Download citation
Download citation
link to html
The crystal structure of the 2:1 charge-transfer complex of tetrathiafulvalene [2,2'-bis(1,3-dithiolylidene)] and bromanil (tetrabromo-1,4-benzoquinone) [(TTF)2-BA, (C6H4S4)2-C6Br4O2] has been determined by X-ray diffraction at room temperature, 100 and 25 K. No structural phase transition occurs in the temperature range studied. The crystal is made of TTF-BA-TTF sandwich trimers. A charge-transfer estimation between donor and acceptor (0.2 e) molecules is proposed in comparison to the molecular geometries of TTF-BA and TTF and BA isolated molecules. Displacement parameters of the molecules have been modeled with the TLS formalism.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768111015801/gw5013sup1.cif
Contains datablocks 293K, 100K, 25K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768111015801/gw5013293Ksup2.hkl
Contains datablock 293K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768111015801/gw5013100Ksup3.hkl
Contains datablock 100K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768111015801/gw501325Ksup4.hkl
Contains datablock 25K

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108768111015801/gw5013sup5.pdf
Extra figures and tables

CCDC references: 702252; 702253; 702254

Computing details top

Data collection: KappaCCD (Nonius, 1998) for 293K, 100K; Oxford-Xcalibur-Sapphire2 for (25K). Cell refinement: DENZO and Scalepak (Otwinowski & Minor, 1997) for 293K, 100K; Crysalis ((Oxford Diffraction) for (25K). Data reduction: DENZO and Scalepak (Otwinowski & Minor, 1997) for 293K, 100K; Crysalis ((Oxford Diffraction) for (25K). For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
(293K) top
Crystal data top
2(C6H4S4)·(C6Br4O2)F(000) = 800
Mr = 416.20Dx = 2.175 Mg m3
Monoclinic, p21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ynCell parameters from 18082 reflections
a = 10.3653 (7) Åθ = 3.3–31.1°
b = 11.7998 (7) ŵ = 7.01 mm1
c = 11.0749 (7) ÅT = 293 K
β = 110.217 (6)°Prism, black
V = 1271.10 (14) Å30.40 × 0.40 × 0.20 mm
Z = 4
Data collection top
Xcalibur-Saphire2
diffractometer
3761 independent reflections
Radiation source: fine-focus sealed tube2563 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
ϕ scansθmax = 31.1°, θmin = 3.3°
Absorption correction: integration
Absorb, (DeTitta, 1985)
h = 1414
Tmin = 0.113, Tmax = 0.236k = 1716
18082 measured reflectionsl = 1315
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters not refined
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0599P)2 + 0.3946P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.105(Δ/σ)max = 0.001
S = 0.99Δρmax = 0.71 e Å3
3761 reflectionsΔρmin = 0.68 e Å3
145 parameters
Crystal data top
2(C6H4S4)·(C6Br4O2)V = 1271.10 (14) Å3
Mr = 416.20Z = 4
Monoclinic, p21/nMo Kα radiation
a = 10.3653 (7) ŵ = 7.01 mm1
b = 11.7998 (7) ÅT = 293 K
c = 11.0749 (7) Å0.40 × 0.40 × 0.20 mm
β = 110.217 (6)°
Data collection top
Xcalibur-Saphire2
diffractometer
3761 independent reflections
Absorption correction: integration
Absorb, (DeTitta, 1985)
2563 reflections with I > 2σ(I)
Tmin = 0.113, Tmax = 0.236Rint = 0.070
18082 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.105H-atom parameters not refined
S = 0.99Δρmax = 0.71 e Å3
3761 reflectionsΔρmin = 0.68 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3257 (2)0.0088 (2)0.2443 (2)0.0558 (6)
Br10.19828 (3)0.12825 (3)0.08600 (4)0.05842 (13)
Br20.42548 (4)0.15174 (3)0.21763 (3)0.05220 (12)
C10.4037 (3)0.0066 (2)0.1326 (3)0.0412 (6)
C20.3713 (3)0.0571 (2)0.0305 (3)0.0422 (6)
C30.4606 (3)0.0648 (2)0.0903 (3)0.0402 (6)
C80.4008 (3)0.2229 (2)0.1609 (3)0.0409 (6)
C110.3491 (3)0.1604 (3)0.2361 (3)0.0439 (7)
S10.30935 (8)0.24257 (8)0.00368 (8)0.0523 (2)
S20.55757 (8)0.29603 (7)0.21966 (8)0.0479 (2)
S30.43513 (9)0.14084 (8)0.40178 (8)0.0550 (2)
S40.18635 (9)0.09559 (8)0.17603 (10)0.0564 (2)
C70.4300 (4)0.3336 (3)0.0272 (3)0.0552 (8)
H70.41640.36530.10760.066*
C90.5415 (4)0.3567 (3)0.0722 (4)0.0551 (8)
H90.60950.40410.06360.066*
C100.3054 (4)0.0611 (3)0.4251 (4)0.0668 (10)
H100.31340.03390.50620.080*
C120.1940 (4)0.0400 (3)0.3234 (4)0.0659 (11)
H120.12230.00330.33100.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0508 (13)0.0681 (15)0.0383 (13)0.0032 (11)0.0024 (11)0.0051 (11)
Br10.0422 (2)0.0669 (2)0.0614 (3)0.01571 (15)0.01185 (17)0.00400 (17)
Br20.0602 (2)0.04989 (19)0.0503 (2)0.00073 (14)0.02398 (17)0.00987 (14)
C10.0415 (15)0.0405 (15)0.0388 (17)0.0009 (12)0.0104 (13)0.0011 (12)
C20.0365 (14)0.0398 (14)0.0455 (18)0.0035 (11)0.0083 (13)0.0019 (13)
C30.0465 (15)0.0328 (13)0.0414 (17)0.0006 (12)0.0154 (13)0.0025 (12)
C80.0342 (13)0.0452 (15)0.0384 (16)0.0034 (12)0.0061 (12)0.0000 (12)
C110.0397 (15)0.0463 (15)0.0446 (18)0.0012 (12)0.0130 (13)0.0022 (13)
S10.0461 (4)0.0621 (5)0.0376 (4)0.0048 (4)0.0002 (3)0.0009 (4)
S20.0404 (4)0.0547 (4)0.0415 (4)0.0038 (3)0.0051 (3)0.0026 (3)
S30.0562 (5)0.0669 (5)0.0424 (5)0.0031 (4)0.0178 (4)0.0068 (4)
S40.0437 (4)0.0576 (5)0.0693 (6)0.0072 (4)0.0215 (4)0.0107 (4)
C70.076 (2)0.0529 (19)0.0392 (18)0.0041 (17)0.0224 (17)0.0042 (14)
C90.064 (2)0.0496 (18)0.057 (2)0.0028 (15)0.0267 (18)0.0056 (15)
C100.077 (3)0.065 (2)0.075 (3)0.0093 (19)0.047 (2)0.018 (2)
C120.062 (2)0.055 (2)0.096 (3)0.0025 (17)0.048 (2)0.008 (2)
Geometric parameters (Å, º) top
O1—C11.222 (3)C11—S41.760 (3)
Br1—C21.880 (3)S1—C71.735 (4)
Br2—C31.878 (3)S2—C91.737 (4)
C1—C3i1.487 (4)S3—C101.733 (4)
C1—C21.490 (4)S4—C121.735 (4)
C2—C31.342 (4)C7—C91.321 (5)
C3—C1i1.487 (4)C7—H70.9300
C8—C111.354 (4)C9—H90.9300
C8—S21.754 (3)C10—C121.328 (6)
C8—S11.755 (3)C10—H100.9300
C11—S31.756 (3)C12—H120.9300
O1—C1—C3i122.1 (3)C9—S2—C894.49 (16)
O1—C1—C2122.3 (3)C10—S3—C1195.01 (19)
C3i—C1—C2115.5 (2)C12—S4—C1194.71 (18)
C3—C2—C1122.1 (3)C9—C7—S1118.1 (3)
C3—C2—Br1123.2 (2)C9—C7—H7120.9
C1—C2—Br1114.6 (2)S1—C7—H7120.9
C2—C3—C1i122.3 (3)C7—C9—S2118.1 (3)
C2—C3—Br2122.6 (2)C7—C9—H9121.0
C1i—C3—Br2115.0 (2)S2—C9—H9121.0
C11—C8—S2123.5 (2)C12—C10—S3117.8 (3)
C11—C8—S1121.6 (2)C12—C10—H10121.1
S2—C8—S1114.78 (17)S3—C10—H10121.1
C8—C11—S3123.3 (2)C10—C12—S4118.1 (3)
C8—C11—S4122.4 (2)C10—C12—H12121.0
S3—C11—S4114.33 (18)S4—C12—H12121.0
C7—S1—C894.54 (16)
O1—C1—C2—C3176.0 (3)S2—C8—S1—C70.6 (2)
C3i—C1—C2—C32.3 (4)C11—C8—S2—C9176.6 (3)
O1—C1—C2—Br12.4 (4)S1—C8—S2—C90.2 (2)
C3i—C1—C2—Br1179.28 (19)C8—C11—S3—C10177.8 (3)
C1—C2—C3—C1i2.4 (5)S4—C11—S3—C100.2 (2)
Br1—C2—C3—C1i179.3 (2)C8—C11—S4—C12178.2 (3)
C1—C2—C3—Br2176.3 (2)S3—C11—S4—C120.2 (2)
Br1—C2—C3—Br22.0 (4)C8—S1—C7—C91.0 (3)
S2—C8—C11—S32.1 (4)S1—C7—C9—S21.1 (4)
S1—C8—C11—S3178.63 (16)C8—S2—C9—C70.5 (3)
S2—C8—C11—S4175.81 (16)C11—S3—C10—C120.6 (3)
S1—C8—C11—S40.8 (4)S3—C10—C12—S40.9 (5)
C11—C8—S1—C7176.3 (3)C11—S4—C12—C100.6 (3)
Symmetry code: (i) x+1, y, z.
(100K) top
Crystal data top
2(C6H4S4)·(C6Br4O2)F(000) = 800
Mr = 416.20Dx = 2.241 Mg m3
Monoclinic, p21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ynCell parameters from 51302 reflections
a = 10.2781 (9) Åθ = 3.4–31.1°
b = 11.5982 (8) ŵ = 7.22 mm1
c = 11.0418 (9) ÅT = 100 K
β = 110.434 (8)°Prism, black
V = 1233.44 (17) Å30.40 × 0.40 × 0.20 mm
Z = 4
Data collection top
Xcalibur-Saphire2
diffractometer
3972 independent reflections
Radiation source: fine-focus sealed tube3905 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ϕ scansθmax = 31.1°, θmin = 3.4°
Absorption correction: integration
Absorb, (DeTitta, 1985)
h = 1414
Tmin = 0.086, Tmax = 0.282k = 1616
51302 measured reflectionsl = 1516
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters not refined
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0599P)2 + 0.3946P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.083(Δ/σ)max = 0.001
S = 1.12Δρmax = 1.31 e Å3
3761 reflectionsΔρmin = 0.70 e Å3
145 parameters
Crystal data top
2(C6H4S4)·(C6Br4O2)V = 1233.44 (17) Å3
Mr = 416.20Z = 4
Monoclinic, p21/nMo Kα radiation
a = 10.2781 (9) ŵ = 7.22 mm1
b = 11.5982 (8) ÅT = 100 K
c = 11.0418 (9) Å0.40 × 0.40 × 0.20 mm
β = 110.434 (8)°
Data collection top
Xcalibur-Saphire2
diffractometer
3972 independent reflections
Absorption correction: integration
Absorb, (DeTitta, 1985)
3905 reflections with I > 2σ(I)
Tmin = 0.086, Tmax = 0.282Rint = 0.059
51302 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.083H-atom parameters not refined
S = 1.12Δρmax = 1.31 e Å3
3761 reflectionsΔρmin = 0.70 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.32390 (17)0.00682 (15)0.24724 (16)0.0218 (3)
Br10.19466 (2)0.13098 (2)0.08665 (2)0.02120 (7)
Br20.42377 (2)0.152668 (18)0.21952 (2)0.01911 (7)
C10.4028 (2)0.00561 (18)0.1342 (2)0.0173 (3)
C20.3688 (2)0.05780 (18)0.0314 (2)0.0172 (3)
C30.4598 (2)0.06521 (17)0.0919 (2)0.0168 (3)
C80.4030 (2)0.21988 (18)0.1589 (2)0.0170 (3)
C110.3511 (2)0.15768 (19)0.2361 (2)0.0180 (4)
S10.30860 (6)0.23785 (5)0.00639 (5)0.01955 (11)
S20.56075 (5)0.29656 (5)0.21720 (5)0.01841 (10)
S30.43916 (6)0.14075 (5)0.40332 (5)0.02055 (11)
S40.18647 (6)0.09187 (5)0.17688 (5)0.02073 (11)
C70.4274 (3)0.3335 (2)0.0334 (2)0.0217 (4)
H70.41120.36660.11600.026*
C90.5425 (3)0.35789 (19)0.0678 (2)0.0209 (4)
H90.61210.40720.05830.025*
C100.3074 (3)0.0619 (2)0.4299 (2)0.0241 (4)
H100.31610.03620.51410.029*
C120.1927 (3)0.0388 (2)0.3270 (2)0.0240 (4)
H120.11810.00460.33570.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0208 (7)0.0249 (8)0.0162 (7)0.0025 (6)0.0021 (6)0.0004 (6)
Br10.01761 (11)0.02410 (12)0.02058 (11)0.00495 (7)0.00502 (8)0.00094 (7)
Br20.02177 (11)0.01867 (11)0.01796 (11)0.00007 (7)0.00829 (8)0.00280 (7)
C10.0182 (8)0.0167 (8)0.0167 (8)0.0012 (7)0.0058 (7)0.0005 (6)
C20.0162 (8)0.0164 (8)0.0179 (8)0.0027 (7)0.0045 (7)0.0002 (7)
C30.0175 (8)0.0153 (8)0.0173 (8)0.0011 (6)0.0059 (7)0.0009 (6)
C80.0155 (8)0.0187 (8)0.0154 (8)0.0002 (7)0.0037 (6)0.0005 (7)
C110.0182 (9)0.0194 (9)0.0164 (8)0.0009 (7)0.0059 (7)0.0009 (7)
S10.0184 (2)0.0221 (2)0.0153 (2)0.00063 (17)0.00225 (17)0.00021 (17)
S20.0174 (2)0.0198 (2)0.0161 (2)0.00102 (17)0.00351 (17)0.00056 (16)
S30.0214 (2)0.0240 (2)0.0164 (2)0.00058 (18)0.00676 (18)0.00183 (17)
S40.0184 (2)0.0213 (2)0.0229 (2)0.00219 (18)0.00781 (18)0.00280 (18)
C70.0267 (10)0.0219 (9)0.0164 (9)0.0017 (8)0.0075 (8)0.0014 (7)
C90.0242 (10)0.0200 (9)0.0199 (9)0.0000 (7)0.0092 (8)0.0012 (7)
C100.0286 (11)0.0236 (10)0.0247 (10)0.0031 (8)0.0152 (9)0.0047 (8)
C120.0251 (10)0.0207 (9)0.0311 (11)0.0018 (8)0.0158 (9)0.0040 (8)
Geometric parameters (Å, º) top
O1—C11.229 (3)C11—S31.761 (2)
Br1—C21.880 (2)S1—C71.750 (2)
Br2—C31.876 (2)S2—C91.746 (2)
C1—C21.493 (3)S3—C101.742 (3)
C1—C3i1.493 (3)S4—C121.748 (3)
C2—C31.358 (3)C7—C91.344 (3)
C3—C1i1.493 (3)C7—H70.9500
C8—C111.360 (3)C9—H90.9500
C8—S11.755 (2)C10—C121.348 (4)
C8—S21.763 (2)C10—H100.9500
C11—S41.761 (2)C12—H120.9500
O1—C1—C2122.12 (19)C9—S2—C894.52 (11)
O1—C1—C3i121.97 (19)C10—S3—C1195.17 (11)
C2—C1—C3i115.89 (17)C12—S4—C1195.05 (11)
C3—C2—C1122.08 (18)C9—C7—S1117.14 (17)
C3—C2—Br1122.77 (16)C9—C7—H7121.4
C1—C2—Br1115.12 (14)S1—C7—H7121.4
C2—C3—C1i121.97 (18)C7—C9—S2118.21 (18)
C2—C3—Br2122.65 (16)C7—C9—H9120.9
C1i—C3—Br2115.37 (14)S2—C9—H9120.9
C11—C8—S1121.32 (16)C12—C10—S3117.69 (18)
C11—C8—S2123.42 (16)C12—C10—H10121.2
S1—C8—S2115.09 (12)S3—C10—H10121.2
C8—C11—S4122.23 (17)C10—C12—S4117.46 (18)
C8—C11—S3123.10 (17)C10—C12—H12121.3
S4—C11—S3114.63 (12)S4—C12—H12121.3
C7—S1—C895.00 (10)
O1—C1—C2—C3175.7 (2)S2—C8—S1—C70.94 (14)
C3i—C1—C2—C32.8 (3)C11—C8—S2—C9175.2 (2)
O1—C1—C2—Br12.0 (3)S1—C8—S2—C90.11 (14)
C3i—C1—C2—Br1179.46 (14)C8—C11—S3—C10177.0 (2)
C1—C2—C3—C1i3.0 (3)S4—C11—S3—C100.76 (14)
Br1—C2—C3—C1i179.46 (15)C8—C11—S4—C12177.3 (2)
C1—C2—C3—Br2175.80 (16)S3—C11—S4—C120.44 (14)
Br1—C2—C3—Br21.7 (3)C8—S1—C7—C91.8 (2)
S1—C8—C11—S40.4 (3)S1—C7—C9—S22.1 (3)
S2—C8—C11—S4174.65 (12)C8—S2—C9—C71.2 (2)
S1—C8—C11—S3177.99 (12)C11—S3—C10—C120.9 (2)
S2—C8—C11—S32.9 (3)S3—C10—C12—S40.8 (3)
C11—C8—S1—C7174.49 (19)C11—S4—C12—C100.2 (2)
Symmetry code: (i) x+1, y, z.
(25K) top
Crystal data top
2(C6H4S4)·(C6Br4O2)F(000) = 800
Mr = 416.20Dx = 2.274 Mg m3
Monoclinic, p21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ynCell parameters from 48219 reflections
a = 10.2507 (6) Åθ = 3.4–31.3°
b = 11.5276 (9) ŵ = 7.33 mm1
c = 10.9799 (9) ÅT = 25 K
β = 110.446 (7)°Prism, black
V = 1215.71 (15) Å30.40 × 0.40 × 0.20 mm
Z = 4
Data collection top
Xcalibur-Saphire2
diffractometer
3936 independent reflections
Radiation source: fine-focus sealed tube3775 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ϕ scansθmax = 31.3°, θmin = 3.4°
Absorption correction: integration
Absorb, (DeTitta, 1985)
h = 1414
Tmin = 0.009, Tmax = 0.233k = 1616
48219 measured reflectionsl = 1115
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters not refined
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0599P)2 + 0.3946P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.004
3936 reflectionsΔρmax = 0.96 e Å3
145 parametersΔρmin = 0.82 e Å3
0 restraints
Crystal data top
2(C6H4S4)·(C6Br4O2)V = 1215.71 (15) Å3
Mr = 416.20Z = 4
Monoclinic, p21/nMo Kα radiation
a = 10.2507 (6) ŵ = 7.33 mm1
b = 11.5276 (9) ÅT = 25 K
c = 10.9799 (9) Å0.40 × 0.40 × 0.20 mm
β = 110.446 (7)°
Data collection top
Xcalibur-Saphire2
diffractometer
3936 independent reflections
Absorption correction: integration
Absorb, (DeTitta, 1985)
3775 reflections with I > 2σ(I)
Tmin = 0.009, Tmax = 0.233Rint = 0.072
48219 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.067H-atom parameters not refined
S = 1.10Δρmax = 0.96 e Å3
3936 reflectionsΔρmin = 0.82 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.32363 (15)0.00595 (11)0.24795 (14)0.0134 (3)
Br10.193894 (18)0.131713 (15)0.086677 (19)0.01139 (6)
Br20.423560 (18)0.152853 (15)0.220293 (18)0.01086 (6)
C10.40243 (19)0.00520 (15)0.13488 (19)0.0115 (3)
C20.36854 (19)0.05796 (15)0.03138 (19)0.0120 (3)
C30.45970 (19)0.06499 (15)0.09205 (19)0.0111 (3)
C80.40374 (19)0.21919 (15)0.15853 (19)0.0119 (3)
C110.3517 (2)0.15724 (15)0.2366 (2)0.0118 (3)
S10.30851 (5)0.23682 (4)0.00716 (5)0.01197 (9)
S20.56155 (5)0.29683 (4)0.21667 (5)0.01155 (9)
S30.44022 (5)0.14099 (4)0.40379 (5)0.01219 (9)
S40.18652 (5)0.09095 (4)0.17720 (5)0.01217 (9)
C70.4273 (2)0.33319 (16)0.0347 (2)0.0132 (3)
H70.41090.36630.11790.016*
C90.5426 (2)0.35823 (15)0.0670 (2)0.0129 (3)
H90.61200.40820.05730.016*
C100.3072 (2)0.06247 (16)0.4310 (2)0.0135 (3)
H100.31560.03730.51580.016*
C120.1932 (2)0.03898 (16)0.3284 (2)0.0140 (3)
H120.11850.00450.33760.017*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0122 (6)0.0135 (6)0.0132 (7)0.0004 (5)0.0026 (5)0.0005 (5)
Br10.00935 (9)0.01210 (9)0.01200 (10)0.00144 (5)0.00281 (7)0.00026 (6)
Br20.01060 (9)0.01075 (8)0.01117 (10)0.00004 (5)0.00371 (7)0.00087 (5)
C10.0106 (7)0.0113 (7)0.0129 (9)0.0003 (6)0.0044 (6)0.0001 (6)
C20.0105 (8)0.0103 (7)0.0149 (9)0.0008 (6)0.0041 (7)0.0001 (6)
C30.0104 (8)0.0100 (7)0.0131 (9)0.0003 (6)0.0043 (7)0.0015 (6)
C80.0098 (8)0.0127 (7)0.0119 (9)0.0001 (6)0.0020 (7)0.0002 (6)
C110.0105 (8)0.0122 (7)0.0116 (9)0.0003 (6)0.0024 (7)0.0003 (6)
S10.01028 (19)0.01286 (18)0.0114 (2)0.00050 (14)0.00211 (16)0.00027 (15)
S20.01009 (19)0.01212 (18)0.0114 (2)0.00070 (14)0.00248 (16)0.00032 (15)
S30.0112 (2)0.01347 (19)0.0113 (2)0.00028 (14)0.00323 (17)0.00070 (14)
S40.01034 (19)0.01277 (19)0.0130 (2)0.00099 (14)0.00357 (16)0.00057 (15)
C70.0152 (8)0.0132 (7)0.0120 (9)0.0000 (6)0.0057 (7)0.0003 (6)
C90.0133 (8)0.0128 (7)0.0132 (9)0.0002 (6)0.0051 (7)0.0008 (6)
C100.0142 (8)0.0139 (8)0.0145 (9)0.0003 (6)0.0076 (7)0.0006 (6)
C120.0132 (8)0.0138 (7)0.0159 (9)0.0002 (6)0.0062 (7)0.0019 (6)
Geometric parameters (Å, º) top
O1—C11.222 (2)C11—S41.7617 (19)
Br1—C21.8807 (18)S1—C71.7510 (19)
Br2—C31.8736 (18)S2—C91.737 (2)
C1—C21.489 (3)S3—C101.7470 (19)
C1—C3i1.493 (3)S4—C121.744 (2)
C2—C31.353 (3)C7—C91.343 (3)
C3—C1i1.493 (3)C7—H70.9500
C8—C111.360 (3)C9—H90.9500
C8—S11.750 (2)C10—C121.337 (3)
C8—S21.7618 (19)C10—H100.9500
C11—S31.750 (2)C12—H120.9500
O1—C1—C2122.08 (17)C9—S2—C894.54 (9)
O1—C1—C3i122.26 (16)C10—S3—C1194.87 (9)
C2—C1—C3i115.64 (16)C12—S4—C1194.77 (9)
C3—C2—C1122.00 (16)C9—C7—S1117.13 (15)
C3—C2—Br1122.86 (14)C9—C7—H7121.4
C1—C2—Br1115.09 (14)S1—C7—H7121.4
C2—C3—C1i122.29 (16)C7—C9—S2118.29 (15)
C2—C3—Br2122.43 (14)C7—C9—H9120.9
C1i—C3—Br2115.26 (13)S2—C9—H9120.9
C11—C8—S1121.14 (15)C12—C10—S3117.75 (15)
C11—C8—S2123.45 (15)C12—C10—H10121.1
S1—C8—S2115.20 (10)S3—C10—H10121.1
C8—C11—S3122.90 (15)C10—C12—S4117.68 (15)
C8—C11—S4122.15 (16)C10—C12—H12121.2
S3—C11—S4114.92 (11)S4—C12—H12121.2
C8—S1—C794.83 (9)
O1—C1—C2—C3175.64 (17)S2—C8—S1—C70.80 (12)
C3i—C1—C2—C32.9 (3)C11—C8—S2—C9174.61 (17)
O1—C1—C2—Br11.9 (2)S1—C8—S2—C90.07 (12)
C3i—C1—C2—Br1179.51 (12)C8—C11—S3—C10176.92 (17)
C1—C2—C3—C1i3.1 (3)S4—C11—S3—C101.16 (12)
Br1—C2—C3—C1i179.50 (13)C8—C11—S4—C12177.34 (17)
C1—C2—C3—Br2175.56 (13)S3—C11—S4—C120.75 (12)
Br1—C2—C3—Br21.8 (2)C8—S1—C7—C91.54 (17)
S1—C8—C11—S3177.87 (10)S1—C7—C9—S21.8 (2)
S2—C8—C11—S33.5 (2)C8—S2—C9—C71.03 (17)
S1—C8—C11—S40.1 (2)C11—S3—C10—C121.31 (17)
S2—C8—C11—S4174.44 (10)S3—C10—C12—S41.0 (2)
C11—C8—S1—C7174.01 (16)C11—S4—C12—C100.15 (17)
Symmetry code: (i) x+1, y, z.

Experimental details

(293K)(100K)(25K)
Crystal data
Chemical formula2(C6H4S4)·(C6Br4O2)2(C6H4S4)·(C6Br4O2)2(C6H4S4)·(C6Br4O2)
Mr416.20416.20416.20
Crystal system, space groupMonoclinic, p21/nMonoclinic, p21/nMonoclinic, p21/n
Temperature (K)29310025
a, b, c (Å)10.3653 (7), 11.7998 (7), 11.0749 (7)10.2781 (9), 11.5982 (8), 11.0418 (9)10.2507 (6), 11.5276 (9), 10.9799 (9)
β (°) 110.217 (6) 110.434 (8) 110.446 (7)
V3)1271.10 (14)1233.44 (17)1215.71 (15)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)7.017.227.33
Crystal size (mm)0.40 × 0.40 × 0.200.40 × 0.40 × 0.200.40 × 0.40 × 0.20
Data collection
DiffractometerXcalibur-Saphire2
diffractometer
Xcalibur-Saphire2
diffractometer
Xcalibur-Saphire2
diffractometer
Absorption correctionIntegration
Absorb, (DeTitta, 1985)
Integration
Absorb, (DeTitta, 1985)
Integration
Absorb, (DeTitta, 1985)
Tmin, Tmax0.113, 0.2360.086, 0.2820.009, 0.233
No. of measured, independent and
observed [I > 2σ(I)] reflections
18082, 3761, 2563 51302, 3972, 3905 48219, 3936, 3775
Rint0.0700.0590.072
(sin θ/λ)max1)0.7270.7270.730
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.105, 0.99 0.033, 0.083, 1.12 0.025, 0.067, 1.10
No. of reflections376137613936
No. of parameters145145145
H-atom treatmentH-atom parameters not refinedH-atom parameters not refinedH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.71, 0.681.31, 0.700.96, 0.82

Computer programs: KappaCCD (Nonius, 1998), Oxford-Xcalibur-Sapphire2, DENZO and Scalepak (Otwinowski & Minor, 1997), Crysalis ((Oxford Diffraction), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).

 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds