Download citation
Download citation
link to html
The structures of three related keto diester and diester ylides, namely diethyl 3-oxo-2-(triphenyl­phosphoranyl­idene)­glu­tar­ate, C27H27O5P, (I), diethyl 3-oxo-2-(triphenyl­phosphoranyl­idene)glutarate acetic acid monosolvate, C27H27O5P·C2H4O2, (II), and diethyl 2-(triphenyl­phosphoranyl­idene)succinate, C26H27O4P, (III), are presented. The syn-keto anti-ester conformations in the crystalline keto diesters are governed by electronic delocalization between the P—C and ylidic bonds and an acyl group, and by intra- and inter­molecular inter­actions. There are also intra­molecular attractive and repulsive inter­actions of different types (C—H...O and C—H...π) controlling the mol­ecular conformations. The mono-ylidic diester (III) has an anti-ester conformation, while those for (I) and (II) are related to pyrolytic formation of acetyl­ene derivatives. The terminal nonylidic ester group in (I) was disordered over two sets of almost equally populated positions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111027508/gt3033sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111027508/gt3033Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111027508/gt3033IIsup3.hkl
Contains datablock PS2II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111027508/gt3033IIIsup4.hkl
Contains datablock III

CCDC references: 842153; 842154; 842155

Comment top

The conformations of triphenylphosphonium ylides with a single keto or ester group conjugated with the ylidic double bond are best established by X-ray crystallography, provided that suitable crystals can be isolated, or else inferred from NMR or IR spectroscopy (Bachrach & Nitsche, 1994). The ylidic residue is typically close to planar, with electronic delocalization involving the P atom, the ylidic C atom and the associated acyl group. The conformations are designated as syn or anti, depending on the orientation of the acyl group, either towards or away from the P atom (Aitken et al., 2000) [part (a) of second scheme]. However, these classical representations of structures with a CP double bond are inadequate in that they neglect electronic delocalizations. The existence of zwitterionic structures with extensive delocalization [part (b) of second scheme] provides due evidence of this fact (Bachrach, 1992). In addition, conformations with two acyl groups could be synsyn, synanti or antianti (Aitken et al. 2000) [part (c) of second scheme].

Only synanti and antianti conformers of aliphatic diacyl derivatives have been observed to date and the latter only with a few diesters (Castañeda et al., 2001, 2005). The situation is more complicated with different acyl groups, but generally in aliphatic keto esters the ester acyl group is anti and the keto acyl group syn (Castañeda et al., 2001, 2003). In mixed aliphatic diesters, the smaller ester group is usually syn and the large group anti with respect to P (Castañeda et al., 2009a,b). These generalizations do not apply when aryl groups are present in the ylidic residue, where electronic delocalization and steric effects have to be considered, nor to some diylides with bulky structures (Aitken et al., 2000).

The present work involves three triphenyl phosphonium ylides: two keto diesters, diethyl 3-oxo-2-(triphenylphosphoranylidene)glutarate, C27H27O5P, (I), and diethyl 3-oxo-2-(triphenylphosphoranylidene)glutarate acetic acid solvate, C29H31O7P, (II), and one diester, diethyl 2-(triphenylphosphoranylidene)succinate, C26H27O4P, (III), with one ylidic and one nonylidic ester group. These ylides were prepared in order to examine whether nonylidic external carboxylic ester groups affect the conformations of the ylidic moieties in the crystal structures.

Figs. 1(a), 2(a) and 3(a) show the corresponding molecular views and the atomic labelling schemes used for (I), (II) and (III), respectively. These three ylides share common features, in particular a slightly distorted tetrahedral arragement around the P atom, with the phenyl groups in a propeller-like disposition, as observed for stabilized keto ester ylides (Castañeda et al., 2001). The sums of the angles about the ylidic atom C1 are very near the ideal 360°, consistent with sp2 hybridization [357.99 (42)° in (I), 358.62 (48)° in (II) and 359.93 (45)° in (III)] in a near trigonal-planar geometry.

The P—C1 bond lengths [mean = 1.74 (2) Å] lie between accepted values for single and double bonds (1.80–1.83 Å and 1.66 Å, respectively; Howells et al., 1973) due to electronic delocalization which shortens C1—C2 (in all three structures) and C1—C3 [in (I) and (II)]. The ylidic keto carbonyl bonds are longer than the typical value of 1.21 Å [C3—O4 = 1.239 (2)–1.254 (2) Å] for keto-ester, diester and diketo ylides (Castañeda et al., 2001, 2005).

In the crystalline stabilized ylides (I)–(II), the keto O atom and the ylidic alkoxy groups are oriented towards P with syn-keto and anti-ester conformations, respectively. (Figs. 1–2). A syn-keto conformation is also established by pyrolysis of diketo or keto ester-ylides, i.e. (I), where syn-keto conformations are required to form keto or ester acetylenes, respectively (Gough & Trippett, 1962; Chopard et al. 1965).

Coplanarity between the ylidic keto carbonyl and ester carbonyl units in (I) and (II) is indicated by their torsion angles. The P—C—C—O torsion angles are close to -2.5° for the keto group and near to 167° for the ester carbonyl, showing stronger delocalization of the keto group. The keto and ester carbonyl groups in (I) and (II) have opposite orientations, which reduces dipole–dipole repulsions, and the keto O atoms are within 2.88–2.91 Å of P, i.e. within the sum of the van der Waals radii (Standard reference?), and favourable interactions should stabilize the conformer. The ester groups in (I)–(III) have the typical Z conformation (Eliel & Wilen, 1994) and are approximately in the ylidic plane.

The keto diester ylide solvate, (II), was prepared because acetic acid can promote the formation of good single crystals (Abel et al. 1989) and new intermolecular interactions could modify the syn-keto anti-ester conformation of ylide (I). However, (II) is a 1:1 ylide solvate with intermolecular hydrogen-bond interactions and syn-keto anti-ester conformations as in (I).

The anti-ester conformations in crystalline ylides (I)–(III) (Figs. 1–3) do not depend on the presence of a syn-keto group and could be favoured by alkoxy O···P interactions, an attractive C—H···π effect (Nishio et al. 1995) or the absence of nonbonded steric repulsion between alkoxy ylidic and nonylidic ester groups. In the crystal structure and in solution (1H NMR), the structures present one alkoxy group syn to P directed towards the face of a phenyl group which is approximately orthogonal to the ylidic C—P bond with a modestly stabilizing C—H···π interaction (Nishio et al. 1995; Nishio & Hirota, 1989). The crystalline structure of the mono ylidic diester, (III), determined by X-ray crystallography showed an anti-ester conformation with a contact distance of 2.8177 (15) Å between atoms P1 and O1.

The nonbonding interactions in (I), (II) and (III) are quite different in all three structures. Compound (III) presents only one close P···O contact [P1..O1 = 2.818 (2) Å] and one moderate C—H···O intermolecular bond (Table 6), the remaining interactions being mostly van der Waals. Compounds (I) and (II), instead, display a large number of stabilizing nonbonding contacts of diverse nature and strength. There are two short intramolecular P···O in each [P1···O1 = 2.877 (2) Å and P1···O4 = 2.879 (2) Å in (I); P1···O1 = 2.888 (2) Å and P1···O4 = 2.915 (2) Å in (II)], many conventional and non-conventional hydrogen bonds and C—H···π contacts (both intra- and intermolecular) (Tables 2 and 4) and some π···π stacking interactions between aromatic rings (Tables 7 and 8). All these contacts are presented schematically in Figs. 1(b), 2(b) and 3(b), and their inspection confirms a final three-dimensional packing structure for (I) and (II), but a much simpler one-dimensional (chain-like) structure for (III).

Related literature top

For related literature, see: Abel et al. (1989); Aitken et al. (2000); Bachrach (1992); Bachrach & Nitsche (1994); Castañeda et al. (2001, 2003, 2005, 2009a, 2009b); Chopard et al. (1965); Eliel & Wilen (1994); Gough & Trippett (1962); Howells et al. (1973); Nishio & Hirota (1989); Nishio et al. (1995).

Experimental top

Diethyl 3-oxo-2-(triphenylphosphoranylidene)glutarate, (I) (m.p. 379 K, yield 68%), was prepared by reaction of carbethoxy methylene triphenylphosphorane, Ph3PCH—CO2Et, with ethyl malonyl chloride in dry benzene at room temperature. Recrystallization of (I) from ethyl acetate–hexane (1:1 v/v) and then from acetic acid gave the solvate (II) (m.p. 433 K, yield 72%). Diethyl 2-(triphenylphosphoranylidene)succinate, (III) [m.p. 370 K, recrystallized from ethyl acetate–hexane (1:1 v/v), yield 71%], was synthesized by transylidation of Ph3PCH—CO2Et with ethyl 2-bromoacetate in dry ethyl acetate at 313 K for 4 h. Elemental analyses using a Fison EA 1108 analyser agreed with the determined structures of ylides (I)–(III).

Refinement top

All H atoms were located from difference Fourier maps but were given different treatment. H atoms bonded to C atoms were re-positioned at their geometrically expected locations and allowed to ride, with C—H = 0.95–0.99 Å. The acetic acid H atom bonded to O in (II) was refined with a restrained O—H distance of 0.85 (2) Å. In all cases, Uiso(H) = 1.2 or 1.5Ueq(host). The terminal nonylidic ester group in (I) appeared disordered in two almost equally populated moieties. They were refined with soft similarity restraints on both interatomic distances and displacement factors; refinement of the occupancy factors converged to 0.547 (3)/0.453 (3).

Computing details top

For all compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular diagrams for (I), (a) showing the atomic numbering scheme and (b) showing the nonbonding interactions. Displacement ellipsoids are drawn at the ??% probability level. [Please complete] Narrow broken lines denote P···O contacts, double broken lines intermolecular interactions and thick broken lines intramolecular bonds. [Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y + 2, -z + 1; (iii) x + 1, y + 1, z; (iv) -x, -y + 1, -z.]
[Figure 2] Fig. 2. Molecular diagrams for (II), (a) showing the atomic numbering scheme and (b) showing the nonbonding interactions. Displacement ellipsoids are drawn at the ??% probability level. [Please complete] Narrow broken lines denote P···O contacts, double broken lines intermolecular interactions and thick broken lines intramolecular bonds. [Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y + 1, -z + 1; (iii) -x, -y + 1, -z; (iv) x + 1, y, z; (v) -x, 1 - y, 1 - z.]
[Figure 3] Fig. 3. : Molecular diagrams for (III), (a) showing the atomic numbering scheme and (b) showing the nonbonding interactions. Displacement ellipsoids are drawn at the ??% probability level. [Please complete] Narrow broken lines denote P···O contacts, double broken lines intermolecular interactions and thick broken lines intramolecular bonds. [Symmetry code: (i) -x + 3/2, y - 1/2, z.]
(I) diethyl 3-oxo-2-(triphenylphosphoranylidene)glutarate top
Crystal data top
C27H27O5PZ = 2
Mr = 462.46F(000) = 488
Triclinic, P1Dx = 1.324 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0348 (10) ÅCell parameters from 999 reflections
b = 10.3770 (11) Åθ = 4.7–50.4°
c = 13.8951 (15) ŵ = 0.16 mm1
α = 95.994 (2)°T = 150 K
β = 108.342 (2)°Block, colourless
γ = 107.304 (2)°0.46 × 0.26 × 0.19 mm
V = 1152.0 (2) Å3
Data collection top
Bruker SMART? CCD area-detector
diffractometer
4935 independent reflections
Radiation source: fine-focus sealed tube4077 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 27.8°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1111
Tmin = 0.95, Tmax = 0.97k = 1313
9669 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0842P)2 + 0.1991P]
where P = (Fo2 + 2Fc2)/3
4935 reflections(Δ/σ)max < 0.001
344 parametersΔρmax = 1.05 e Å3
122 restraintsΔρmin = 0.36 e Å3
Crystal data top
C27H27O5Pγ = 107.304 (2)°
Mr = 462.46V = 1152.0 (2) Å3
Triclinic, P1Z = 2
a = 9.0348 (10) ÅMo Kα radiation
b = 10.3770 (11) ŵ = 0.16 mm1
c = 13.8951 (15) ÅT = 150 K
α = 95.994 (2)°0.46 × 0.26 × 0.19 mm
β = 108.342 (2)°
Data collection top
Bruker SMART? CCD area-detector
diffractometer
4935 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
4077 reflections with I > 2σ(I)
Tmin = 0.95, Tmax = 0.97Rint = 0.021
9669 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050122 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.09Δρmax = 1.05 e Å3
4935 reflectionsΔρmin = 0.36 e Å3
344 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.43699 (5)0.76211 (5)0.22355 (3)0.01890 (15)
O10.60655 (18)0.57204 (15)0.28402 (12)0.0319 (3)
O20.85107 (17)0.68184 (15)0.26865 (12)0.0357 (4)
O40.69330 (17)1.02793 (14)0.26856 (11)0.0287 (3)
O5'1.0387 (4)1.1795 (3)0.2456 (3)0.0466 (9)0.522 (3)
O6'1.0466 (4)1.2061 (3)0.4096 (2)0.0448 (9)0.522 (3)
C7'1.0133 (6)1.1269 (4)0.3171 (3)0.0363 (10)0.522 (3)
C8'1.0897 (7)1.3581 (5)0.4079 (5)0.0487 (13)0.522 (3)
H8'A1.02341.36820.33920.058*0.522 (3)
H8'B1.05981.40440.46110.058*0.522 (3)
C9'1.2716 (5)1.4276 (4)0.4286 (4)0.0344 (10)0.522 (3)
H9'A1.29411.52510.42530.052*0.522 (3)
H9'B1.30181.38180.37620.052*0.522 (3)
H9'C1.33751.42120.49780.052*0.522 (3)
O5"1.0525 (4)1.1333 (3)0.4583 (2)0.0329 (8)0.478 (3)
O6"1.0821 (6)1.2074 (4)0.3177 (3)0.0615 (11)0.478 (3)
C7"1.0264 (6)1.1140 (4)0.3679 (3)0.0361 (10)0.478 (3)
C8"1.1871 (8)1.3464 (6)0.3887 (5)0.0636 (15)0.478 (3)
H8"A1.25011.33740.45860.076*0.478 (3)
H8"B1.26581.40170.35980.076*0.478 (3)
C9"1.0600 (8)1.4085 (7)0.3918 (6)0.0616 (18)0.478 (3)
H9"A1.11481.50070.43780.092*0.478 (3)
H9"B0.98141.34970.41800.092*0.478 (3)
H9"C0.99981.41620.32170.092*0.478 (3)
C10.6476 (2)0.79089 (19)0.24580 (14)0.0218 (4)
C20.7146 (2)0.6812 (2)0.26606 (15)0.0251 (4)
C30.7510 (2)0.9334 (2)0.26930 (14)0.0224 (4)
C40.6562 (3)0.4530 (2)0.30115 (19)0.0406 (6)
H4E0.59190.39890.33860.049*
H4D0.77560.48540.34580.049*
C50.6289 (4)0.3610 (3)0.2018 (2)0.0512 (7)
H5F0.66440.28260.21750.077*
H5E0.69400.41350.16510.077*
H5D0.51050.32670.15800.077*
C100.9394 (2)0.9750 (2)0.30138 (18)0.0354 (5)
H10A0.97680.90780.33900.042*
H10B0.96840.97200.23840.042*
C1A0.4024 (2)0.78679 (18)0.34417 (14)0.0208 (4)
C2A0.2471 (2)0.7800 (2)0.34900 (15)0.0258 (4)
H2A0.15440.76270.28690.031*
C3A0.2296 (3)0.7985 (2)0.44427 (16)0.0298 (5)
H3A0.12440.79340.44720.036*
C4A0.3638 (3)0.8243 (2)0.53527 (16)0.0305 (5)
H4A0.35090.83720.60050.037*
C5A0.5168 (3)0.8312 (2)0.53116 (15)0.0293 (5)
H5A0.60890.84870.59370.035*
C6A0.5371 (2)0.81274 (19)0.43596 (15)0.0246 (4)
H6A0.64260.81790.43370.030*
C1B0.3596 (2)0.87422 (18)0.14484 (14)0.0210 (4)
C2B0.2996 (2)0.9705 (2)0.18141 (15)0.0264 (4)
H2B0.30340.98270.25100.032*
C3B0.2342 (3)1.0488 (2)0.11635 (17)0.0321 (5)
H3B0.19261.11390.14140.038*
C4B0.2294 (3)1.0323 (2)0.01516 (17)0.0320 (5)
H4B0.18421.08590.02920.038*
C5B0.2903 (3)0.9380 (2)0.02145 (16)0.0293 (4)
H5B0.28760.92700.09080.035*
C6B0.3554 (2)0.8594 (2)0.04331 (15)0.0254 (4)
H6B0.39750.79490.01800.030*
C1C0.3063 (2)0.59012 (18)0.14644 (14)0.0212 (4)
C2C0.1670 (2)0.5135 (2)0.16481 (16)0.0283 (4)
H2C0.14470.54760.22290.034*
C3C0.0602 (3)0.3873 (2)0.09867 (17)0.0336 (5)
H3C0.03470.33570.11190.040*
C4C0.0905 (3)0.3366 (2)0.01446 (17)0.0328 (5)
H4C0.01590.25080.03100.039*
C5C0.2301 (3)0.4107 (2)0.00427 (16)0.0318 (5)
H5C0.25170.37530.06230.038*
C6C0.3384 (3)0.5365 (2)0.06153 (16)0.0281 (4)
H6C0.43460.58640.04890.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0163 (2)0.0197 (3)0.0190 (3)0.00511 (18)0.00554 (19)0.00358 (18)
O10.0287 (8)0.0301 (8)0.0425 (9)0.0144 (6)0.0137 (7)0.0171 (7)
O20.0211 (7)0.0341 (8)0.0492 (9)0.0114 (6)0.0097 (7)0.0026 (7)
O40.0250 (7)0.0245 (7)0.0318 (8)0.0064 (6)0.0075 (6)0.0015 (6)
O5'0.055 (2)0.0402 (18)0.0358 (19)0.0016 (15)0.0196 (16)0.0086 (15)
O6'0.0425 (15)0.0391 (16)0.0403 (16)0.0021 (13)0.0180 (13)0.0029 (14)
C7'0.0273 (17)0.0380 (19)0.0356 (19)0.0018 (15)0.0166 (17)0.0020 (18)
C8'0.032 (2)0.029 (2)0.078 (3)0.0099 (19)0.016 (2)0.008 (2)
C9'0.0219 (19)0.0130 (18)0.053 (3)0.0001 (15)0.0014 (18)0.0012 (17)
O5"0.0279 (16)0.0422 (19)0.0237 (16)0.0065 (13)0.0063 (12)0.0135 (14)
O6"0.072 (2)0.0453 (19)0.0356 (18)0.0183 (17)0.0159 (16)0.0058 (16)
C7"0.0305 (18)0.040 (2)0.031 (2)0.0012 (16)0.0156 (18)0.0046 (19)
C8"0.054 (3)0.047 (3)0.073 (3)0.007 (2)0.014 (2)0.005 (2)
C9"0.050 (4)0.046 (4)0.077 (4)0.009 (3)0.014 (3)0.012 (3)
C10.0169 (9)0.0248 (10)0.0226 (9)0.0057 (7)0.0073 (7)0.0044 (7)
C20.0207 (9)0.0270 (10)0.0231 (9)0.0074 (8)0.0044 (8)0.0013 (8)
C30.0196 (9)0.0264 (10)0.0186 (9)0.0052 (8)0.0068 (7)0.0034 (7)
C40.0446 (13)0.0358 (12)0.0508 (14)0.0229 (11)0.0171 (11)0.0232 (11)
C50.0581 (17)0.0308 (13)0.0567 (17)0.0169 (12)0.0097 (13)0.0081 (11)
C100.0208 (10)0.0339 (11)0.0463 (13)0.0040 (8)0.0105 (9)0.0096 (10)
C1A0.0227 (9)0.0179 (9)0.0217 (9)0.0065 (7)0.0087 (7)0.0042 (7)
C2A0.0226 (10)0.0266 (10)0.0285 (10)0.0087 (8)0.0093 (8)0.0074 (8)
C3A0.0328 (11)0.0293 (11)0.0374 (11)0.0151 (9)0.0209 (9)0.0114 (9)
C4A0.0460 (13)0.0265 (10)0.0272 (10)0.0164 (9)0.0194 (9)0.0088 (8)
C5A0.0373 (12)0.0269 (11)0.0215 (10)0.0129 (9)0.0067 (9)0.0035 (8)
C6A0.0259 (10)0.0223 (9)0.0238 (9)0.0082 (8)0.0075 (8)0.0033 (8)
C1B0.0150 (8)0.0190 (9)0.0240 (9)0.0023 (7)0.0042 (7)0.0038 (7)
C2B0.0270 (10)0.0238 (10)0.0266 (10)0.0079 (8)0.0088 (8)0.0039 (8)
C3B0.0312 (11)0.0281 (11)0.0400 (12)0.0147 (9)0.0125 (9)0.0090 (9)
C4B0.0288 (11)0.0289 (11)0.0370 (12)0.0111 (9)0.0071 (9)0.0141 (9)
C5B0.0287 (10)0.0298 (11)0.0262 (10)0.0065 (8)0.0081 (8)0.0105 (8)
C6B0.0243 (10)0.0253 (10)0.0263 (10)0.0077 (8)0.0094 (8)0.0066 (8)
C1C0.0197 (9)0.0189 (9)0.0222 (9)0.0065 (7)0.0042 (7)0.0054 (7)
C2C0.0268 (10)0.0263 (10)0.0280 (10)0.0046 (8)0.0102 (9)0.0042 (8)
C3C0.0262 (10)0.0260 (11)0.0407 (12)0.0009 (8)0.0098 (9)0.0060 (9)
C4C0.0297 (11)0.0207 (10)0.0360 (12)0.0058 (8)0.0010 (9)0.0005 (8)
C5C0.0347 (11)0.0278 (11)0.0290 (11)0.0117 (9)0.0078 (9)0.0004 (9)
C6C0.0265 (10)0.0267 (10)0.0300 (10)0.0078 (8)0.0108 (8)0.0036 (8)
Geometric parameters (Å, º) top
P1—C11.7546 (18)C5—H5D0.9800
P1—C1A1.8055 (19)C10—H10A0.9900
P1—C1C1.8106 (19)C10—H10B0.9900
P1—C1B1.8183 (19)C1A—C6A1.391 (3)
O1—C21.361 (2)C1A—C2A1.407 (3)
O1—C41.452 (2)C2A—C3A1.382 (3)
O2—C21.220 (2)C2A—H2A0.9500
O4—C31.240 (2)C3A—C4A1.383 (3)
O5'—C7'1.233 (4)C3A—H3A0.9500
O6'—C7'1.344 (4)C4A—C5A1.383 (3)
O6'—C8'1.512 (6)C4A—H4A0.9500
C7'—C101.479 (4)C5A—C6A1.393 (3)
C8'—C9'1.503 (6)C5A—H5A0.9500
C8'—H8'A0.9900C6A—H6A0.9500
C8'—H8'B0.9900C1B—C6B1.390 (3)
C9'—H9'A0.9800C1B—C2B1.393 (3)
C9'—H9'B0.9800C2B—C3B1.389 (3)
C9'—H9'C0.9800C2B—H2B0.9500
O5"—C7"1.186 (4)C3B—C4B1.384 (3)
O6"—C7"1.323 (5)C3B—H3B0.9500
O6"—C8"1.501 (6)C4B—C5B1.384 (3)
C7"—C101.463 (4)C4B—H4B0.9500
C8"—C9"1.484 (7)C5B—C6B1.388 (3)
C8"—H8"A0.9900C5B—H5B0.9500
C8"—H8"B0.9900C6B—H6B0.9500
C9"—H9"A0.9800C1C—C2C1.389 (3)
C9"—H9"B0.9800C1C—C6C1.400 (3)
C9"—H9"C0.9800C2C—C3C1.389 (3)
C1—C31.432 (3)C2C—H2C0.9500
C1—C21.453 (3)C3C—C4C1.371 (3)
C3—C101.525 (3)C3C—H3C0.9500
C4—C51.499 (4)C4C—C5C1.387 (3)
C4—H4E0.9900C4C—H4C0.9500
C4—H4D0.9900C5C—C6C1.387 (3)
C5—H5F0.9800C5C—H5C0.9500
C5—H5E0.9800C6C—H6C0.9500
C1—P1—C1A111.30 (9)C7"—C10—H10A109.3
C1—P1—C1C111.19 (9)C7'—C10—H10A132.2
C1A—P1—C1C109.69 (8)C3—C10—H10A109.3
C1—P1—C1B112.06 (9)C7"—C10—H10B109.3
C1A—P1—C1B108.99 (9)C7'—C10—H10B84.9
C1C—P1—C1B103.30 (8)C3—C10—H10B109.3
C2—O1—C4117.47 (16)H10A—C10—H10B107.9
C7'—O6'—C8'112.7 (4)C6A—C1A—C2A119.28 (17)
O5'—C7'—O6'120.9 (3)C6A—C1A—P1117.54 (14)
O5'—C7'—C10120.5 (3)C2A—C1A—P1123.18 (14)
O6'—C7'—C10118.6 (3)C3A—C2A—C1A119.93 (18)
C9'—C8'—O6'111.9 (4)C3A—C2A—H2A120.0
C9'—C8'—H8'A109.2C1A—C2A—H2A120.0
O6'—C8'—H8'A109.2C2A—C3A—C4A120.57 (19)
C9'—C8'—H8'B109.2C2A—C3A—H3A119.7
O6'—C8'—H8'B109.2C4A—C3A—H3A119.7
H8'A—C8'—H8'B107.9C5A—C4A—C3A119.83 (18)
C8'—C9'—H9'A109.5C5A—C4A—H4A120.1
C8'—C9'—H9'B109.5C3A—C4A—H4A120.1
H9'A—C9'—H9'B109.5C4A—C5A—C6A120.49 (19)
C8'—C9'—H9'C109.5C4A—C5A—H5A119.8
H9'A—C9'—H9'C109.5C6A—C5A—H5A119.8
H9'B—C9'—H9'C109.5C1A—C6A—C5A119.89 (18)
C7"—O6"—C8"112.4 (4)C1A—C6A—H6A120.1
O5"—C7"—O6"125.9 (4)C5A—C6A—H6A120.1
O5"—C7"—C10121.2 (4)C6B—C1B—C2B119.15 (17)
O6"—C7"—C10112.6 (3)C6B—C1B—P1118.37 (14)
C9"—C8"—O6"102.1 (5)C2B—C1B—P1122.44 (15)
C9"—C8"—H8"A111.4C3B—C2B—C1B120.13 (19)
O6"—C8"—H8"A111.4C3B—C2B—H2B119.9
C9"—C8"—H8"B111.4C1B—C2B—H2B119.9
O6"—C8"—H8"B111.4C4B—C3B—C2B120.2 (2)
H8"A—C8"—H8"B109.2C4B—C3B—H3B119.9
C8"—C9"—H9"A109.5C2B—C3B—H3B119.9
C8"—C9"—H9"B109.5C5B—C4B—C3B120.02 (19)
H9"A—C9"—H9"B109.5C5B—C4B—H4B120.0
C8"—C9"—H9"C109.5C3B—C4B—H4B120.0
H9"A—C9"—H9"C109.5C4B—C5B—C6B119.89 (19)
H9"B—C9"—H9"C109.5C4B—C5B—H5B120.1
C3—C1—C2122.75 (16)C6B—C5B—H5B120.1
C3—C1—P1114.85 (14)C5B—C6B—C1B120.59 (19)
C2—C1—P1120.38 (14)C5B—C6B—H6B119.7
O2—C2—O1121.46 (18)C1B—C6B—H6B119.7
O2—C2—C1126.42 (18)C2C—C1C—C6C118.79 (17)
O1—C2—C1112.12 (16)C2C—C1C—P1121.46 (15)
O4—C3—C1122.02 (17)C6C—C1C—P1119.58 (14)
O4—C3—C10117.17 (17)C3C—C2C—C1C120.3 (2)
C1—C3—C10120.75 (17)C3C—C2C—H2C119.8
O1—C4—C5112.60 (19)C1C—C2C—H2C119.8
O1—C4—H4E109.1C4C—C3C—C2C120.6 (2)
C5—C4—H4E109.1C4C—C3C—H3C119.7
O1—C4—H4D109.1C2C—C3C—H3C119.7
C5—C4—H4D109.1C3C—C4C—C5C119.85 (19)
H4E—C4—H4D107.8C3C—C4C—H4C120.1
C4—C5—H5F109.5C5C—C4C—H4C120.1
C4—C5—H5E109.5C4C—C5C—C6C120.1 (2)
H5F—C5—H5E109.5C4C—C5C—H5C119.9
C4—C5—H5D109.5C6C—C5C—H5C119.9
H5F—C5—H5D109.5C5C—C6C—C1C120.27 (19)
H5E—C5—H5D109.5C5C—C6C—H6C119.9
C7"—C10—C3111.8 (3)C1C—C6C—H6C119.9
C7'—C10—C3109.1 (2)
C8'—O6'—C7'—O5'8.9 (6)C1C—P1—C1A—C2A61.19 (17)
C8'—O6'—C7'—C10168.8 (4)C1B—P1—C1A—C2A51.25 (18)
C7'—O6'—C8'—C9'86.3 (6)C6A—C1A—C2A—C3A0.2 (3)
C8"—O6"—C7"—O5"0.4 (8)P1—C1A—C2A—C3A179.29 (15)
C8"—O6"—C7"—C10173.8 (4)C1A—C2A—C3A—C4A0.3 (3)
C7"—O6"—C8"—C9"86.1 (6)C2A—C3A—C4A—C5A0.2 (3)
C1A—P1—C1—C380.33 (15)C3A—C4A—C5A—C6A0.2 (3)
C1C—P1—C1—C3157.05 (14)C2A—C1A—C6A—C5A0.2 (3)
C1B—P1—C1—C342.00 (16)P1—C1A—C6A—C5A179.37 (14)
C1A—P1—C1—C283.96 (17)C4A—C5A—C6A—C1A0.2 (3)
C1C—P1—C1—C238.66 (18)C1—P1—C1B—C6B64.08 (16)
C1B—P1—C1—C2153.71 (15)C1A—P1—C1B—C6B172.28 (14)
C4—O1—C2—O23.1 (3)C1C—P1—C1B—C6B55.69 (16)
C4—O1—C2—C1177.55 (17)C1—P1—C1B—C2B118.12 (16)
C3—C1—C2—O227.6 (3)C1A—P1—C1B—C2B5.52 (18)
P1—C1—C2—O2169.36 (16)C1C—P1—C1B—C2B122.11 (16)
C3—C1—C2—O1151.68 (17)C6B—C1B—C2B—C3B1.0 (3)
P1—C1—C2—O111.3 (2)P1—C1B—C2B—C3B176.77 (15)
C2—C1—C3—O4167.36 (18)C1B—C2B—C3B—C4B0.5 (3)
P1—C1—C3—O43.5 (2)C2B—C3B—C4B—C5B0.2 (3)
C2—C1—C3—C109.8 (3)C3B—C4B—C5B—C6B0.3 (3)
P1—C1—C3—C10173.65 (15)C4B—C5B—C6B—C1B0.2 (3)
C2—O1—C4—C580.1 (3)C2B—C1B—C6B—C5B0.9 (3)
O5"—C7"—C10—C7'171.7 (11)P1—C1B—C6B—C5B177.00 (15)
O6"—C7"—C10—C7'13.8 (5)C1—P1—C1C—C2C142.81 (16)
O5"—C7"—C10—C381.8 (5)C1A—P1—C1C—C2C19.27 (18)
O6"—C7"—C10—C3103.7 (5)C1B—P1—C1C—C2C96.82 (17)
O5'—C7'—C10—C7"166.1 (10)C1—P1—C1C—C6C41.96 (17)
O6'—C7'—C10—C7"16.2 (5)C1A—P1—C1C—C6C165.50 (15)
O5'—C7'—C10—C393.2 (5)C1B—P1—C1C—C6C78.40 (16)
O6'—C7'—C10—C384.5 (4)C6C—C1C—C2C—C3C1.2 (3)
O4—C3—C10—C7"25.1 (3)P1—C1C—C2C—C3C174.02 (16)
C1—C3—C10—C7"152.2 (2)C1C—C2C—C3C—C4C0.0 (3)
O4—C3—C10—C7'4.8 (3)C2C—C3C—C4C—C5C0.9 (3)
C1—C3—C10—C7'178.0 (2)C3C—C4C—C5C—C6C0.5 (3)
C1—P1—C1A—C6A5.13 (17)C4C—C5C—C6C—C1C0.8 (3)
C1C—P1—C1A—C6A118.35 (15)C2C—C1C—C6C—C5C1.6 (3)
C1B—P1—C1A—C6A129.22 (14)P1—C1C—C6C—C5C173.71 (15)
C1—P1—C1A—C2A175.33 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O20.992.232.853 (3)120
C2A—H2A···O2i0.952.543.189 (3)126
C3B—H3B···O5i0.952.483.327 (5)150
C4A—H4A···O4ii0.952.383.245 (3)151
C9—H9A···Cg1iii0.982.743.712 (4)172
C4C—H4C···Cg2iv0.952.793.604 (2)144
Symmetry codes: (i) x1, y, z; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z; (iv) x, y+1, z.
(II) diethyl 3-oxo-2-(triphenylphosphoranylidene)glutarate acetic acid monosolvate top
Crystal data top
C27H27O5P·C2H4O2Z = 2
Mr = 522.51F(000) = 552
Triclinic, P1Dx = 1.294 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.957 (4) ÅCell parameters from 999 reflections
b = 10.589 (4) Åθ = 4.8–50.9°
c = 14.928 (6) ŵ = 0.15 mm1
α = 78.191 (6)°T = 150 K
β = 71.505 (6)°Block, yellow
γ = 64.285 (6)°0.46 × 0.38 × 0.32 mm
V = 1340.7 (9) Å3
Data collection top
Bruker SMART? CCD area-detector
diffractometer
5728 independent reflections
Radiation source: fine-focus sealed tube4037 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.112
ϕ and ω scansθmax = 28.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1312
Tmin = 0.93, Tmax = 0.95k = 1313
11211 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 0.93 w = 1/[σ2(Fo2) + (0.0898P)2]
where P = (Fo2 + 2Fc2)/3
5728 reflections(Δ/σ)max = 0.002
341 parametersΔρmax = 0.49 e Å3
1 restraintΔρmin = 0.36 e Å3
Crystal data top
C27H27O5P·C2H4O2γ = 64.285 (6)°
Mr = 522.51V = 1340.7 (9) Å3
Triclinic, P1Z = 2
a = 9.957 (4) ÅMo Kα radiation
b = 10.589 (4) ŵ = 0.15 mm1
c = 14.928 (6) ÅT = 150 K
α = 78.191 (6)°0.46 × 0.38 × 0.32 mm
β = 71.505 (6)°
Data collection top
Bruker SMART? CCD area-detector
diffractometer
5728 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
4037 reflections with I > 2σ(I)
Tmin = 0.93, Tmax = 0.95Rint = 0.112
11211 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0581 restraint
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 0.93Δρmax = 0.49 e Å3
5728 reflectionsΔρmin = 0.36 e Å3
341 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.20921 (6)0.45376 (5)0.21302 (3)0.03343 (17)
O10.43004 (17)0.16911 (15)0.17944 (11)0.0476 (4)
O20.64867 (18)0.1986 (2)0.14911 (15)0.0729 (6)
O40.36228 (17)0.57094 (17)0.28961 (12)0.0537 (4)
O50.5715 (2)0.2387 (3)0.37845 (15)0.0920 (8)
O60.81302 (16)0.21769 (16)0.31395 (11)0.0509 (4)
C10.4074 (2)0.3871 (2)0.20554 (14)0.0367 (5)
C20.5089 (2)0.2468 (2)0.17496 (15)0.0425 (5)
C30.4558 (2)0.4612 (2)0.24915 (15)0.0411 (5)
C40.5150 (3)0.0350 (3)0.13786 (19)0.0579 (6)
H4E0.58780.03110.17510.070*
H4D0.57490.04760.07210.070*
C50.4032 (3)0.0211 (3)0.1382 (2)0.0718 (8)
H5F0.45820.11190.11040.108*
H5E0.33200.04480.10100.108*
H5D0.34480.03360.20360.108*
C70.6621 (2)0.2789 (3)0.32173 (16)0.0479 (6)
C80.8633 (3)0.1030 (3)0.38472 (18)0.0558 (6)
H8A0.82510.03040.38590.067*
H8B0.82280.13860.44840.067*
C91.0367 (3)0.0422 (3)0.3572 (2)0.0682 (8)
H9A1.07520.03510.40360.102*
H9B1.07290.11540.35590.102*
H9C1.07520.00680.29430.102*
C100.6225 (2)0.4054 (2)0.25232 (17)0.0465 (5)
H10A0.69080.37980.18840.056*
H10B0.64110.48010.27040.056*
C1A0.1010 (2)0.4085 (2)0.32761 (14)0.0357 (4)
C2A0.0596 (2)0.4510 (2)0.35274 (16)0.0445 (5)
H2A0.11650.50330.30740.053*
C3A0.1353 (3)0.4174 (3)0.44278 (18)0.0559 (6)
H3A0.24430.44720.45960.067*
C4A0.0533 (3)0.3406 (3)0.50856 (18)0.0589 (7)
H4A0.10600.31860.57090.071*
C5A0.1047 (3)0.2957 (3)0.48420 (16)0.0549 (6)
H5A0.16080.24060.52940.066*
C6A0.1827 (3)0.3301 (2)0.39452 (14)0.0429 (5)
H6A0.29160.30030.37860.051*
C1B0.1800 (2)0.3891 (2)0.12034 (14)0.0393 (5)
C2B0.2702 (3)0.3967 (2)0.02825 (16)0.0541 (6)
H2B0.34700.43310.01530.065*
C3B0.2479 (4)0.3512 (3)0.04472 (18)0.0690 (8)
H3B0.31080.35480.10730.083*
C4B0.1351 (4)0.3010 (3)0.0266 (2)0.0703 (8)
H4B0.11920.27120.07680.084*
C5B0.0450 (3)0.2938 (3)0.0642 (2)0.0660 (8)
H5B0.03330.25940.07630.079*
C6B0.0676 (3)0.3363 (2)0.13812 (18)0.0491 (6)
H6B0.00630.32930.20080.059*
C1C0.1317 (2)0.6433 (2)0.18739 (14)0.0362 (4)
C2C0.0116 (2)0.7311 (2)0.23842 (16)0.0440 (5)
H2C0.06650.69400.29370.053*
C3C0.0748 (3)0.8728 (2)0.20915 (18)0.0536 (6)
H3C0.17370.93190.24370.064*
C4C0.0049 (3)0.9278 (3)0.1306 (2)0.0601 (7)
H4C0.03841.02490.11080.072*
C5C0.1466 (3)0.8428 (3)0.08074 (19)0.0646 (7)
H5C0.20180.88150.02650.078*
C6C0.2113 (3)0.7005 (2)0.10812 (18)0.0537 (6)
H6C0.31000.64240.07270.064*
C1D0.5082 (3)0.7776 (3)0.35152 (18)0.0568 (6)
C2D0.4898 (4)0.8994 (3)0.3972 (2)0.0818 (9)
H2DC0.58880.90850.38020.123*
H2DB0.45570.88360.46620.123*
H2DA0.41270.98570.37530.123*
O2D0.3820 (2)0.7546 (2)0.37491 (15)0.0728 (6)
H2D0.396 (4)0.676 (2)0.358 (3)0.110 (13)*
O1D0.6243 (2)0.7102 (2)0.29592 (18)0.0879 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0351 (3)0.0375 (3)0.0302 (3)0.0155 (2)0.0107 (2)0.0020 (2)
O10.0455 (8)0.0399 (9)0.0529 (9)0.0124 (7)0.0115 (7)0.0071 (7)
O20.0395 (9)0.0735 (13)0.0953 (15)0.0109 (9)0.0048 (9)0.0318 (11)
O40.0447 (9)0.0592 (10)0.0635 (11)0.0164 (8)0.0204 (8)0.0171 (8)
O50.0576 (11)0.1364 (19)0.0747 (14)0.0509 (12)0.0278 (10)0.0524 (13)
O60.0444 (8)0.0560 (10)0.0565 (10)0.0227 (7)0.0233 (7)0.0096 (7)
C10.0345 (10)0.0429 (12)0.0324 (10)0.0157 (9)0.0095 (8)0.0005 (8)
C20.0376 (11)0.0477 (13)0.0370 (11)0.0123 (10)0.0098 (9)0.0029 (9)
C30.0377 (11)0.0489 (13)0.0383 (11)0.0195 (10)0.0128 (9)0.0031 (9)
C40.0571 (15)0.0471 (14)0.0615 (16)0.0117 (11)0.0119 (12)0.0134 (11)
C50.0774 (18)0.0539 (16)0.085 (2)0.0198 (14)0.0257 (16)0.0158 (14)
C70.0412 (12)0.0649 (15)0.0432 (13)0.0243 (11)0.0183 (10)0.0033 (11)
C80.0652 (15)0.0547 (15)0.0535 (14)0.0240 (12)0.0306 (12)0.0084 (11)
C90.0597 (16)0.0637 (17)0.0782 (19)0.0121 (13)0.0360 (14)0.0013 (14)
C100.0416 (11)0.0531 (14)0.0509 (13)0.0237 (10)0.0172 (10)0.0029 (10)
C1A0.0387 (10)0.0392 (11)0.0328 (10)0.0192 (9)0.0069 (8)0.0056 (8)
C2A0.0435 (12)0.0489 (13)0.0461 (13)0.0218 (10)0.0109 (10)0.0074 (10)
C3A0.0517 (14)0.0654 (16)0.0543 (15)0.0350 (12)0.0062 (12)0.0174 (12)
C4A0.0758 (17)0.0684 (17)0.0374 (13)0.0445 (14)0.0033 (12)0.0065 (11)
C5A0.0729 (16)0.0603 (15)0.0367 (12)0.0343 (13)0.0147 (12)0.0040 (10)
C6A0.0492 (12)0.0479 (12)0.0344 (11)0.0229 (10)0.0111 (9)0.0007 (9)
C1B0.0445 (11)0.0363 (11)0.0374 (11)0.0105 (9)0.0185 (9)0.0038 (8)
C2B0.0755 (16)0.0543 (14)0.0351 (12)0.0287 (12)0.0152 (11)0.0009 (10)
C3B0.109 (2)0.0559 (16)0.0373 (14)0.0219 (16)0.0283 (14)0.0030 (11)
C4B0.100 (2)0.0523 (16)0.0684 (19)0.0126 (15)0.0548 (18)0.0130 (13)
C5B0.0699 (17)0.0557 (16)0.089 (2)0.0174 (13)0.0432 (16)0.0203 (14)
C6B0.0502 (13)0.0485 (13)0.0569 (14)0.0196 (11)0.0208 (11)0.0105 (11)
C1C0.0400 (11)0.0402 (11)0.0351 (11)0.0180 (9)0.0165 (9)0.0013 (8)
C2C0.0504 (13)0.0416 (12)0.0406 (12)0.0170 (10)0.0128 (10)0.0060 (9)
C3C0.0562 (14)0.0418 (13)0.0596 (15)0.0115 (11)0.0191 (12)0.0089 (11)
C4C0.0785 (18)0.0374 (13)0.0700 (17)0.0219 (13)0.0341 (15)0.0050 (12)
C5C0.0849 (19)0.0540 (16)0.0590 (16)0.0398 (15)0.0169 (14)0.0123 (12)
C6C0.0515 (13)0.0498 (14)0.0538 (14)0.0238 (11)0.0016 (11)0.0020 (11)
C1D0.0566 (15)0.0656 (17)0.0525 (15)0.0298 (13)0.0170 (13)0.0040 (12)
C2D0.110 (2)0.099 (2)0.0642 (19)0.069 (2)0.0172 (17)0.0072 (16)
O2D0.0613 (11)0.0912 (16)0.0785 (14)0.0412 (11)0.0045 (10)0.0288 (12)
O1D0.0545 (11)0.0822 (15)0.1196 (19)0.0270 (10)0.0053 (12)0.0202 (13)
Geometric parameters (Å, º) top
P1—C11.758 (2)C4A—C5A1.376 (3)
P1—C1A1.806 (2)C4A—H4A0.9500
P1—C1B1.812 (2)C5A—C6A1.383 (3)
P1—C1C1.817 (2)C5A—H5A0.9500
O1—C21.343 (3)C6A—H6A0.9500
O1—C41.450 (3)C1B—C6B1.389 (3)
O2—C21.212 (2)C1B—C2B1.392 (3)
O4—C31.255 (2)C2B—C3B1.389 (4)
O5—C71.188 (3)C2B—H2B0.9500
O6—C71.329 (2)C3B—C4B1.372 (4)
O6—C81.457 (3)C3B—H3B0.9500
C1—C31.417 (3)C4B—C5B1.376 (4)
C1—C21.455 (3)C4B—H4B0.9500
C3—C101.514 (3)C5B—C6B1.386 (3)
C4—C51.470 (4)C5B—H5B0.9500
C4—H4E0.9900C6B—H6B0.9500
C4—H4D0.9900C1C—C6C1.387 (3)
C5—H5F0.9800C1C—C2C1.389 (3)
C5—H5E0.9800C2C—C3C1.388 (3)
C5—H5D0.9800C2C—H2C0.9500
C7—C101.502 (3)C3C—C4C1.370 (4)
C8—C91.503 (3)C3C—H3C0.9500
C8—H8A0.9900C4C—C5C1.364 (3)
C8—H8B0.9900C4C—H4C0.9500
C9—H9A0.9800C5C—C6C1.387 (3)
C9—H9B0.9800C5C—H5C0.9500
C9—H9C0.9800C6C—H6C0.9500
C10—H10A0.9900C1D—O1D1.205 (3)
C10—H10B0.9900C1D—O2D1.309 (3)
C1A—C6A1.393 (3)C1D—C2D1.496 (4)
C1A—C2A1.401 (3)C2D—H2DC0.9800
C2A—C3A1.377 (3)C2D—H2DB0.9800
C2A—H2A0.9500C2D—H2DA0.9800
C3A—C4A1.378 (4)O2D—H2D0.859 (10)
C3A—H3A0.9500
C1—P1—C1A111.97 (10)C2A—C3A—H3A119.9
C1—P1—C1B109.70 (9)C4A—C3A—H3A119.9
C1A—P1—C1B110.24 (10)C5A—C4A—C3A120.1 (2)
C1—P1—C1C111.04 (9)C5A—C4A—H4A119.9
C1A—P1—C1C109.79 (9)C3A—C4A—H4A119.9
C1B—P1—C1C103.79 (9)C4A—C5A—C6A120.6 (2)
C2—O1—C4117.60 (17)C4A—C5A—H5A119.7
C7—O6—C8116.27 (18)C6A—C5A—H5A119.7
C3—C1—C2121.40 (18)C5A—C6A—C1A119.8 (2)
C3—C1—P1116.91 (15)C5A—C6A—H6A120.1
C2—C1—P1120.31 (15)C1A—C6A—H6A120.1
O2—C2—O1121.0 (2)C6B—C1B—C2B119.3 (2)
O2—C2—C1126.9 (2)C6B—C1B—P1121.96 (16)
O1—C2—C1112.09 (17)C2B—C1B—P1118.67 (17)
O4—C3—C1121.68 (18)C3B—C2B—C1B120.0 (3)
O4—C3—C10117.81 (19)C3B—C2B—H2B120.0
C1—C3—C10120.45 (19)C1B—C2B—H2B120.0
O1—C4—C5108.07 (19)C4B—C3B—C2B120.2 (3)
O1—C4—H4E110.1C4B—C3B—H3B119.9
C5—C4—H4E110.1C2B—C3B—H3B119.9
O1—C4—H4D110.1C3B—C4B—C5B120.1 (2)
C5—C4—H4D110.1C3B—C4B—H4B119.9
H4E—C4—H4D108.4C5B—C4B—H4B119.9
C4—C5—H5F109.5C4B—C5B—C6B120.5 (3)
C4—C5—H5E109.5C4B—C5B—H5B119.8
H5F—C5—H5E109.5C6B—C5B—H5B119.8
C4—C5—H5D109.5C5B—C6B—C1B119.9 (2)
H5F—C5—H5D109.5C5B—C6B—H6B120.1
H5E—C5—H5D109.5C1B—C6B—H6B120.1
O5—C7—O6123.3 (2)C6C—C1C—C2C118.8 (2)
O5—C7—C10125.3 (2)C6C—C1C—P1118.53 (16)
O6—C7—C10111.42 (19)C2C—C1C—P1122.33 (16)
O6—C8—C9107.0 (2)C3C—C2C—C1C120.4 (2)
O6—C8—H8A110.3C3C—C2C—H2C119.8
C9—C8—H8A110.3C1C—C2C—H2C119.8
O6—C8—H8B110.3C4C—C3C—C2C120.2 (2)
C9—C8—H8B110.3C4C—C3C—H3C119.9
H8A—C8—H8B108.6C2C—C3C—H3C119.9
C8—C9—H9A109.5C5C—C4C—C3C119.9 (2)
C8—C9—H9B109.5C5C—C4C—H4C120.1
H9A—C9—H9B109.5C3C—C4C—H4C120.1
C8—C9—H9C109.5C4C—C5C—C6C120.9 (2)
H9A—C9—H9C109.5C4C—C5C—H5C119.5
H9B—C9—H9C109.5C6C—C5C—H5C119.5
C7—C10—C3111.72 (18)C1C—C6C—C5C119.8 (2)
C7—C10—H10A109.3C1C—C6C—H6C120.1
C3—C10—H10A109.3C5C—C6C—H6C120.1
C7—C10—H10B109.3O1D—C1D—O2D122.7 (3)
C3—C10—H10B109.3O1D—C1D—C2D124.3 (3)
H10A—C10—H10B107.9O2D—C1D—C2D112.9 (2)
C6A—C1A—C2A119.03 (19)C1D—C2D—H2DC109.5
C6A—C1A—P1117.46 (15)C1D—C2D—H2DB109.5
C2A—C1A—P1123.49 (16)H2DC—C2D—H2DB109.5
C3A—C2A—C1A120.3 (2)C1D—C2D—H2DA109.5
C3A—C2A—H2A119.8H2DC—C2D—H2DA109.5
C1A—C2A—H2A119.8H2DB—C2D—H2DA109.5
C2A—C3A—C4A120.1 (2)C1D—O2D—H2D113 (2)
C1A—P1—C1—C378.19 (18)C2A—C3A—C4A—C5A0.8 (4)
C1B—P1—C1—C3159.07 (16)C3A—C4A—C5A—C6A1.7 (4)
C1C—P1—C1—C344.92 (18)C4A—C5A—C6A—C1A1.3 (4)
C1A—P1—C1—C288.59 (18)C2A—C1A—C6A—C5A0.1 (3)
C1B—P1—C1—C234.15 (19)P1—C1A—C6A—C5A178.33 (17)
C1C—P1—C1—C2148.30 (16)C1—P1—C1B—C6B134.37 (18)
C4—O1—C2—O210.0 (3)C1A—P1—C1B—C6B10.6 (2)
C4—O1—C2—C1171.04 (19)C1C—P1—C1B—C6B106.92 (19)
C3—C1—C2—O229.3 (3)C1—P1—C1B—C2B47.6 (2)
P1—C1—C2—O2164.5 (2)C1A—P1—C1B—C2B171.33 (16)
C3—C1—C2—O1149.61 (19)C1C—P1—C1B—C2B71.14 (18)
P1—C1—C2—O116.6 (2)C6B—C1B—C2B—C3B0.3 (3)
C2—C1—C3—O4168.0 (2)P1—C1B—C2B—C3B178.42 (18)
P1—C1—C3—O41.4 (3)C1B—C2B—C3B—C4B1.2 (4)
C2—C1—C3—C108.9 (3)C2B—C3B—C4B—C5B0.9 (4)
P1—C1—C3—C10175.57 (15)C3B—C4B—C5B—C6B0.3 (4)
C2—O1—C4—C5171.7 (2)C4B—C5B—C6B—C1B1.2 (4)
C8—O6—C7—O54.9 (4)C2B—C1B—C6B—C5B0.9 (3)
C8—O6—C7—C10173.45 (19)P1—C1B—C6B—C5B177.16 (17)
C7—O6—C8—C9175.1 (2)C1—P1—C1C—C6C47.4 (2)
O5—C7—C10—C311.2 (4)C1A—P1—C1C—C6C171.81 (17)
O6—C7—C10—C3170.46 (18)C1B—P1—C1C—C6C70.35 (19)
O4—C3—C10—C7104.3 (2)C1—P1—C1C—C2C139.24 (17)
C1—C3—C10—C772.8 (3)C1A—P1—C1C—C2C14.9 (2)
C1—P1—C1A—C6A0.4 (2)C1B—P1—C1C—C2C102.96 (18)
C1B—P1—C1A—C6A122.82 (16)C6C—C1C—C2C—C3C1.4 (3)
C1C—P1—C1A—C6A123.43 (16)P1—C1C—C2C—C3C171.88 (17)
C1—P1—C1A—C2A178.72 (17)C1C—C2C—C3C—C4C1.2 (3)
C1B—P1—C1A—C2A58.8 (2)C2C—C3C—C4C—C5C0.3 (4)
C1C—P1—C1A—C2A54.91 (19)C3C—C4C—C5C—C6C0.4 (4)
C6A—C1A—C2A—C3A1.0 (3)C2C—C1C—C6C—C5C0.7 (3)
P1—C1A—C2A—C3A177.32 (17)P1—C1C—C6C—C5C172.85 (19)
C1A—C2A—C3A—C4A0.5 (3)C4C—C5C—C6C—C1C0.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6A—H6A···O50.952.573.498 (4)165
C5—H5E···Cg20.982.973.820 (3)146
O2D—H2D···O40.86 (1)1.85 (2)2.636 (3)152 (4)
C10—H10B···O1D0.992.473.430 (3)163
C2A—H2A···O1Di0.952.593.377 (3)140
C2D—H2DB···O5ii0.982.413.345 (4)160
C4B—H4B···Cg3iii0.952.853.711 (4)152
C9—H9B···Cg1iv0.982.863.744 (4)150
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x+1, y, z.
(III) diethyl 2-(triphenylphosphoranylidene)succinate top
Crystal data top
C26H27O4PF(000) = 1840
Mr = 434.45Dx = 1.231 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 982 reflections
a = 8.7357 (10) Åθ = 4.2–50.1°
b = 16.8280 (18) ŵ = 0.15 mm1
c = 31.896 (4) ÅT = 150 K
V = 4688.9 (9) Å3Plate, colourless
Z = 80.57 × 0.47 × 0.06 mm
Data collection top
Bruker SMART? CCD area-detector
diffractometer
5370 independent reflections
Radiation source: fine-focus sealed tube3279 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
ϕ and ω scansθmax = 27.9°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1111
Tmin = 0.92, Tmax = 0.99k = 2121
36723 measured reflectionsl = 4139
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0767P)2]
where P = (Fo2 + 2Fc2)/3
5370 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C26H27O4PV = 4688.9 (9) Å3
Mr = 434.45Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.7357 (10) ŵ = 0.15 mm1
b = 16.8280 (18) ÅT = 150 K
c = 31.896 (4) Å0.57 × 0.47 × 0.06 mm
Data collection top
Bruker SMART? CCD area-detector
diffractometer
5370 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
3279 reflections with I > 2σ(I)
Tmin = 0.92, Tmax = 0.99Rint = 0.086
36723 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 0.91Δρmax = 0.44 e Å3
5370 reflectionsΔρmin = 0.22 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.38078 (5)0.69916 (3)0.386546 (14)0.03634 (15)
C10.4447 (2)0.79581 (10)0.38635 (5)0.0408 (4)
C20.3418 (2)0.85878 (11)0.39276 (6)0.0448 (5)
C40.0842 (3)0.89068 (13)0.41259 (7)0.0634 (6)
H4E0.02060.87180.40620.076*
H4D0.09960.94190.39790.076*
C50.0989 (3)0.90361 (17)0.45882 (8)0.0937 (9)
H5F0.02280.94270.46800.141*
H5D0.20190.92330.46520.141*
H5E0.08170.85330.47350.141*
C70.6443 (2)0.84084 (12)0.33282 (6)0.0486 (5)
C80.8441 (3)0.88952 (18)0.28885 (7)0.0786 (8)
H8A0.77280.92900.27670.094*
H8B0.85100.84370.26950.094*
C90.9968 (3)0.92536 (15)0.29493 (7)0.0758 (7)
H9A1.03680.94350.26790.114*
H9B1.06650.88570.30680.114*
H9C0.98860.97070.31410.114*
C100.6092 (2)0.81764 (11)0.37734 (6)0.0442 (5)
H10A0.63810.86240.39590.053*
H10B0.67470.77180.38490.053*
O10.19299 (15)0.83379 (8)0.39720 (4)0.0532 (4)
O20.37471 (17)0.92975 (8)0.39475 (5)0.0646 (4)
O50.55822 (19)0.84003 (12)0.30378 (5)0.0841 (5)
O60.78997 (16)0.86372 (9)0.32963 (4)0.0647 (4)
C1A0.2689 (2)0.66724 (11)0.34156 (5)0.0394 (4)
C2A0.2356 (2)0.58718 (11)0.33495 (6)0.0494 (5)
H2A0.27020.54870.35450.059*
C3A0.1535 (3)0.56328 (13)0.30046 (6)0.0583 (6)
H3A0.13050.50860.29640.070*
C4A0.1043 (3)0.61895 (15)0.27166 (7)0.0674 (6)
H4A0.04690.60270.24790.081*
C5A0.1384 (3)0.69795 (14)0.27739 (7)0.0716 (7)
H5A0.10490.73610.25750.086*
C6A0.2215 (3)0.72220 (12)0.31208 (6)0.0578 (6)
H6A0.24600.77680.31560.069*
C1B0.5467 (2)0.63510 (10)0.38504 (6)0.0426 (4)
C2B0.5955 (2)0.59260 (13)0.41934 (7)0.0619 (6)
H2B0.53970.59450.44490.074*
C3B0.7286 (3)0.54631 (14)0.41617 (10)0.0831 (8)
H3B0.76170.51600.43960.100*
C4B0.8107 (3)0.54424 (14)0.38006 (11)0.0811 (8)
H4B0.90140.51320.37850.097*
C5B0.7631 (3)0.58684 (15)0.34599 (9)0.0778 (7)
H5B0.82140.58590.32090.093*
C6B0.6299 (2)0.63142 (13)0.34803 (7)0.0604 (6)
H6B0.59540.65960.32400.072*
C1C0.2735 (2)0.67433 (10)0.43362 (5)0.0394 (4)
C2C0.3098 (3)0.71111 (13)0.47069 (6)0.0642 (6)
H2C0.38780.75040.47090.077*
C3C0.2359 (3)0.69245 (14)0.50755 (6)0.0712 (7)
H3C0.26330.71880.53280.085*
C4C0.1240 (3)0.63659 (14)0.50794 (7)0.0648 (6)
H4C0.07070.62450.53310.078*
C5C0.0896 (3)0.59846 (19)0.47187 (8)0.1050 (11)
H5C0.01470.55750.47210.126*
C6C0.1614 (3)0.61794 (17)0.43466 (7)0.0891 (9)
H6C0.13240.59170.40950.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0408 (3)0.0337 (3)0.0345 (3)0.00096 (19)0.0005 (2)0.00099 (19)
C10.0459 (11)0.0364 (10)0.0403 (10)0.0044 (8)0.0022 (8)0.0005 (8)
C20.0538 (12)0.0372 (11)0.0435 (11)0.0022 (9)0.0049 (9)0.0022 (8)
C40.0618 (14)0.0590 (14)0.0693 (16)0.0173 (11)0.0116 (11)0.0064 (11)
C50.106 (2)0.099 (2)0.0760 (19)0.0275 (17)0.0241 (16)0.0050 (16)
C70.0478 (12)0.0536 (12)0.0443 (12)0.0071 (10)0.0023 (9)0.0036 (9)
C80.0692 (16)0.117 (2)0.0492 (14)0.0274 (15)0.0122 (11)0.0072 (13)
C90.0647 (15)0.0887 (18)0.0740 (16)0.0083 (13)0.0185 (13)0.0083 (13)
C100.0466 (11)0.0446 (11)0.0414 (11)0.0069 (8)0.0013 (8)0.0009 (8)
O10.0500 (9)0.0410 (7)0.0686 (9)0.0048 (6)0.0064 (7)0.0010 (6)
O20.0739 (10)0.0348 (8)0.0852 (11)0.0045 (7)0.0134 (8)0.0009 (7)
O50.0636 (10)0.1417 (16)0.0470 (10)0.0314 (10)0.0066 (8)0.0100 (9)
O60.0520 (9)0.0923 (12)0.0498 (9)0.0176 (8)0.0037 (7)0.0092 (7)
C1A0.0422 (10)0.0413 (10)0.0348 (9)0.0018 (8)0.0034 (8)0.0001 (8)
C2A0.0576 (13)0.0438 (11)0.0468 (12)0.0031 (9)0.0026 (10)0.0016 (9)
C3A0.0684 (14)0.0571 (13)0.0494 (13)0.0089 (11)0.0018 (11)0.0120 (10)
C4A0.0744 (16)0.0852 (18)0.0425 (13)0.0115 (13)0.0093 (11)0.0095 (12)
C5A0.0924 (19)0.0718 (16)0.0506 (14)0.0038 (14)0.0229 (12)0.0129 (11)
C6A0.0743 (15)0.0493 (12)0.0497 (12)0.0027 (11)0.0124 (11)0.0078 (10)
C1B0.0422 (11)0.0351 (10)0.0504 (12)0.0002 (8)0.0029 (9)0.0025 (8)
C2B0.0581 (14)0.0591 (14)0.0684 (15)0.0070 (11)0.0075 (11)0.0140 (11)
C3B0.0650 (16)0.0691 (17)0.115 (2)0.0115 (14)0.0223 (16)0.0248 (15)
C4B0.0471 (14)0.0573 (15)0.139 (3)0.0140 (12)0.0045 (16)0.0110 (16)
C5B0.0564 (15)0.0755 (17)0.102 (2)0.0116 (13)0.0140 (14)0.0210 (15)
C6B0.0549 (13)0.0640 (14)0.0622 (14)0.0127 (11)0.0063 (11)0.0058 (11)
C1C0.0455 (11)0.0373 (10)0.0354 (10)0.0011 (8)0.0007 (8)0.0022 (8)
C2C0.0829 (16)0.0674 (14)0.0424 (12)0.0246 (12)0.0022 (11)0.0024 (10)
C3C0.101 (2)0.0781 (16)0.0347 (11)0.0097 (15)0.0030 (12)0.0056 (10)
C4C0.0672 (15)0.0833 (17)0.0439 (13)0.0016 (13)0.0147 (11)0.0108 (11)
C5C0.111 (2)0.146 (3)0.0577 (17)0.077 (2)0.0224 (15)0.0071 (17)
C6C0.103 (2)0.120 (2)0.0444 (14)0.0636 (18)0.0150 (13)0.0151 (13)
Geometric parameters (Å, º) top
P1—C11.7196 (18)C2A—H2A0.9500
P1—C1B1.8073 (19)C3A—C4A1.380 (3)
P1—C1A1.8172 (18)C3A—H3A0.9500
P1—C1C1.8186 (18)C4A—C5A1.375 (3)
C1—C21.404 (3)C4A—H4A0.9500
C1—C101.511 (3)C5A—C6A1.385 (3)
C2—O21.230 (2)C5A—H5A0.9500
C2—O11.374 (2)C6A—H6A0.9500
C4—O11.435 (2)C1B—C2B1.375 (3)
C4—C51.496 (3)C1B—C6B1.388 (3)
C4—H4E0.9900C2B—C3B1.404 (3)
C4—H4D0.9900C2B—H2B0.9500
C5—H5F0.9800C3B—C4B1.357 (4)
C5—H5D0.9800C3B—H3B0.9500
C5—H5E0.9800C4B—C5B1.367 (4)
C7—O51.193 (2)C4B—H4B0.9500
C7—O61.334 (2)C5B—C6B1.386 (3)
C7—C101.504 (3)C5B—H5B0.9500
C8—O61.451 (2)C6B—H6B0.9500
C8—C91.477 (3)C1C—C6C1.364 (3)
C8—H8A0.9900C1C—C2C1.372 (3)
C8—H8B0.9900C2C—C3C1.378 (3)
C9—H9A0.9800C2C—H2C0.9500
C9—H9B0.9800C3C—C4C1.356 (3)
C9—H9C0.9800C3C—H3C0.9500
C10—H10A0.9900C4C—C5C1.351 (3)
C10—H10B0.9900C4C—H4C0.9500
C1A—C6A1.383 (3)C5C—C6C1.382 (3)
C1A—C2A1.394 (3)C5C—H5C0.9500
C2A—C3A1.374 (3)C6C—H6C0.9500
C1—P1—C1B107.68 (9)C3A—C2A—H2A119.6
C1—P1—C1A116.83 (8)C1A—C2A—H2A119.6
C1B—P1—C1A103.53 (8)C2A—C3A—C4A119.8 (2)
C1—P1—C1C112.80 (8)C2A—C3A—H3A120.1
C1B—P1—C1C107.35 (8)C4A—C3A—H3A120.1
C1A—P1—C1C107.88 (9)C5A—C4A—C3A120.0 (2)
C2—C1—C10116.92 (16)C5A—C4A—H4A120.0
C2—C1—P1120.37 (15)C3A—C4A—H4A120.0
C10—C1—P1122.64 (14)C4A—C5A—C6A120.3 (2)
O2—C2—O1120.86 (17)C4A—C5A—H5A119.8
O2—C2—C1126.21 (19)C6A—C5A—H5A119.8
O1—C2—C1112.93 (16)C1A—C6A—C5A120.2 (2)
O1—C4—C5112.15 (18)C1A—C6A—H6A119.9
O1—C4—H4E109.2C5A—C6A—H6A119.9
C5—C4—H4E109.2C2B—C1B—C6B119.45 (19)
O1—C4—H4D109.2C2B—C1B—P1122.52 (16)
C5—C4—H4D109.2C6B—C1B—P1117.98 (15)
H4E—C4—H4D107.9C1B—C2B—C3B119.2 (2)
C4—C5—H5F109.5C1B—C2B—H2B120.4
C4—C5—H5D109.5C3B—C2B—H2B120.4
H5F—C5—H5D109.5C4B—C3B—C2B120.9 (2)
C4—C5—H5E109.5C4B—C3B—H3B119.6
H5F—C5—H5E109.5C2B—C3B—H3B119.6
H5D—C5—H5E109.5C3B—C4B—C5B120.0 (2)
O5—C7—O6123.05 (19)C3B—C4B—H4B120.0
O5—C7—C10126.98 (19)C5B—C4B—H4B120.0
O6—C7—C10109.97 (17)C4B—C5B—C6B120.1 (2)
O6—C8—C9107.42 (19)C4B—C5B—H5B119.9
O6—C8—H8A110.2C6B—C5B—H5B119.9
C9—C8—H8A110.2C5B—C6B—C1B120.2 (2)
O6—C8—H8B110.2C5B—C6B—H6B119.9
C9—C8—H8B110.2C1B—C6B—H6B119.9
H8A—C8—H8B108.5C6C—C1C—C2C117.32 (18)
C8—C9—H9A109.5C6C—C1C—P1123.35 (14)
C8—C9—H9B109.5C2C—C1C—P1119.27 (15)
H9A—C9—H9B109.5C1C—C2C—C3C121.6 (2)
C8—C9—H9C109.5C1C—C2C—H2C119.2
H9A—C9—H9C109.5C3C—C2C—H2C119.2
H9B—C9—H9C109.5C4C—C3C—C2C120.2 (2)
C7—C10—C1115.89 (16)C4C—C3C—H3C119.9
C7—C10—H10A108.3C2C—C3C—H3C119.9
C1—C10—H10A108.3C5C—C4C—C3C118.8 (2)
C7—C10—H10B108.3C5C—C4C—H4C120.6
C1—C10—H10B108.3C3C—C4C—H4C120.6
H10A—C10—H10B107.4C4C—C5C—C6C121.2 (2)
C2—O1—C4117.24 (16)C4C—C5C—H5C119.4
C7—O6—C8117.79 (16)C6C—C5C—H5C119.4
C6A—C1A—C2A118.75 (18)C1C—C6C—C5C120.8 (2)
C6A—C1A—P1120.03 (15)C1C—C6C—H6C119.6
C2A—C1A—P1121.15 (13)C5C—C6C—H6C119.6
C3A—C2A—C1A120.87 (18)
C1B—P1—C1—C2171.83 (14)C2A—C1A—C6A—C5A2.0 (3)
C1A—P1—C1—C272.30 (16)P1—C1A—C6A—C5A178.93 (18)
C1C—P1—C1—C253.57 (17)C4A—C5A—C6A—C1A0.9 (4)
C1B—P1—C1—C1011.26 (17)C1—P1—C1B—C2B106.72 (17)
C1A—P1—C1—C10104.62 (15)C1A—P1—C1B—C2B128.96 (17)
C1C—P1—C1—C10129.52 (14)C1C—P1—C1B—C2B15.00 (19)
C10—C1—C2—O25.6 (3)C1—P1—C1B—C6B71.05 (17)
P1—C1—C2—O2177.28 (16)C1A—P1—C1B—C6B53.28 (17)
C10—C1—C2—O1174.82 (15)C1C—P1—C1B—C6B167.24 (15)
P1—C1—C2—O12.3 (2)C6B—C1B—C2B—C3B0.0 (3)
O5—C7—C10—C14.0 (3)P1—C1B—C2B—C3B177.73 (17)
O6—C7—C10—C1175.86 (16)C1B—C2B—C3B—C4B1.2 (4)
C2—C1—C10—C781.0 (2)C2B—C3B—C4B—C5B0.8 (4)
P1—C1—C10—C796.03 (19)C3B—C4B—C5B—C6B0.8 (4)
O2—C2—O1—C412.4 (3)C4B—C5B—C6B—C1B2.0 (4)
C1—C2—O1—C4167.14 (16)C2B—C1B—C6B—C5B1.6 (3)
C5—C4—O1—C276.2 (2)P1—C1B—C6B—C5B176.23 (17)
O5—C7—O6—C80.7 (3)C1—P1—C1C—C6C151.7 (2)
C10—C7—O6—C8179.09 (18)C1B—P1—C1C—C6C89.8 (2)
C9—C8—O6—C7169.7 (2)C1A—P1—C1C—C6C21.2 (2)
C1—P1—C1A—C6A8.67 (19)C1—P1—C1C—C2C31.1 (2)
C1B—P1—C1A—C6A126.82 (17)C1B—P1—C1C—C2C87.31 (18)
C1C—P1—C1A—C6A119.61 (16)C1A—P1—C1C—C2C161.69 (16)
C1—P1—C1A—C2A168.22 (15)C6C—C1C—C2C—C3C0.3 (4)
C1B—P1—C1A—C2A50.07 (17)P1—C1C—C2C—C3C177.67 (18)
C1C—P1—C1A—C2A63.50 (17)C1C—C2C—C3C—C4C0.1 (4)
C6A—C1A—C2A—C3A1.8 (3)C2C—C3C—C4C—C5C1.7 (4)
P1—C1A—C2A—C3A178.78 (16)C3C—C4C—C5C—C6C2.9 (5)
C1A—C2A—C3A—C4A0.7 (3)C2C—C1C—C6C—C5C0.8 (4)
C2A—C3A—C4A—C5A0.4 (4)P1—C1C—C6C—C5C176.4 (2)
C3A—C4A—C5A—C6A0.3 (4)C4C—C5C—C6C—C1C2.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4B—H4B···O2i0.952.463.389 (3)165
Symmetry code: (i) x+3/2, y1/2, z.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC27H27O5PC27H27O5P·C2H4O2C26H27O4P
Mr462.46522.51434.45
Crystal system, space groupTriclinic, P1Triclinic, P1Orthorhombic, Pbca
Temperature (K)150150150
a, b, c (Å)9.0348 (10), 10.3770 (11), 13.8951 (15)9.957 (4), 10.589 (4), 14.928 (6)8.7357 (10), 16.8280 (18), 31.896 (4)
α, β, γ (°)95.994 (2), 108.342 (2), 107.304 (2)78.191 (6), 71.505 (6), 64.285 (6)90, 90, 90
V3)1152.0 (2)1340.7 (9)4688.9 (9)
Z228
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.160.150.15
Crystal size (mm)0.46 × 0.26 × 0.190.46 × 0.38 × 0.320.57 × 0.47 × 0.06
Data collection
DiffractometerBruker SMART? CCD area-detector
diffractometer
Bruker SMART? CCD area-detector
diffractometer
Bruker SMART? CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Multi-scan
(SADABS; Sheldrick, 2001)
Multi-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.95, 0.970.93, 0.950.92, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
9669, 4935, 4077 11211, 5728, 4037 36723, 5370, 3279
Rint0.0210.1120.086
(sin θ/λ)max1)0.6570.6600.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.143, 1.09 0.058, 0.171, 0.93 0.052, 0.139, 0.91
No. of reflections493557285370
No. of parameters344341280
No. of restraints12210
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.05, 0.360.49, 0.360.44, 0.22

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) for (I) top
P1—C11.7546 (18)O1—C41.452 (2)
P1—C1A1.8055 (19)O2—C21.220 (2)
P1—C1C1.8106 (19)O4—C31.240 (2)
P1—C1B1.8183 (19)C1—C31.432 (3)
O1—C21.361 (2)C1—C21.453 (3)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O20.992.232.853 (3)120
C2A—H2A···O2i0.952.543.189 (3)126
C3B—H3B···O5'i0.952.483.327 (5)150
C4A—H4A···O4ii0.952.383.245 (3)151
C9'—H9'A···Cg1iii0.982.743.712 (4)172
C4C—H4C···Cg2iv0.952.793.604 (2)144
Symmetry codes: (i) x1, y, z; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z; (iv) x, y+1, z.
ππ contacts (Å, °) for (I) top
Group_1/Group_2CCD (Å)PCD (Å)
Cg1···Cg1ii3.8512 (12)3.5410 (8)
Cg3···Cg3iv3.9326 (12)3.6424 (8)
Symmetry codes: (ii) -x + 1, -y + 2, -z + 1; (iv) -x, -y + 1, -z; Cg1 is the centroid of the C1A–C6A ring, Cg2 that of the C1B–C6B ring and Cg3 that of the C1C–C6C ring. Notes: CCD is the centroid-to-centroid distance and PCD is the (mean) centroid to opposite plane distance. The rings are parallel by symmetry. For details, see Janiak (2000).
Selected bond lengths (Å) for (II) top
P1—C11.758 (2)O1—C41.450 (3)
P1—C1A1.806 (2)O2—C21.212 (2)
P1—C1B1.812 (2)O4—C31.255 (2)
P1—C1C1.817 (2)C1—C31.417 (3)
O1—C21.343 (3)C1—C21.455 (3)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C6A—H6A···O50.952.573.498 (4)165
C5—H5E···Cg20.982.973.820 (3)146
O2D—H2D···O40.859 (10)1.85 (2)2.636 (3)152 (4)
C10—H10B···O1D0.992.473.430 (3)163
C2A—H2A···O1Di0.952.593.377 (3)140
C2D—H2DB···O5ii0.982.413.345 (4)160
C4B—H4B···Cg3iii0.952.853.711 (4)152
C9—H9B···Cg1iv0.982.863.744 (4)150
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x+1, y, z.
ππ contacts (Å) for (II) top
Group_1/Group_2CCD (Å)PCD (Å)
Cg1···Cg1v3.762 (2)3.520 (2)
Cg2···Cg2iii3.814 (2)3.630 (2)
Symmetry codes: (v) -x, -y + 1, -z + 1; (iii) -x, -y + 1, -z. Cg1 is the centroid of the C1A–C6A ring, Cg2 that of the C1B–C6B ring and Cg3 that of the C1C–C6C ring. Notes: CCD is the centroid-to-centroid distance and PCD is the (mean) centroid to opposite plane distance. The rings are parallel by symmetry. For details, see Janiak (2000).
Selected bond lengths (Å) for (III) top
P1—C11.7196 (18)C1—C101.511 (3)
P1—C1B1.8073 (19)C2—O21.230 (2)
P1—C1A1.8172 (18)C2—O11.374 (2)
P1—C1C1.8186 (18)C4—O11.435 (2)
C1—C21.404 (3)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
C4B—H4B···O2i0.952.463.389 (3)165
Symmetry code: (i) x+3/2, y1/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds