1983) were found to be beneficial for the treatment of allergic diseases, and enviroxime is an active drug against rhinoviruses (Victor et al., 1997). Considering the biological importance of substances containing the benzimidazole ring system, we report here the preparation and characterization of novel RhI complex (II), bearing the fluorinated NHC ligand (Saunders & McGrandle, 2005).

Complex (II) has a distorted pseudo-square planar geometry (Fig. 1 and Table 1), if the cycloocta-1,5-diene (COD) double bonds are considered point ligands. The metal centre is coordinated to the two alkene bonds of the COD ligand, to the non-substituted C atom of the benzimidazole ring and to one Br atom. The angle between the carbene heterocycle and the coordination plane (Br1/C25/C32) is 75.60 (11)°. This value is significantly smaller than in similar complexes (Hermann, 2002; Dinçer et al., 2005). The Rh—C(COD) distances range from 2.104 (3) to 2.236 (3) Å. The bond distances Rh1—C25 and Rh1—C32 are shorter than Rh1—C28 and Rh1—C29. This is not unexpected and is due to the trans influence of the chelating ligand.

Comparing the average Rh—C(COD) bond length, 2.169 (3) Å, and the Rh—C(imidazolidine) bond length, 2.022 (3) Å, with literature values, it is observed that Rh—C(COD) increases with increasing Rh—C(imidazolidine) distance [2.159 (5) and 2.015 (5) Å (Günay et al., 2006); 2.204 (2) and 2.039 (2) Å (Dinçer et al., 2005)]. In the COD ligand, the C25C32 double bond is approximately 0.03 Å longer than the opposite bond C28C29. However, these distances fall in the expected range for coordinated olefins (Cambridge Structural Database; Version 5.23; Allen, 2002)

The benzimidazole ring is planar, with a maximum deviation of −0.021 (2) Å from the plane for atom C1, and makes dihedral angles of 78.30 (5) and 88.54 (5)° with the trimethylbenzene and pentafluorophenyl ring planes, respectively. The metal–carbon bond distance between the Rh and the NHC ligand of 2.022 (3) Å is in good agreement with those of other rhodium NHC complexes (Günay et al., 2006; Dinçer et al., 2005). The N1—C1 and N2—C1 bond distances are 1.357 (3) and 1.356 (4) Å, respectively. These are significantly shorter than the other N—C(carbene) bond distances in (II); for instance, N1—C2 is 1.396 (3) Å. The shorter N—C(carbene) bonds are indicative of a higher multiple-bond character due to partial electron donation by N to the carbene C-atom donor (Herrmann, 2002b; Fröhlich et al., 1997). Theoretical studies also indicate that the stability of these carbenes is due to electron donation from the N-atom lone pairs into the formally empty p(π) orbital on the carbenic C atom (Heinemann et al., 1996; Böhme & Frenking, 1996). It is observed that the steric effect of the pentafluorophenyl ring on the Br—Rh—C(carbene) angle and Rh—Br bond results in broadening of the angle [to 94.73 (7)°] and shortening of the bond [to 2.4939 (4) Å], relative to those in similar compounds (Günay et al., 2006; Dinçer et al., 2005; Herrmann, 2002b; Danopoulos et al., 2002).

In the molecular structure, an intramolecular C8—H8B···F5 contact is observed. In the crystal structure, molecules of the title compound are packed in columns running along the a axis. The molecules in each column are linked to one another in a zigzag arrangement via C27—H27A···F1ii hydrogen bonds, resulting in the formation of molecular chains along the a axis. In addition, there are also ππ stacking interactions between the molecules in the inversion-related columns. In these ππ interactions the trimethylbenzene ring in the molecule at (x, y, z) stacks above the ring of the molecule at (−x, −y, 2 − z), with a distance of 3.709 (10) Å between the ring centroids, and a perpendicular distance between the rings of 3.576 (12) Å. The inversion-related columns are connected to similar neighboring columns by means of linear C24—H24C···F5i hydrogen bonds. The detailed geometry of the intra- and intermolecular interactions is given in Table 2. There are no other significant intermolecular interactions, such as C—H···π interactions, in the crystal structure of (II).

Experimental top

All manipulations were carried out under an atmosphere of dry Ar using standard Schlenk techniques. Solvents and reagents were obtained from Aldrich, Fluka and Merck. The solvents were dried by conventional methods and were distilled under Ar prior to use. [Rh(µ-OMe)(1,5-COD)]2 (Uson et al., 1985) and 1-(2,4,6-trimethylbenzyl)benzimidazole (Özdemir et al., 2005) were synthesized according to literature procedures. A 50 ml Schlenk tube was charged with (I) (Gülcemal, 2005) (102.17 mg, 0.2 mmol), [Rh(OMe)(1,5-COD)]2 (48.40 mg, 0.1 mmol) and dichloromethane (5 ml). The solution was stirred for 24 h at 298 K and heated under reflux for 2 h. Upon cooling to room temperature hexane (10 ml) was added to the mixture. The solid formed was filtered off and then recrystallized from CH2Cl2/MeOH (1:5 v/v, 12) (yield 117.5 mg, 82%; m.p. 528–530 K). Analysis calculated for C32H31BrF5N2Rh: C 53.27, H 4.30, N 3.88%; found: C 53.25, H 4.50, N 3.99%. 1H NMR (CDCl3): δ 1.99 [br, 4H, (COD-CH2)], 2.29 [s, 3H, 2,4,6-CH2C6H2(CH3)3], 2.33 [s, 6H, 2,4,6-CH2C6H2(CH3)3], 2.48 [br, 4H, (COD-CH2)], 3.48 [br, 1H, (COD-CH)], 3.60 [br, 1H, (COD-CH)], 5.24 [br, 2H, (COD-CH)], 5.98 [d, 2H, J = 15.2 Hz, 2,4,6-CH2C6H2(CH3)3], 6.26 [d, 1H, J = 16.4 Hz, CH2C6F5], 6.38 [d, 1H, J = 16.4 Hz, CH2C6F5], 6.93 [s, 2H, 2,4,6-CH2C6H2(CH3)3], 6.26–7.38 [m, 4H, Ar—H]; 13C NMR (CDCl3): δ 21.05 [2,4,6-CH2C6H2(CH3)3], 21.27 [2,4,6-CH2C6H2(CH3)3], 28.93 [d, J = 25.2 Hz, (COD-CH2)], 32.96 [d, J = 30.7 Hz, (COD-CH2)], 41.89 [CH2—Mes], 50.63 [CH2—C6F5], 69.69 [d, J = 14.5 Hz, (COD-CH)], 70.37 [d, J = 14.6 Hz, (COD-CH)], 100.40 [t, J = 6.9 Hz, (COD-CH)], 109.39, 110.00, 111.45, 122.46, 122.91, 128.11, 129.90, 135.32, 138.78 [Ar—C], 198.90 [d, J = 50.7 Hz, Ccarb—Rh]; 19F NMR (CDCl3): δ −140.98 [2 F, Fo], −153.83 [1 F, Fp], −161.51 [2 F, Fm].

Refinement top

H atoms were positioned geometrically and treated using a riding model, fixing the bond lengths at 0.96, 0.97, 0.98 and 0.93 Å for CH3, CH2, CH and CH(aromatic), respectively. The displacement parameters of the H atoms were constrained as Uiso(H) = 1.2Ueq (1.5Ueq for methyl) of the pivot atom.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. : A view of (II), with 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. : The molecular packing of (II), viewed along the b axis. Dashed lines show the C—H···F and ππ interactions. For clarity, only H atoms involved in hydrogen bonding have been included.
Bromo(η4-cycloocta-1,5-diene)[1-(2,3,4,5,6-pentafluorobenzyl)- 3-(2,4,6-trimethylbenzyl)benzimidazol-2-ylidene]rhodium(I) top
Crystal data top
[RhBr(C8H12)(C24H19F5N2)]F(000) = 1448
Mr = 721.41Dx = 1.673 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 40894 reflections
a = 10.3364 (3) Åθ = 1.6–27.2°
b = 21.9437 (9) ŵ = 2.05 mm1
c = 12.6549 (4) ÅT = 296 K
β = 93.517 (3)°Prism, yellow
V = 2864.96 (17) Å30.59 × 0.44 × 0.34 mm
Z = 4
Data collection top
Stoe IPDS-2
diffractometer
6339 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus5450 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.040
Detector resolution: 6.67 pixels mm-1θmax = 27.2°, θmin = 1.9°
ω scansh = 1313
Absorption correction: integration
(X-RED; Stoe & Cie, 2002)
k = 2828
Tmin = 0.388, Tmax = 0.548l = 1616
41451 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0565P)2 + 1.3902P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.003
6339 reflectionsΔρmax = 0.49 e Å3
374 parametersΔρmin = 0.98 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0043 (4)
Crystal data top
[RhBr(C8H12)(C24H19F5N2)]V = 2864.96 (17) Å3
Mr = 721.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.3364 (3) ŵ = 2.05 mm1
b = 21.9437 (9) ÅT = 296 K
c = 12.6549 (4) Å0.59 × 0.44 × 0.34 mm
β = 93.517 (3)°
Data collection top
Stoe IPDS-2
diffractometer
6339 independent reflections
Absorption correction: integration
(X-RED; Stoe & Cie, 2002)
5450 reflections with I > 2σ(I)
Tmin = 0.388, Tmax = 0.548Rint = 0.040
41451 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.05Δρmax = 0.49 e Å3
6339 reflectionsΔρmin = 0.98 e Å3
374 parameters
Special details top

Experimental. 1H, 13C and 19F NMR spectra were recorded on a Varian 400 MHz s pectrometer with chemical shifts referenced to residual solvent CDCl3. Elemental analyses were carried out by the analytical service of TÜBİTAK (the Scientific and Technical Research Council of Turkey) with a CHNS-932 (LECO) apparatus. Melting points were determined by electro thermal melting point detection apparatus.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh10.25886 (2)0.670001 (9)0.784108 (16)0.03715 (9)
Br10.34185 (4)0.727599 (16)0.63243 (3)0.06116 (12)
F10.7231 (2)0.72315 (10)0.8418 (2)0.0696 (6)
F20.7737 (2)0.81446 (13)0.7101 (2)0.0845 (7)
F30.6090 (3)0.90996 (11)0.6866 (2)0.0862 (7)
F40.3919 (3)0.91292 (10)0.7960 (2)0.0877 (7)
F50.3403 (2)0.82177 (9)0.9272 (2)0.0734 (6)
N10.4863 (2)0.58190 (9)0.80727 (17)0.0372 (5)
N20.5118 (2)0.65749 (10)0.91587 (18)0.0405 (5)
C10.4341 (3)0.63611 (11)0.8339 (2)0.0376 (5)
C20.5943 (3)0.56791 (12)0.8745 (2)0.0383 (5)
C30.6771 (3)0.51783 (13)0.8813 (2)0.0445 (6)
H30.66600.48500.83520.053*
C40.7767 (3)0.51908 (14)0.9598 (2)0.0490 (7)
H40.83410.48650.96660.059*
C50.7923 (3)0.56846 (15)1.0287 (3)0.0540 (7)
H50.85960.56771.08100.065*
C60.7111 (3)0.61841 (14)1.0218 (2)0.0505 (7)
H60.72280.65151.06730.061*
C70.6111 (3)0.61673 (12)0.9437 (2)0.0404 (6)
C80.4995 (3)0.71790 (12)0.9629 (2)0.0491 (7)
H8A0.55770.72061.02580.059*
H8B0.41170.72290.98460.059*
C90.5296 (3)0.76897 (12)0.8886 (2)0.0437 (6)
C100.6397 (3)0.76940 (14)0.8313 (3)0.0491 (7)
C110.6665 (3)0.81580 (17)0.7641 (3)0.0563 (8)
C120.5825 (4)0.86442 (16)0.7511 (3)0.0611 (9)
C130.4733 (4)0.86539 (14)0.8063 (3)0.0570 (8)
C140.4478 (3)0.81813 (14)0.8745 (3)0.0512 (7)
C150.4359 (3)0.54566 (13)0.7161 (2)0.0447 (6)
H15A0.38310.57170.66890.054*
H15B0.38060.51370.74100.054*
C160.5411 (3)0.51702 (13)0.6548 (2)0.0410 (6)
C170.5491 (3)0.45338 (13)0.6450 (2)0.0467 (6)
C180.6473 (3)0.42859 (15)0.5879 (2)0.0522 (7)
H180.65150.38650.58030.063*
C190.7387 (3)0.46412 (16)0.5423 (2)0.0518 (7)
C200.7279 (3)0.52686 (15)0.5523 (2)0.0501 (7)
H200.78790.55160.52110.060*
C210.6315 (3)0.55399 (13)0.6071 (2)0.0439 (6)
C220.4558 (4)0.41088 (16)0.6948 (3)0.0683 (10)
H22A0.47780.36950.67910.103*
H22B0.36920.41930.66680.103*
H22C0.46100.41680.77010.103*
C230.8440 (4)0.4361 (2)0.4816 (3)0.0731 (11)
H23A0.92700.44690.51450.110*
H23B0.83750.45080.41010.110*
H23C0.83470.39250.48150.110*
C240.6255 (4)0.62222 (15)0.6116 (3)0.0592 (8)
H24A0.64900.63560.68240.089*
H24B0.53900.63550.59150.089*
H24C0.68460.63920.56390.089*
C250.1877 (3)0.64503 (14)0.9320 (2)0.0488 (7)
H250.25530.63920.98890.059*
C260.0740 (4)0.68406 (17)0.9631 (3)0.0606 (9)
H26A0.00380.65920.96010.073*
H26B0.09030.69771.03560.073*
C270.0509 (3)0.73932 (15)0.8922 (3)0.0557 (8)
H27A0.04000.75040.89180.067*
H27B0.10100.77320.92210.067*
C280.0864 (3)0.72966 (14)0.7794 (3)0.0488 (7)
H280.09560.76740.73910.059*
C290.0541 (3)0.67982 (15)0.7185 (3)0.0526 (7)
H290.04610.68840.64230.063*
C300.0282 (4)0.62752 (18)0.7515 (4)0.0704 (10)
H30A0.07790.61190.68980.085*
H30B0.08910.64220.80100.085*
C310.0519 (4)0.57542 (16)0.8033 (3)0.0644 (9)
H31A0.00050.55420.85260.077*
H31B0.07330.54660.74890.077*
C320.1744 (3)0.59629 (14)0.8609 (3)0.0515 (7)
H320.23550.56300.87770.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.03963 (13)0.03497 (12)0.03749 (12)0.00690 (8)0.00757 (8)0.00500 (7)
Br10.0683 (2)0.0584 (2)0.0583 (2)0.00658 (15)0.01610 (16)0.01918 (15)
F10.0494 (11)0.0655 (12)0.0954 (16)0.0123 (9)0.0170 (11)0.0058 (11)
F20.0630 (14)0.1052 (18)0.0879 (18)0.0122 (12)0.0260 (12)0.0115 (14)
F30.1041 (19)0.0736 (15)0.0804 (15)0.0194 (13)0.0022 (13)0.0297 (12)
F40.0988 (19)0.0592 (13)0.1052 (19)0.0256 (12)0.0051 (14)0.0194 (12)
F50.0700 (14)0.0562 (11)0.0970 (17)0.0175 (10)0.0307 (12)0.0007 (11)
N10.0388 (12)0.0356 (11)0.0370 (11)0.0051 (8)0.0017 (9)0.0014 (8)
N20.0463 (13)0.0346 (11)0.0407 (12)0.0051 (9)0.0032 (10)0.0035 (9)
C10.0429 (14)0.0350 (12)0.0356 (12)0.0032 (10)0.0082 (10)0.0019 (10)
C20.0413 (14)0.0375 (12)0.0359 (12)0.0034 (10)0.0011 (10)0.0016 (10)
C30.0484 (16)0.0395 (14)0.0452 (15)0.0081 (11)0.0006 (12)0.0019 (11)
C40.0495 (17)0.0484 (16)0.0486 (16)0.0091 (12)0.0004 (13)0.0087 (12)
C50.0509 (17)0.0615 (18)0.0483 (16)0.0022 (14)0.0082 (13)0.0059 (14)
C60.0555 (18)0.0513 (16)0.0437 (15)0.0025 (13)0.0055 (13)0.0049 (12)
C70.0465 (15)0.0366 (13)0.0382 (13)0.0016 (11)0.0031 (11)0.0019 (10)
C80.0641 (19)0.0370 (14)0.0469 (16)0.0047 (13)0.0107 (14)0.0066 (12)
C90.0461 (16)0.0380 (13)0.0467 (15)0.0009 (11)0.0001 (12)0.0057 (11)
C100.0425 (16)0.0466 (15)0.0578 (18)0.0001 (12)0.0003 (13)0.0024 (13)
C110.0484 (18)0.066 (2)0.0554 (18)0.0119 (15)0.0064 (14)0.0014 (15)
C120.074 (2)0.0520 (18)0.0556 (19)0.0126 (16)0.0075 (17)0.0107 (14)
C130.065 (2)0.0422 (15)0.063 (2)0.0058 (14)0.0029 (16)0.0031 (14)
C140.0538 (18)0.0407 (15)0.0595 (18)0.0018 (12)0.0055 (14)0.0068 (13)
C150.0386 (14)0.0487 (15)0.0462 (15)0.0016 (11)0.0021 (11)0.0100 (12)
C160.0396 (14)0.0449 (14)0.0376 (13)0.0038 (11)0.0036 (11)0.0070 (11)
C170.0516 (17)0.0444 (15)0.0433 (15)0.0017 (12)0.0033 (12)0.0080 (11)
C180.0573 (19)0.0473 (15)0.0509 (16)0.0123 (13)0.0059 (14)0.0119 (13)
C190.0474 (17)0.0665 (19)0.0404 (15)0.0173 (14)0.0049 (12)0.0092 (13)
C200.0432 (16)0.0645 (19)0.0429 (15)0.0063 (13)0.0043 (12)0.0002 (13)
C210.0446 (15)0.0474 (15)0.0393 (14)0.0041 (12)0.0016 (11)0.0011 (11)
C220.075 (2)0.0460 (17)0.085 (3)0.0067 (16)0.011 (2)0.0060 (17)
C230.064 (2)0.096 (3)0.059 (2)0.029 (2)0.0026 (17)0.016 (2)
C240.063 (2)0.0477 (17)0.068 (2)0.0017 (14)0.0176 (16)0.0040 (15)
C250.0530 (17)0.0544 (16)0.0405 (14)0.0090 (13)0.0151 (12)0.0130 (12)
C260.065 (2)0.067 (2)0.0526 (18)0.0138 (16)0.0250 (16)0.0003 (15)
C270.0500 (18)0.0554 (18)0.063 (2)0.0146 (14)0.0140 (15)0.0072 (15)
C280.0449 (16)0.0464 (15)0.0550 (17)0.0198 (12)0.0035 (13)0.0040 (13)
C290.0438 (16)0.0611 (18)0.0520 (17)0.0137 (13)0.0040 (13)0.0016 (14)
C300.0474 (19)0.075 (2)0.089 (3)0.0022 (17)0.0023 (18)0.019 (2)
C310.064 (2)0.0532 (18)0.079 (2)0.0117 (16)0.0245 (18)0.0037 (17)
C320.0547 (18)0.0434 (15)0.0589 (18)0.0036 (13)0.0233 (14)0.0142 (13)
Geometric parameters (Å, º) top
Rh1—C12.022 (3)C16—C171.405 (4)
Rh1—C322.104 (3)C17—C181.392 (4)
Rh1—C252.125 (3)C17—C221.507 (5)
Rh1—C282.210 (3)C18—C191.378 (5)
Rh1—C292.236 (3)C18—H180.9300
Rh1—Br12.4939 (4)C19—C201.388 (5)
F1—C101.334 (4)C19—C231.502 (5)
F2—C111.338 (4)C20—C211.383 (4)
F3—C121.330 (4)C20—H200.9300
F4—C131.341 (4)C21—C241.500 (4)
F5—C141.333 (4)C22—H22A0.9600
N1—C11.357 (3)C22—H22B0.9600
N1—C21.396 (3)C22—H22C0.9600
N1—C151.470 (3)C23—H23A0.9600
N2—C11.356 (4)C23—H23B0.9600
N2—C71.390 (3)C23—H23C0.9600
N2—C81.462 (3)C24—H24A0.9600
C2—C71.387 (4)C24—H24B0.9600
C2—C31.392 (4)C24—H24C0.9600
C3—C41.387 (4)C25—C321.400 (5)
C3—H30.9300C25—C261.525 (4)
C4—C51.394 (5)C25—H250.9800
C4—H40.9300C26—C271.519 (5)
C5—C61.381 (5)C26—H26A0.9700
C5—H50.9300C26—H26B0.9700
C6—C71.386 (4)C27—C281.510 (5)
C6—H60.9300C27—H27A0.9700
C8—C91.508 (4)C27—H27B0.9700
C8—H8A0.9700C28—C291.368 (5)
C8—H8B0.9700C28—H280.9800
C9—C141.376 (4)C29—C301.503 (5)
C9—C101.386 (4)C29—H290.9800
C10—C111.366 (5)C30—C311.535 (6)
C11—C121.379 (5)C30—H30A0.9700
C12—C131.364 (5)C30—H30B0.9700
C13—C141.386 (5)C31—C321.493 (5)
C15—C161.511 (4)C31—H31A0.9700
C15—H15A0.9700C31—H31B0.9700
C15—H15B0.9700C32—H320.9800
C16—C211.401 (4)
C1—Rh1—C3287.86 (12)C19—C18—C17122.4 (3)
C1—Rh1—C2589.00 (11)C19—C18—H18118.8
C32—Rh1—C2538.65 (13)C17—C18—H18118.8
C1—Rh1—C28158.73 (11)C18—C19—C20117.5 (3)
C32—Rh1—C2896.36 (13)C18—C19—C23121.3 (3)
C25—Rh1—C2881.61 (12)C20—C19—C23121.2 (4)
C1—Rh1—C29163.80 (11)C21—C20—C19122.5 (3)
C32—Rh1—C2980.53 (13)C21—C20—H20118.8
C25—Rh1—C2988.93 (13)C19—C20—H20118.8
C28—Rh1—C2935.83 (12)C20—C21—C16119.1 (3)
C1—Rh1—Br194.73 (7)C20—C21—C24118.8 (3)
C32—Rh1—Br1156.50 (9)C16—C21—C24122.1 (3)
C25—Rh1—Br1164.32 (9)C17—C22—H22A109.5
C28—Rh1—Br189.66 (9)C17—C22—H22B109.5
C29—Rh1—Br191.58 (9)H22A—C22—H22B109.5
C1—N1—C2110.9 (2)C17—C22—H22C109.5
C1—N1—C15122.8 (2)H22A—C22—H22C109.5
C2—N1—C15126.2 (2)H22B—C22—H22C109.5
C1—N2—C7111.4 (2)C19—C23—H23A109.5
C1—N2—C8124.3 (2)C19—C23—H23B109.5
C7—N2—C8124.2 (2)H23A—C23—H23B109.5
N2—C1—N1105.5 (2)C19—C23—H23C109.5
N2—C1—Rh1126.03 (19)H23A—C23—H23C109.5
N1—C1—Rh1127.4 (2)H23B—C23—H23C109.5
C7—C2—C3121.2 (3)C21—C24—H24A109.5
C7—C2—N1106.2 (2)C21—C24—H24B109.5
C3—C2—N1132.6 (3)H24A—C24—H24B109.5
C4—C3—C2117.1 (3)C21—C24—H24C109.5
C4—C3—H3121.5H24A—C24—H24C109.5
C2—C3—H3121.5H24B—C24—H24C109.5
C3—C4—C5121.1 (3)C32—C25—C26123.2 (3)
C3—C4—H4119.5C32—C25—Rh169.87 (16)
C5—C4—H4119.5C26—C25—Rh1113.3 (2)
C6—C5—C4122.1 (3)C32—C25—H25114.2
C6—C5—H5119.0C26—C25—H25114.2
C4—C5—H5119.0Rh1—C25—H25114.2
C5—C6—C7116.6 (3)C27—C26—C25113.1 (3)
C5—C6—H6121.7C27—C26—H26A109.0
C7—C6—H6121.7C25—C26—H26A109.0
C6—C7—C2122.0 (3)C27—C26—H26B109.0
C6—C7—N2132.1 (3)C25—C26—H26B109.0
C2—C7—N2106.0 (2)H26A—C26—H26B107.8
N2—C8—C9113.1 (2)C28—C27—C26114.1 (3)
N2—C8—H8A108.9C28—C27—H27A108.7
C9—C8—H8A108.9C26—C27—H27A108.7
N2—C8—H8B108.9C28—C27—H27B108.7
C9—C8—H8B108.9C26—C27—H27B108.7
H8A—C8—H8B107.8H27A—C27—H27B107.6
C14—C9—C10116.4 (3)C29—C28—C27125.5 (3)
C14—C9—C8120.9 (3)C29—C28—Rh173.12 (17)
C10—C9—C8122.6 (3)C27—C28—Rh1107.5 (2)
F1—C10—C11118.3 (3)C29—C28—H28114.2
F1—C10—C9119.3 (3)C27—C28—H28114.2
C11—C10—C9122.4 (3)Rh1—C28—H28114.2
F2—C11—C10120.6 (3)C28—C29—C30125.2 (3)
F2—C11—C12119.4 (3)C28—C29—Rh171.05 (18)
C10—C11—C12120.0 (3)C30—C29—Rh1111.2 (2)
F3—C12—C13120.7 (3)C28—C29—H29113.9
F3—C12—C11120.2 (4)C30—C29—H29113.9
C13—C12—C11119.1 (3)Rh1—C29—H29113.9
F4—C13—C12119.8 (3)C29—C30—C31112.8 (3)
F4—C13—C14120.0 (3)C29—C30—H30A109.0
C12—C13—C14120.2 (3)C31—C30—H30A109.0
F5—C14—C9120.5 (3)C29—C30—H30B109.0
F5—C14—C13117.6 (3)C31—C30—H30B109.0
C9—C14—C13121.9 (3)H30A—C30—H30B107.8
N1—C15—C16113.4 (2)C32—C31—C30113.5 (3)
N1—C15—H15A108.9C32—C31—H31A108.9
C16—C15—H15A108.9C30—C31—H31A108.9
N1—C15—H15B108.9C32—C31—H31B108.9
C16—C15—H15B108.9C30—C31—H31B108.9
H15A—C15—H15B107.7H31A—C31—H31B107.7
C21—C16—C17119.6 (3)C25—C32—C31126.6 (3)
C21—C16—C15120.0 (3)C25—C32—Rh171.48 (17)
C17—C16—C15120.4 (3)C31—C32—Rh1111.9 (2)
C18—C17—C16118.9 (3)C25—C32—H32113.1
C18—C17—C22118.7 (3)C31—C32—H32113.1
C16—C17—C22122.4 (3)Rh1—C32—H32113.1
C7—N2—C1—N11.6 (3)C21—C16—C17—C180.1 (4)
C8—N2—C1—N1173.5 (2)C15—C16—C17—C18180.0 (3)
C7—N2—C1—Rh1167.12 (19)C21—C16—C17—C22179.6 (3)
C8—N2—C1—Rh117.8 (4)C15—C16—C17—C220.4 (4)
C2—N1—C1—N22.0 (3)C16—C17—C18—C191.3 (4)
C15—N1—C1—N2175.5 (2)C22—C17—C18—C19178.3 (3)
C2—N1—C1—Rh1166.44 (19)C17—C18—C19—C201.8 (4)
C15—N1—C1—Rh116.0 (4)C17—C18—C19—C23179.7 (3)
C32—Rh1—C1—N2102.7 (2)C18—C19—C20—C211.0 (4)
C25—Rh1—C1—N264.1 (2)C23—C19—C20—C21179.5 (3)
C28—Rh1—C1—N20.6 (5)C19—C20—C21—C160.3 (4)
C29—Rh1—C1—N2146.8 (4)C19—C20—C21—C24178.6 (3)
Br1—Rh1—C1—N2100.7 (2)C17—C16—C21—C200.9 (4)
C32—Rh1—C1—N163.5 (2)C15—C16—C21—C20179.2 (3)
C25—Rh1—C1—N1102.2 (2)C17—C16—C21—C24178.0 (3)
C28—Rh1—C1—N1165.6 (3)C15—C16—C21—C242.0 (4)
C29—Rh1—C1—N119.5 (6)C1—Rh1—C25—C3287.8 (2)
Br1—Rh1—C1—N193.1 (2)C28—Rh1—C25—C32111.3 (2)
C1—N1—C2—C71.8 (3)C29—Rh1—C25—C3276.1 (2)
C15—N1—C2—C7175.7 (3)Br1—Rh1—C25—C32168.1 (3)
C1—N1—C2—C3178.0 (3)C1—Rh1—C25—C26153.7 (3)
C15—N1—C2—C34.6 (5)C32—Rh1—C25—C26118.5 (3)
C7—C2—C3—C40.1 (4)C28—Rh1—C25—C267.2 (3)
N1—C2—C3—C4179.9 (3)C29—Rh1—C25—C2642.4 (3)
C2—C3—C4—C50.2 (5)Br1—Rh1—C25—C2649.6 (5)
C3—C4—C5—C60.6 (5)C32—C25—C26—C2790.7 (4)
C4—C5—C6—C71.0 (5)Rh1—C25—C26—C2710.2 (4)
C5—C6—C7—C21.0 (5)C25—C26—C27—C2831.3 (5)
C5—C6—C7—N2178.6 (3)C26—C27—C28—C2945.9 (4)
C3—C2—C7—C60.6 (4)C26—C27—C28—Rh135.5 (4)
N1—C2—C7—C6179.6 (3)C1—Rh1—C28—C29164.6 (3)
C3—C2—C7—N2179.1 (3)C32—Rh1—C28—C2964.1 (2)
N1—C2—C7—N20.7 (3)C25—Rh1—C28—C2999.9 (2)
C1—N2—C7—C6179.1 (3)Br1—Rh1—C28—C2993.2 (2)
C8—N2—C7—C65.8 (5)C1—Rh1—C28—C2741.9 (4)
C1—N2—C7—C20.5 (3)C32—Rh1—C28—C2758.6 (2)
C8—N2—C7—C2174.5 (3)C25—Rh1—C28—C2722.8 (2)
C1—N2—C8—C966.3 (4)C29—Rh1—C28—C27122.7 (3)
C7—N2—C8—C9108.2 (3)Br1—Rh1—C28—C27144.1 (2)
N2—C8—C9—C14131.7 (3)C27—C28—C29—C303.4 (5)
N2—C8—C9—C1048.4 (4)Rh1—C28—C29—C30103.1 (3)
C14—C9—C10—F1179.7 (3)C27—C28—C29—Rh199.7 (3)
C8—C9—C10—F10.2 (5)C1—Rh1—C29—C28159.8 (4)
C14—C9—C10—C110.1 (5)C32—Rh1—C29—C28115.0 (2)
C8—C9—C10—C11180.0 (3)C25—Rh1—C29—C2877.1 (2)
F1—C10—C11—F20.3 (5)Br1—Rh1—C29—C2887.2 (2)
C9—C10—C11—F2179.9 (3)C1—Rh1—C29—C3038.5 (6)
F1—C10—C11—C12180.0 (3)C32—Rh1—C29—C306.3 (2)
C9—C10—C11—C120.2 (5)C25—Rh1—C29—C3044.2 (3)
F2—C11—C12—F31.0 (5)C28—Rh1—C29—C30121.3 (3)
C10—C11—C12—F3179.3 (3)Br1—Rh1—C29—C30151.4 (2)
F2—C11—C12—C13179.8 (3)C28—C29—C30—C3191.9 (4)
C10—C11—C12—C130.1 (5)Rh1—C29—C30—C3110.7 (4)
F3—C12—C13—F40.4 (5)C29—C30—C31—C3230.2 (5)
C11—C12—C13—F4178.7 (3)C26—C25—C32—C311.3 (5)
F3—C12—C13—C14179.0 (3)Rh1—C25—C32—C31104.0 (3)
C11—C12—C13—C140.2 (5)C26—C25—C32—Rh1105.3 (3)
C10—C9—C14—F5179.4 (3)C30—C31—C32—C2546.9 (5)
C8—C9—C14—F50.5 (5)C30—C31—C32—Rh135.7 (4)
C10—C9—C14—C130.4 (5)C1—Rh1—C32—C2591.07 (19)
C8—C9—C14—C13179.7 (3)C28—Rh1—C32—C2568.0 (2)
F4—C13—C14—F50.8 (5)C29—Rh1—C32—C25100.3 (2)
C12—C13—C14—F5179.3 (3)Br1—Rh1—C32—C25171.99 (17)
F4—C13—C14—C9179.0 (3)C1—Rh1—C32—C31146.1 (2)
C12—C13—C14—C90.5 (5)C25—Rh1—C32—C31122.8 (3)
C1—N1—C15—C16139.5 (3)C28—Rh1—C32—C3154.8 (2)
C2—N1—C15—C1637.6 (4)C29—Rh1—C32—C3122.6 (2)
N1—C15—C16—C2160.9 (3)Br1—Rh1—C32—C3149.2 (4)
N1—C15—C16—C17119.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···F50.972.392.831 (4)107
C24—H24C···F5i0.962.583.538 (4)176
C27—H27A···F1ii0.972.563.427 (4)149
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[RhBr(C8H12)(C24H19F5N2)]
Mr721.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)10.3364 (3), 21.9437 (9), 12.6549 (4)
β (°) 93.517 (3)
V3)2864.96 (17)
Z4
Radiation typeMo Kα
µ (mm1)2.05
Crystal size (mm)0.59 × 0.44 × 0.34
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionIntegration
(X-RED; Stoe & Cie, 2002)
Tmin, Tmax0.388, 0.548
No. of measured, independent and
observed [I > 2σ(I)] reflections
41451, 6339, 5450
Rint0.040
(sin θ/λ)max1)0.642
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.094, 1.05
No. of reflections6339
No. of parameters374
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.98

Computer programs: X-AREA (Stoe & Cie, 2002), X-AREA, X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Rh1—C12.022 (3)N1—C151.470 (3)
Rh1—C322.104 (3)N2—C71.390 (3)
Rh1—C252.125 (3)N2—C81.462 (3)
Rh1—C282.210 (3)C25—C321.400 (5)
Rh1—C292.236 (3)C28—C291.368 (5)
Rh1—Br12.4939 (4)
C1—Rh1—C3287.86 (12)C1—N2—C7111.4 (2)
C1—Rh1—C2589.00 (11)C1—N2—C8124.3 (2)
C32—Rh1—C2538.65 (13)C7—N2—C8124.2 (2)
C1—Rh1—C28158.73 (11)N2—C1—N1105.5 (2)
C1—Rh1—C29163.80 (11)N2—C1—Rh1126.03 (19)
C28—Rh1—C2935.83 (12)N1—C1—Rh1127.4 (2)
C1—N1—C2110.9 (2)N2—C8—C9113.1 (2)
C1—N1—C15122.8 (2)N1—C15—C16113.4 (2)
C2—N1—C15126.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···F50.972.392.831 (4)107.1
C24—H24C···F5i0.962.583.538 (4)176.0
C27—H27A···F1ii0.972.563.427 (4)148.6
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds