Download citation
Download citation
link to html
The structures of [Cu(AA)6](ClO4)2, (I), and [Mn(AA)6](ClO4)2, (II) (AA is acryl­amide, also known as prop-2-en­amide; C3H5NO), display both intra- and inter­molecular N—H...O hydrogen bonding. A three-dimensional network is propagated via the perchlorate counter-ions. There are two crystallographically independent mol­ecules in the copper complex, with the most significant difference between them being the conformation of one symmetry-related pair of AA ligands which are in the unusual syn conformation. The copper complex exhibits syn/anti disorder of the =CH2 group in one pair of symmetry-related AA ligands. The CuII and MnII centres are both situated on centres of inversion. The copper complex cation has octa­hedral coordination geometry with typical Jahn–Teller distortions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110038813/gt3024sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110038813/gt3024Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110038813/gt3024IIsup3.hkl
Contains datablock II

CCDC references: 804119; 804120

Comment top

Acrylamide (AA) is a versatile nucleophile containing olefinic, carbonyl and amine groups. Consequently, AA can form a variety of metal complexes (Reedijk, 1971; Girma et al., 2005a), predominantly coordinating through the carbonyl O atom, with the monodentate geometries of divalent transition metals being octahedral for [M(AA)6] species. [MX2(AA)4] species also adopt an octahedral geometry, with counterions or, in some cases, water molecules, occupying the ancillary coordinating positions (Girma et al., 2005a,b,c,d, 2006a,b). As yet, the copper(II) and manganese(II) AA complexes, (I) and (II), have not been published and both structures are described herein.

AA has sparked worldwide debate within food safety circles due to its discovery within thermally treated foodstuffs (Rosen & Hellenas, 2002; Tareke et al., 2002; Mottram et al., 2002). It has been classified as a probable human carcinogen by the International Agency for Research on Cancer (1994) and is implicated in tumour formation (Rice, 2005), neurotoxicity (Chen et al., 2009) and mutagenesis (Martins et al., 2007; Baum et al. 2005). While AA and its metabolites, especially glycidamide, have been the subject of intensive investigations, the possibility of any of these species forming metal complexes in vivo through interaction with either free metal ions or metal cations within metalloenzymes has yet to be investigated. Given the relative ease with which metal adducts of AA are formed, along with their apparent water solubility, makes us believe that compounds of this type may be worthy of further investigation from both synthetic and toxicological standpoints.

The crystal structure of (I) consists of two crystallographically independent CuII centres, both situated on centres of inversion (Figs. 1 and 2). The Cu—O distances in the two molecules occur in two distinct ranges, one short [1.9340 (10)–1.9736 (10) Å] and the other long [2.4534 (10)–2.5241 (10) Å]. This is typical of Jahn–Teller distortions observed in d9 metal centres. Copper centre Cu2 has the greater spread of Cu—O distances but it is the other crystallographically independent molecule containing Cu1 which has disorder in the CH2 group. In this disordered group there are two possible positions for the CH2 group, the major component being occupied 68% of the time. The major component has the CH2 group anti with respect to NH2, whereas the minor component is of the unusual syn conformation. In the other crystallographically independent molecule, one pair of AA ligands exists solely in this syn form. None of the AA complexes found in the May 2010 version of the Cambridge Structural Database (Allen, 2002) have the syn form. Several CH2 C-atom displacement ellipsoids are rather anisotropic, but there is no residual electron density greater than 0.5 e Å-3 associated with the AA atoms. One perchlorate ion is noticeably disordered and was modelled with two O4 orientations, yet four of the eight O-atom positions take part in hydrogen bonding. Three of the four the O atoms in the other ordered perchlorate take part in hydrogen bonding.

The manganese complex, (II), also exhibits the same combination of intra- and intermolecular N—H···O hydrogen bonding as seen in the copper species. The MnII centre also lies on a centre of inversion but with the six Mn—O bond lengths being in a tighter range [2.1357 (9)–2.1976 (9) Å], as would be expected for an MnII ion. All AA ligands are in the usual anti conformation (Fig. 3).

All amine H atoms of (I) and (II) participate in hydrogen bonding, either intermolecularly with perchlorate O atoms to form a three-dimensional network, or intramolecularly with neighbouring AA O atoms. The N—H···O hydrogen bonds involving amides bound to the Cu2 centre of (I) are closer to linearity than those emanating from the molecule containing Cu1 (see Table 1). In (I), (II), and the cobalt (Girma et al., 2005b) and iron (Girma et al., 2006a) hexaacrylamide-O analogues, the intermolecular hydrogen bonds all involve the counterion. There are no direct complex-to-complex contacts in any of these four species. In (I) and (II), only four of the six amine groups take part in intramolecular hydrogen bonding (see Figs. 1, 2 and 3). These form six-membered rings with the graph-set notation S11(6) (Bernstein et al., 1995). The H atoms of the other two amines take part in intermolecular hydrogen bonding only. This is also the case in the FeII analogue (Girma et al. 2006b), while in the CoII, NiII and ZnII structures (Girma et al. 2006b) all amines are involved in intermolecular hydrogen bonding. The solely intermolecularly hydrogen-bonded ligand (and its symmetry equivalent) in (I) have the longest Cu—O distance at both Cu centres, whereas conversely in (II) the shortest Mn—O bonds are made by the solely intermolecularly hydrogen-bonded ligand.

The three shortest N···O distances are all intramolecular hydrogen bonds in (I), but there is no such distinction in (II). Two pairs of O atoms in (I) do not participate in hydrogen bonding (O3, O4 and their symmetry equivalents), whereas atoms O2 and O6 make bifurcated hydrogen bonds with neighbouring amine groups (see Figs. 1 and 2). The pattern in (II) differs subtly in that although one pair of O atoms (O3 and its symmetry equivalent) is not involved in N—H···O hydrogen bonding, no bifurcated hydrogen bonds are made by the other O atoms. The torsion angles M—O—C—N in (I) and (II) vary such that when this intramolecular hydrogen bond is present the range of values is 3.33 (19)–19.9 (2)°, but when the amine does not make this type of bond the torsion angle is between -80.88 (16) and -107.35 (14)°. The FeII species with the perchlorate counterion (Girma et al., 2006b) has a similar combination of intra- and intermolecular hydrogen-bonding patterns as the CuII and MnII structures described here. However, in the FeII analogue with µ2-oxo-hexachloridodiiron(III) as the counterion (Girma et al., 2008), the amides all have intramolecular N—H..O contacts, although in addition two NH2 groups make intermolecular contacts with the bridging oxo atom in the counterion.

The intermolecular hydrogen bonding in (I) and (II) is extensive and propagates in three dimensions (see Figs. 4 and 5 and Tables 1 and 2). The N—H···O links joining the complexes to the counterions form a series of rings. One type of ring [R24(20)] involves one perchlorate O atom in a bifurcated hydrogen bond as the link between complexes, and another requires two O atoms in the counterion to form the ring [R44(24)]. Both these rings are over centres of inversion and involve two identical CuII centres. Complexes containing Cu1 and Cu2 are joined to form dimers via perchlorate O atoms, with graph-set notation D33(14). In (II), the intermolecular hydrogen bonding differs from (I) in that chains are more apparent than rings. The smallest ring which includes the metal centres has graph-set notation R88(36), where four manganese complexes are needed to form a ring with four perchlorates.

In conclusion, metal complexes of AA display a significant degree of variation in intramolecular hydrogen bonding, even between chemically identical molecules. Such variation increases the capacity for yet more diversity in intermolecular interactions for complexes containing relatively simple ligands.

Experimental top

[Cu(AA)6](ClO4)2, (I), was prepared as follows. To a solution of copper(II) perchlorate hexahydrate (1.0 g, 2.7 mmol) in a 50:50 mixture of acetonitrile and triethylorthoformate (14 ml) was added acrylamide (1.15 g, 16.2 mmol). The resulting blue solution was stirred at room temperature for 1 h and then allowed to stand for 1 week, resulting in the formation of the product as blue crystals (yield 1.17 g, 63%). Analysis, calculated: C 31.38, H 4.39, N 12.20, Cl 10.29%; found: C 31.38, H 4.36, N 12.04, Cl 10.04%. Spectroscopic analysis: IR (KBr, ν, cm-1): 3335, 3196, 1667, 1429, 1353, 1281, 1089, 985, 811, 626, 508; Raman (cm-1): 3103, 3033, 3011, 2923, 1682, 1637, 1588, 1435, 1284, 1144, 1052, 959, 941, 844, 812, 627, 506, 462, 303, 126, 98. Solubility: water. UV–Vis: λd-d = 808 nm, ε = 12 dm3 mol-1 cm-1.

[Mn(AA)6](ClO4)2, (II), was prepared as follows. To a solution of manganese(II) perchlorate hexahydrate (1.0 g, 2.8 mmol) in a 50:50 mixture of acetonitrile and triethylorthoformate (14 ml) was added acrylamide (1.17 g, 16.6 mmol). The resulting colourless solution was stirred at room temperature for 1 h and then allowed to stand for 1 week, resulting in the formation of the product as colourless crystals which were stored at 253 K (yield 1.21 g, 64%). Analysis, calculated: C 31.78, H 4.44, N 12.35, Cl 10.42%; found: C 29.68, H 4.74, N 11.05, Cl 7.65. Spectroscopic analysis: IR (KBr, ν, cm-1): 3333, 3189, 2745, 1665, 1621, 1589, 1436, 1436, 1360, 1282, 1105, 979, 811, 629; Raman (cm-1): 3363, 2932, 1667, 1606, 1459, 1324, 1122, 933, 842, 764, 624, 458, 134. Solubility: water.

Refinement top

In (I), the CH2 group in one of the unique AA ligands was disordered through an approximately 180° rotation about the C21—C22 bond, with relative occupancies of the two orientations of 0.644 (5) and 0.356 (5), and these were labelled as C23B and C23C, respectively. The displacement parameters of the following atoms were restrained using rigid-bond restraints (DELU; Sheldrick, 2008), namely (C31/C32/C33), (C41/C42/C43) and (C21/C22/C23C/C23B) or similarity restraints (SIMU) (C22/C23C/C23B), (C32/C33) and (C42/C43); atoms in parentheses were restrained together. All Cl—O and O···O distances in both perchlorate anions were restrained to be similar within a standard deviation of 0.02 Å. One perchlorate anion has disordered O atoms and two orientations were modelled for all four O atoms with occupancies of 0.74 (2) for the major component. For both (I) and (II), all amine H atoms were located in difference Fourier maps. Their coordinates were refined in (I), with N—H distances restrained to 0.85 (2) Å, but fixed in geometrically idealized positions in (II) and treated as riding on the parent N atom, with Uiso(H) = 1.2Ueq(N). The positions of all H atoms bound to C atoms were calculated and constrained to idealized geometries, with C—H = 0.95? and Uiso(H) = 1.2Ueq(C).

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A perspective view of one of the crystallographically independent molecules in (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The suffix A denotes the symmetry operation (-x + 2, -y + 1, -z). Counterions and the minor component of disorder in the CH2 fragment have been omitted for clarity. H atoms are shown as small spheres of arbitrary radii. Intramolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A perspective view of the second crystallographically independent molecule of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The suffix A denotes the symmetry operation (-x, -y + 2, -z + 1). H atoms are shown as small spheres of arbitrary radii. Intramolecular hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. A perspective view of (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The suffix A denotes the symmetry operation (-x, -y, -z + 2). H atoms are shown as small spheres of arbitrary radii. Intramolecular hydrogen bonds are shown as dashed lines.
[Figure 4] Fig. 4. The hydrogen bonding of (I), showing both intra- and intermolecular hydrogen bonds (dashed lines).
[Figure 5] Fig. 5. The hydrogen bonding of (II), showing both intra- and intermolecular hydrogen bonds (dashed lines).
(I) Hexakis(prop-2-enamide)copper(II) bis(perchlorate) top
Crystal data top
[Cu(C3H5NO)6](ClO4)2Z = 2
Mr = 688.92F(000) = 710
Triclinic, P1Dx = 1.554 Mg m3
a = 8.4577 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8762 (6) ÅCell parameters from 9880 reflections
c = 17.7889 (11) Åθ = 2.3–30.8°
α = 88.392 (3)°µ = 1.00 mm1
β = 85.871 (3)°T = 100 K
γ = 83.690 (3)°Block, blue
V = 1472.77 (15) Å30.80 × 0.58 × 0.32 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
9130 independent reflections
Radiation source: fine-focus sealed tube7503 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 31.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1210
Tmin = 0.503, Tmax = 0.741k = 1314
34176 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0404P)2 + 0.555P]
where P = (Fo2 + 2Fc2)/3
9130 reflections(Δ/σ)max < 0.001
457 parametersΔρmax = 0.52 e Å3
165 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Cu(C3H5NO)6](ClO4)2γ = 83.690 (3)°
Mr = 688.92V = 1472.77 (15) Å3
Triclinic, P1Z = 2
a = 8.4577 (5) ÅMo Kα radiation
b = 9.8762 (6) ŵ = 1.00 mm1
c = 17.7889 (11) ÅT = 100 K
α = 88.392 (3)°0.80 × 0.58 × 0.32 mm
β = 85.871 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
9130 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
7503 reflections with I > 2σ(I)
Tmin = 0.503, Tmax = 0.741Rint = 0.031
34176 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031165 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.52 e Å3
9130 reflectionsΔρmin = 0.58 e Å3
457 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.00000.50000.00000.01213 (6)
Cu20.00001.00000.50000.01163 (6)
O10.01583 (11)0.57494 (10)0.10228 (5)0.01557 (19)
N10.25570 (15)0.70257 (14)0.10231 (7)0.0175 (2)
H1A0.283 (2)0.6586 (17)0.0667 (9)0.021*
H1B0.321 (2)0.7630 (16)0.1215 (10)0.021*
O20.28733 (12)0.51742 (11)0.00127 (6)0.0176 (2)
N20.36002 (17)0.64070 (16)0.10357 (8)0.0261 (3)
H2A0.342 (2)0.5808 (18)0.1327 (10)0.031*
H2B0.392 (2)0.7125 (17)0.1213 (11)0.031*
O30.02512 (12)0.31633 (10)0.04194 (5)0.0163 (2)
N30.22902 (16)0.32158 (15)0.11740 (8)0.0233 (3)
H3B0.250 (2)0.3964 (16)0.0993 (11)0.028*
H3A0.284 (2)0.2833 (19)0.1520 (10)0.028*
O40.08485 (11)0.81076 (10)0.49090 (5)0.01515 (19)
N40.25499 (15)0.81301 (13)0.38591 (7)0.0164 (2)
H4B0.219 (2)0.8935 (15)0.3752 (10)0.020*
H4A0.3291 (19)0.7717 (17)0.3596 (9)0.020*
O50.21430 (11)1.05827 (10)0.48963 (5)0.01432 (19)
N50.22285 (15)1.15928 (13)0.60198 (7)0.0174 (2)
H5A0.155 (2)1.1113 (17)0.6238 (10)0.021*
H5B0.276 (2)1.2038 (17)0.6283 (9)0.021*
O60.00145 (12)0.96692 (10)0.64125 (6)0.0168 (2)
N60.15985 (15)0.80137 (13)0.69553 (7)0.0190 (2)
H6B0.232 (2)0.8542 (17)0.7005 (10)0.023*
H6A0.176 (2)0.7193 (15)0.7118 (10)0.023*
C110.11579 (16)0.66668 (14)0.13028 (7)0.0145 (3)
C120.08098 (18)0.74078 (15)0.19716 (8)0.0199 (3)
H120.16020.80750.21810.024*
C130.0551 (2)0.71793 (19)0.22867 (10)0.0328 (4)
H13A0.13580.65160.20850.039*
H13B0.07300.76770.27160.039*
C210.33517 (16)0.62348 (16)0.03001 (8)0.0186 (3)
C220.3658 (2)0.7376 (2)0.01783 (12)0.0365 (4)
H220.40790.81350.00720.044*0.644 (5)
H22A0.35820.71160.06970.044*0.356 (5)
C23B0.3420 (3)0.7429 (3)0.08581 (16)0.0351 (8)0.644 (5)
H23A0.35300.82450.11100.042*0.644 (5)
H23B0.31230.66530.11390.042*0.644 (5)
C23C0.3959 (7)0.8480 (5)0.0105 (3)0.0331 (14)0.356 (5)
H23C0.39400.90370.05330.040*0.356 (5)
H23D0.42290.88360.03830.040*0.356 (5)
C310.11260 (17)0.26269 (15)0.09149 (8)0.0180 (3)
C320.0857 (2)0.12560 (18)0.12153 (11)0.0316 (4)
H320.14770.08570.16050.038*
C330.0222 (3)0.0588 (2)0.09509 (17)0.0606 (8)
H33A0.08440.09820.05610.073*
H33B0.03850.02940.11480.073*
C410.19121 (16)0.75233 (14)0.44610 (8)0.0145 (3)
C420.24768 (19)0.60784 (15)0.46059 (9)0.0248 (3)
H420.32690.56170.42710.030*
C430.1885 (3)0.54265 (19)0.51990 (13)0.0512 (6)
H43B0.10930.58860.55350.061*
H43A0.22510.44960.52910.061*
C510.27699 (16)1.13482 (13)0.53165 (8)0.0133 (2)
C520.41753 (16)1.20190 (15)0.50235 (8)0.0171 (3)
H520.45411.26930.53190.021*
C530.49382 (18)1.17150 (17)0.43678 (9)0.0229 (3)
H53A0.45901.10440.40650.027*
H53B0.58371.21670.41980.027*
C610.02339 (16)0.84728 (14)0.66649 (7)0.0148 (3)
C620.10360 (18)0.75546 (16)0.66486 (8)0.0200 (3)
H620.19280.78650.63710.024*
C630.1044 (2)0.63500 (17)0.69831 (10)0.0258 (3)
H63B0.01770.59960.72680.031*
H63A0.19160.58340.69400.031*
Cl10.50368 (4)0.02522 (3)0.220890 (18)0.01470 (7)
Cl20.56337 (4)0.53537 (3)0.28424 (2)0.01881 (8)
O1S0.47834 (13)0.17200 (11)0.21175 (6)0.0239 (2)
O2S0.61844 (14)0.00887 (11)0.27602 (7)0.0266 (3)
O3S0.35713 (14)0.02654 (13)0.24450 (8)0.0318 (3)
O4S0.56577 (16)0.03050 (14)0.14941 (7)0.0355 (3)
O5S0.4498 (7)0.5492 (7)0.2255 (3)0.0399 (10)0.74 (2)
O6S0.5626 (10)0.6639 (6)0.3175 (4)0.0296 (10)0.74 (2)
O7S0.5114 (6)0.4371 (3)0.3383 (3)0.0354 (9)0.74 (2)
O8S0.7178 (7)0.4874 (9)0.2500 (5)0.0212 (14)0.74 (2)
O5T0.581 (2)0.6834 (17)0.3027 (12)0.025 (3)0.26 (2)
O6T0.569 (3)0.466 (2)0.3584 (11)0.060 (7)0.26 (2)
O7T0.4375 (15)0.5255 (19)0.2486 (16)0.045 (4)0.26 (2)
O8T0.717 (2)0.491 (3)0.2429 (12)0.019 (4)0.26 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01253 (11)0.01234 (11)0.01078 (10)0.00158 (9)0.00071 (8)0.00122 (8)
Cu20.00883 (10)0.01072 (11)0.01514 (11)0.00036 (8)0.00115 (8)0.00126 (8)
O10.0150 (5)0.0165 (5)0.0143 (4)0.0027 (4)0.0015 (4)0.0004 (4)
N10.0137 (5)0.0214 (6)0.0166 (6)0.0029 (5)0.0018 (4)0.0048 (5)
O20.0144 (5)0.0211 (5)0.0175 (5)0.0028 (4)0.0009 (4)0.0006 (4)
N20.0273 (7)0.0273 (7)0.0241 (7)0.0088 (6)0.0020 (5)0.0030 (6)
O30.0176 (5)0.0147 (5)0.0161 (5)0.0011 (4)0.0024 (4)0.0033 (4)
N30.0222 (6)0.0243 (7)0.0229 (7)0.0010 (5)0.0071 (5)0.0071 (5)
O40.0131 (4)0.0125 (4)0.0191 (5)0.0010 (4)0.0009 (4)0.0009 (4)
N40.0154 (6)0.0162 (6)0.0165 (6)0.0025 (5)0.0003 (4)0.0019 (5)
O50.0110 (4)0.0157 (5)0.0163 (5)0.0013 (4)0.0013 (3)0.0015 (4)
N50.0179 (6)0.0203 (6)0.0154 (6)0.0065 (5)0.0031 (4)0.0003 (5)
O60.0163 (5)0.0154 (5)0.0187 (5)0.0014 (4)0.0024 (4)0.0030 (4)
N60.0157 (6)0.0161 (6)0.0254 (6)0.0020 (5)0.0055 (5)0.0037 (5)
C110.0159 (6)0.0139 (6)0.0135 (6)0.0012 (5)0.0004 (5)0.0018 (5)
C120.0226 (7)0.0198 (7)0.0171 (7)0.0000 (6)0.0030 (5)0.0043 (5)
C130.0331 (9)0.0334 (9)0.0332 (9)0.0025 (8)0.0148 (7)0.0122 (7)
C210.0108 (6)0.0219 (7)0.0231 (7)0.0013 (5)0.0005 (5)0.0040 (6)
C220.0223 (8)0.0330 (10)0.0564 (12)0.0067 (7)0.0041 (8)0.0207 (9)
C23B0.0290 (14)0.0433 (17)0.0353 (16)0.0112 (13)0.0012 (11)0.0219 (13)
C23C0.044 (3)0.022 (2)0.035 (3)0.006 (2)0.012 (2)0.000 (2)
C310.0173 (6)0.0188 (7)0.0156 (6)0.0046 (6)0.0026 (5)0.0036 (5)
C320.0288 (9)0.0255 (8)0.0388 (10)0.0016 (7)0.0050 (7)0.0173 (7)
C330.0571 (15)0.0298 (11)0.100 (2)0.0170 (10)0.0336 (14)0.0364 (12)
C410.0110 (6)0.0144 (6)0.0185 (6)0.0003 (5)0.0038 (5)0.0028 (5)
C420.0243 (8)0.0148 (7)0.0325 (8)0.0048 (6)0.0076 (6)0.0013 (6)
C430.0643 (15)0.0172 (8)0.0616 (14)0.0155 (9)0.0324 (11)0.0114 (8)
C510.0111 (6)0.0120 (6)0.0163 (6)0.0023 (5)0.0038 (5)0.0024 (5)
C520.0128 (6)0.0167 (7)0.0228 (7)0.0036 (5)0.0047 (5)0.0019 (5)
C530.0147 (6)0.0246 (8)0.0289 (8)0.0029 (6)0.0006 (6)0.0041 (6)
C610.0147 (6)0.0167 (6)0.0123 (6)0.0004 (5)0.0006 (5)0.0006 (5)
C620.0169 (6)0.0222 (7)0.0216 (7)0.0043 (6)0.0037 (5)0.0039 (6)
C630.0218 (7)0.0226 (8)0.0337 (9)0.0073 (6)0.0019 (6)0.0062 (7)
Cl10.01473 (14)0.01386 (15)0.01537 (14)0.00070 (12)0.00360 (11)0.00005 (11)
Cl20.01791 (16)0.01546 (15)0.02119 (16)0.00188 (13)0.00519 (12)0.00113 (12)
O1S0.0254 (6)0.0145 (5)0.0312 (6)0.0006 (4)0.0047 (5)0.0054 (4)
O2S0.0312 (6)0.0201 (5)0.0303 (6)0.0006 (5)0.0200 (5)0.0029 (5)
O3S0.0203 (6)0.0307 (7)0.0447 (7)0.0081 (5)0.0028 (5)0.0146 (6)
O4S0.0405 (7)0.0398 (7)0.0241 (6)0.0071 (6)0.0008 (5)0.0134 (5)
O5S0.0235 (17)0.058 (2)0.0366 (17)0.0127 (14)0.0105 (12)0.0130 (14)
O6S0.0204 (17)0.0201 (16)0.049 (2)0.0055 (11)0.0032 (15)0.0113 (13)
O7S0.0440 (18)0.0211 (10)0.0374 (16)0.0042 (11)0.0211 (12)0.0040 (10)
O8S0.014 (2)0.021 (2)0.027 (2)0.0050 (16)0.0044 (14)0.0023 (16)
O5T0.017 (4)0.011 (4)0.046 (6)0.004 (3)0.003 (4)0.016 (4)
O6T0.077 (11)0.050 (8)0.036 (6)0.037 (8)0.035 (7)0.031 (5)
O7T0.012 (3)0.044 (6)0.083 (10)0.015 (3)0.001 (5)0.038 (6)
O8T0.015 (6)0.025 (7)0.016 (4)0.001 (5)0.000 (3)0.000 (4)
Geometric parameters (Å, º) top
Cu1—O31.9376 (10)C22—C23B1.213 (3)
Cu1—O3i1.9376 (10)C22—H220.9500
Cu1—O11.9735 (10)C22—H22A0.9500
Cu1—O1i1.9735 (10)C23B—H23A0.9500
Cu2—O41.9338 (9)C23B—H23B0.9500
Cu2—O4ii1.9338 (9)C23C—H23C0.9500
Cu2—O51.9558 (10)C23C—H23D0.9500
Cu2—O5ii1.9558 (10)C31—C321.476 (2)
O1—C111.2570 (16)C32—C331.305 (3)
N1—C111.3252 (18)C32—H320.9500
N1—H1A0.839 (14)C33—H33A0.9500
N1—H1B0.831 (14)C33—H33B0.9500
O2—C211.2473 (18)C41—C421.476 (2)
N2—C211.320 (2)C42—C431.317 (2)
N2—H2A0.831 (15)C42—H420.9500
N2—H2B0.831 (15)C43—H43B0.9500
O3—C311.2597 (17)C43—H43A0.9500
N3—C311.314 (2)C51—C521.4791 (19)
N3—H3B0.829 (14)C52—C531.318 (2)
N3—H3A0.851 (14)C52—H520.9500
O4—C411.2594 (16)C53—H53A0.9500
N4—C411.3223 (18)C53—H53B0.9500
N4—H4B0.841 (14)C61—C621.482 (2)
N4—H4A0.831 (14)C62—C631.316 (2)
O5—C511.2603 (17)C62—H620.9500
N5—C511.3204 (18)C63—H63B0.9500
N5—H5A0.848 (14)C63—H63A0.9500
N5—H5B0.835 (14)Cl1—O3S1.4234 (12)
O6—C611.2534 (16)Cl1—O2S1.4366 (11)
N6—C611.3275 (18)Cl1—O4S1.4405 (12)
N6—H6B0.857 (14)Cl1—O1S1.4482 (11)
N6—H6A0.853 (14)Cl2—O7T1.291 (16)
C11—C121.478 (2)Cl2—O6S1.415 (5)
C12—C131.311 (2)Cl2—O7S1.429 (3)
C12—H120.9500Cl2—O8S1.438 (5)
C13—H13A0.9500Cl2—O5S1.463 (4)
C13—H13B0.9500Cl2—O6T1.468 (10)
C21—C221.487 (2)Cl2—O8T1.474 (13)
C22—C23C1.148 (5)Cl2—O5T1.533 (14)
O3—Cu1—O3i180.00 (6)C33—C32—C31120.68 (16)
O3—Cu1—O190.39 (4)C33—C32—H32119.7
O3i—Cu1—O189.61 (4)C31—C32—H32119.7
O3—Cu1—O1i89.61 (4)C32—C33—H33A120.0
O3i—Cu1—O1i90.39 (4)C32—C33—H33B120.0
O1—Cu1—O1i180.00 (2)H33A—C33—H33B120.0
O4—Cu2—O4ii180.0O4—C41—N4123.60 (13)
O4—Cu2—O591.45 (4)O4—C41—C42118.73 (13)
O4ii—Cu2—O588.55 (4)N4—C41—C42117.67 (12)
O4—Cu2—O5ii88.55 (4)C43—C42—C41120.16 (14)
O4ii—Cu2—O5ii91.45 (4)C43—C42—H42119.9
O5—Cu2—O5ii180.00 (5)C41—C42—H42119.9
C11—O1—Cu1128.63 (9)C42—C43—H43B120.0
C11—N1—H1A119.5 (13)C42—C43—H43A120.0
C11—N1—H1B122.0 (13)H43B—C43—H43A120.0
H1A—N1—H1B118.3 (18)O5—C51—N5122.97 (13)
C21—N2—H2A120.3 (14)O5—C51—C52119.78 (12)
C21—N2—H2B120.3 (14)N5—C51—C52117.25 (13)
H2A—N2—H2B119 (2)C53—C52—C51122.34 (14)
C31—O3—Cu1131.37 (10)C53—C52—H52118.8
C31—N3—H3B119.2 (14)C51—C52—H52118.8
C31—N3—H3A120.8 (13)C52—C53—H53A120.0
H3B—N3—H3A120.1 (19)C52—C53—H53B120.0
C41—O4—Cu2131.56 (9)H53A—C53—H53B120.0
C41—N4—H4B118.6 (13)O6—C61—N6121.61 (13)
C41—N4—H4A120.0 (12)O6—C61—C62119.18 (13)
H4B—N4—H4A121.4 (18)N6—C61—C62119.21 (13)
C51—O5—Cu2128.70 (9)C63—C62—C61126.12 (14)
C51—N5—H5A120.3 (12)C63—C62—H62116.9
C51—N5—H5B118.2 (13)C61—C62—H62116.9
H5A—N5—H5B118.7 (18)C62—C63—H63B120.0
C61—N6—H6B121.1 (13)C62—C63—H63A120.0
C61—N6—H6A120.9 (13)H63B—C63—H63A120.0
H6B—N6—H6A118.0 (18)O3S—Cl1—O2S110.14 (7)
O1—C11—N1122.84 (13)O3S—Cl1—O4S110.47 (8)
O1—C11—C12120.63 (13)O2S—Cl1—O4S109.33 (8)
N1—C11—C12116.53 (12)O3S—Cl1—O1S109.90 (7)
C13—C12—C11122.48 (14)O2S—Cl1—O1S109.02 (7)
C13—C12—H12118.8O4S—Cl1—O1S107.94 (8)
C11—C12—H12118.8O7T—Cl2—O6S112.9 (8)
C12—C13—H13A120.0O7T—Cl2—O7S89.0 (10)
C12—C13—H13B120.0O6S—Cl2—O7S110.9 (2)
H13A—C13—H13B120.0O7T—Cl2—O8S119.7 (9)
O2—C21—N2122.20 (14)O6S—Cl2—O8S112.0 (4)
O2—C21—C22120.98 (15)O7S—Cl2—O8S110.0 (4)
N2—C21—C22116.82 (16)O6S—Cl2—O5S108.2 (3)
C23C—C22—C23B94.7 (3)O7S—Cl2—O5S107.2 (2)
C23C—C22—C21138.7 (3)O8S—Cl2—O5S108.2 (3)
C23B—C22—C21126.0 (2)O7T—Cl2—O6T116.1 (7)
C23B—C22—H22117.0O6S—Cl2—O6T91.1 (12)
C21—C22—H22117.0O8S—Cl2—O6T101.0 (7)
C23C—C22—H22A110.7O5S—Cl2—O6T134.8 (14)
C21—C22—H22A110.7O7T—Cl2—O8T115.7 (12)
H22—C22—H22A131.0O6S—Cl2—O8T112.6 (13)
C22—C23B—H23A120.0O7S—Cl2—O8T113.7 (10)
C22—C23B—H23B120.0O5S—Cl2—O8T103.6 (10)
H23A—C23B—H23B120.0O6T—Cl2—O8T105.8 (10)
C22—C23C—H23C120.0O7T—Cl2—O5T112.0 (9)
C22—C23C—H23D120.0O7S—Cl2—O5T124.0 (7)
H23C—C23C—H23D120.0O8S—Cl2—O5T103.2 (10)
O3—C31—N3123.41 (14)O5S—Cl2—O5T103.3 (8)
O3—C31—C32118.79 (14)O6T—Cl2—O5T102.7 (10)
N3—C31—C32117.79 (14)O8T—Cl2—O5T102.9 (10)
O3—Cu1—O1—C11132.92 (12)N2—C21—C22—C23B176.0 (2)
O3i—Cu1—O1—C1147.08 (12)Cu1—O3—C31—N311.6 (2)
O1—Cu1—O3—C3147.02 (12)Cu1—O3—C31—C32169.47 (11)
O1i—Cu1—O3—C31132.98 (12)O3—C31—C32—C332.8 (3)
O5—Cu2—O4—C4145.01 (12)N3—C31—C32—C33176.2 (2)
O5ii—Cu2—O4—C41134.99 (12)Cu2—O4—C41—N49.9 (2)
O4—Cu2—O5—C51128.14 (11)Cu2—O4—C41—C42170.69 (10)
O4ii—Cu2—O5—C5151.86 (11)O4—C41—C42—C430.8 (3)
Cu1—O1—C11—N119.9 (2)N4—C41—C42—C43179.76 (19)
Cu1—O1—C11—C12159.92 (10)Cu2—O5—C51—N519.60 (19)
O1—C11—C12—C132.1 (2)Cu2—O5—C51—C52160.29 (9)
N1—C11—C12—C13177.78 (16)O5—C51—C52—C539.0 (2)
O2—C21—C22—C23C172.0 (5)N5—C51—C52—C53171.09 (14)
N2—C21—C22—C23C7.6 (5)O6—C61—C62—C63169.90 (16)
O2—C21—C22—C23B3.5 (3)N6—C61—C62—C639.2 (2)
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O4Siii0.83 (1)2.21 (2)2.9997 (18)159 (2)
N1—H1A···O2i0.84 (1)2.12 (2)2.9049 (17)155 (2)
N2—H2A···O8Tiv0.83 (2)2.21 (3)2.97 (2)153 (2)
N2—H2B···O1Siv0.83 (2)2.24 (2)2.9952 (18)151 (2)
N3—H3B···O20.83 (1)2.15 (2)2.8759 (17)147 (2)
N3—H3A···O1S0.85 (1)2.20 (2)3.0219 (17)162 (2)
N4—H4A···O6S0.83 (1)2.23 (2)3.037 (8)164 (2)
N4—H4A···O5T0.83 (1)2.38 (2)3.19 (2)166 (2)
N4—H4B···O6ii0.84 (1)2.21 (2)2.9362 (16)145 (2)
N5—H5B···O6Sv0.84 (1)2.27 (2)3.100 (6)171 (2)
N5—H5B···O5Tv0.84 (1)2.19 (2)3.027 (15)179 (2)
N5—H5A···O60.85 (1)2.05 (2)2.8676 (17)161 (2)
N6—H6B···O2Svi0.86 (1)2.15 (2)3.0019 (18)170 (2)
N6—H6A···O8Svi0.85 (1)2.25 (2)3.080 (9)166 (2)
N6—H6A···O8Tvi0.85 (1)2.32 (3)3.15 (2)166 (2)
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z+1; (iii) x1, y+1, z; (iv) x+1, y+1, z; (v) x+1, y+2, z+1; (vi) x+1, y+1, z+1.
(II) Hexakis(prop-2-enamide)manganese(II) bis(perchlorate) top
Crystal data top
[Mn(C3H5NO)6](ClO4)2F(000) = 702
Mr = 680.32Dx = 1.536 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9895 reflections
a = 9.2804 (6) Åθ = 2.4–31.4°
b = 15.9533 (10) ŵ = 0.70 mm1
c = 10.6876 (7) ÅT = 100 K
β = 111.642 (3)°Block, colourless
V = 1470.79 (16) Å30.64 × 0.58 × 0.42 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5063 independent reflections
Radiation source: fine-focus sealed tube4083 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 31.9°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1313
Tmin = 0.662, Tmax = 0.757k = 2323
43193 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.2932P]
where P = (Fo2 + 2Fc2)/3
5063 reflections(Δ/σ)max = 0.001
187 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Mn(C3H5NO)6](ClO4)2V = 1470.79 (16) Å3
Mr = 680.32Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.2804 (6) ŵ = 0.70 mm1
b = 15.9533 (10) ÅT = 100 K
c = 10.6876 (7) Å0.64 × 0.58 × 0.42 mm
β = 111.642 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5063 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4083 reflections with I > 2σ(I)
Tmin = 0.662, Tmax = 0.757Rint = 0.042
43193 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.08Δρmax = 0.52 e Å3
5063 reflectionsΔρmin = 0.52 e Å3
187 parameters
Special details top

Experimental. 2009–07-07 # Formatted by publCIF

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1S0.43853 (12)0.24537 (7)0.49636 (10)0.0312 (2)
Mn10.00000.00001.00000.01459 (7)
O10.06157 (10)0.09332 (6)1.12036 (9)0.01835 (18)
O20.24984 (10)0.01682 (6)1.11141 (9)0.02028 (19)
O30.00353 (11)0.09964 (6)0.86770 (9)0.02174 (19)
N10.27987 (13)0.15609 (7)0.97851 (11)0.0227 (2)
H1A0.28350.12310.91140.034*
H1B0.35140.19470.96650.034*
N20.26722 (13)0.13792 (8)1.22531 (13)0.0270 (3)
H2A0.16640.13951.20530.040*
H2B0.32660.17801.27440.040*
N30.18662 (13)0.15153 (8)0.79767 (12)0.0244 (2)
H3A0.23760.17360.87720.037*
H3B0.22180.15750.73220.037*
C100.16687 (13)0.14752 (8)1.09754 (12)0.0170 (2)
C110.16807 (15)0.20521 (9)1.20582 (14)0.0226 (3)
H110.23970.25041.18460.027*
C120.07136 (16)0.19492 (9)1.33133 (14)0.0260 (3)
H12A0.00070.14991.35360.031*
H12B0.07380.23251.39940.031*
C200.32968 (14)0.07527 (8)1.18153 (12)0.0182 (2)
C210.50067 (14)0.07737 (9)1.22113 (14)0.0237 (3)
H210.55710.12261.27480.028*
C220.57686 (16)0.01872 (9)1.18446 (16)0.0274 (3)
H22A0.52230.02701.13080.033*
H22B0.68640.02211.21170.033*
C300.05653 (15)0.10918 (8)0.77646 (13)0.0194 (2)
C310.02246 (17)0.07554 (9)0.63896 (14)0.0258 (3)
H310.02790.07900.57620.031*
C320.16160 (18)0.04076 (10)0.60134 (15)0.0307 (3)
H32A0.21310.03700.66320.037*
H32B0.20990.01960.51250.037*
Cl1S0.42725 (3)0.17867 (2)0.58438 (3)0.02065 (8)
O2S0.48644 (13)0.20707 (8)0.72143 (10)0.0356 (3)
O3S0.26695 (12)0.15732 (9)0.54845 (11)0.0396 (3)
O4S0.5118 (2)0.10871 (10)0.56775 (18)0.0666 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1S0.0268 (5)0.0381 (6)0.0249 (5)0.0100 (4)0.0052 (4)0.0100 (4)
Mn10.01184 (12)0.01729 (13)0.01538 (12)0.00017 (9)0.00587 (9)0.00068 (9)
O10.0149 (4)0.0218 (4)0.0191 (4)0.0030 (3)0.0070 (3)0.0011 (3)
O20.0140 (4)0.0234 (5)0.0227 (4)0.0017 (3)0.0058 (3)0.0039 (4)
O30.0255 (5)0.0207 (5)0.0238 (4)0.0013 (4)0.0147 (4)0.0032 (4)
N10.0186 (5)0.0223 (6)0.0240 (5)0.0041 (4)0.0041 (4)0.0005 (4)
N20.0164 (5)0.0291 (6)0.0352 (6)0.0038 (4)0.0093 (5)0.0136 (5)
N30.0223 (5)0.0288 (6)0.0252 (6)0.0018 (5)0.0124 (5)0.0000 (5)
C100.0136 (5)0.0179 (6)0.0214 (6)0.0011 (4)0.0085 (4)0.0011 (4)
C110.0182 (6)0.0197 (6)0.0312 (7)0.0021 (5)0.0105 (5)0.0045 (5)
C120.0258 (6)0.0276 (7)0.0265 (7)0.0002 (5)0.0121 (5)0.0072 (5)
C200.0146 (5)0.0212 (6)0.0186 (5)0.0014 (4)0.0057 (4)0.0002 (4)
C210.0140 (5)0.0244 (7)0.0307 (7)0.0033 (5)0.0057 (5)0.0013 (5)
C220.0165 (6)0.0256 (7)0.0407 (8)0.0008 (5)0.0113 (6)0.0023 (6)
C300.0205 (6)0.0176 (6)0.0223 (6)0.0037 (5)0.0104 (5)0.0039 (5)
C310.0282 (7)0.0298 (7)0.0221 (6)0.0031 (5)0.0126 (5)0.0001 (5)
C320.0318 (7)0.0345 (8)0.0247 (7)0.0053 (6)0.0092 (6)0.0007 (6)
Cl1S0.01625 (13)0.02367 (16)0.02388 (15)0.00034 (11)0.00956 (11)0.00255 (11)
O2S0.0325 (6)0.0470 (7)0.0187 (5)0.0121 (5)0.0008 (4)0.0044 (4)
O3S0.0232 (5)0.0687 (9)0.0278 (5)0.0216 (5)0.0104 (4)0.0045 (5)
O4S0.0859 (11)0.0495 (9)0.0910 (12)0.0380 (8)0.0640 (10)0.0210 (8)
Geometric parameters (Å, º) top
O1S—Cl1S1.4494 (11)C10—C111.4819 (18)
Mn1—O32.1357 (9)C11—C121.321 (2)
Mn1—O3i2.1357 (9)C11—H110.9500
Mn1—O1i2.1771 (9)C12—H12A0.9500
Mn1—O12.1771 (9)C12—H12B0.9500
Mn1—O22.1976 (9)C20—C211.4842 (17)
Mn1—O2i2.1976 (9)C21—C221.317 (2)
O1—C101.2595 (14)C21—H210.9500
O2—C201.2532 (15)C22—H22A0.9500
O3—C301.2529 (15)C22—H22B0.9500
N1—C101.3239 (16)C30—C311.4800 (19)
N1—H1A0.8800C31—C321.324 (2)
N1—H1B0.8800C31—H310.9500
N2—C201.3245 (17)C32—H32A0.9500
N2—H2A0.8800C32—H32B0.9500
N2—H2B0.8800Cl1S—O4S1.4124 (13)
N3—C301.3280 (17)Cl1S—O3S1.4336 (11)
N3—H3A0.8800Cl1S—O2S1.4350 (11)
N3—H3B0.8800
O3—Mn1—O3i180.0C12—C11—C10121.20 (12)
O3—Mn1—O1i92.65 (4)C12—C11—H11119.4
O3i—Mn1—O1i87.35 (4)C10—C11—H11119.4
O3—Mn1—O187.35 (4)C11—C12—H12A120.0
O3i—Mn1—O192.65 (4)C11—C12—H12B120.0
O1i—Mn1—O1180.0H12A—C12—H12B120.0
O3—Mn1—O289.83 (4)O2—C20—N2122.24 (11)
O3i—Mn1—O290.17 (4)O2—C20—C21121.43 (12)
O1i—Mn1—O287.09 (3)N2—C20—C21116.32 (12)
O1—Mn1—O292.91 (3)C22—C21—C20122.29 (13)
O3—Mn1—O2i90.17 (4)C22—C21—H21118.9
O3i—Mn1—O2i89.83 (4)C20—C21—H21118.9
O1i—Mn1—O2i92.91 (3)C21—C22—H22A120.0
O1—Mn1—O2i87.09 (3)C21—C22—H22B120.0
O2—Mn1—O2i180.00 (3)H22A—C22—H22B120.0
C10—O1—Mn1135.15 (8)O3—C30—N3121.47 (12)
C20—O2—Mn1133.46 (8)O3—C30—C31122.41 (12)
C30—O3—Mn1135.40 (9)N3—C30—C31116.12 (11)
C10—N1—H1A120.0C32—C31—C30121.59 (13)
C10—N1—H1B120.0C32—C31—H31119.2
H1A—N1—H1B120.0C30—C31—H31119.2
C20—N2—H2A120.0C31—C32—H32A120.0
C20—N2—H2B120.0C31—C32—H32B120.0
H2A—N2—H2B120.0H32A—C32—H32B120.0
C30—N3—H3A120.0O4S—Cl1S—O3S110.37 (10)
C30—N3—H3B120.0O4S—Cl1S—O2S110.89 (10)
H3A—N3—H3B120.0O3S—Cl1S—O2S108.49 (7)
O1—C10—N1122.69 (12)O4S—Cl1S—O1S108.79 (8)
O1—C10—C11120.26 (11)O3S—Cl1S—O1S108.47 (7)
N1—C10—C11117.06 (11)O2S—Cl1S—O1S109.79 (7)
O3—Mn1—O1—C1054.79 (12)Mn1—O1—C10—C11176.62 (9)
O3i—Mn1—O1—C10125.21 (12)O1—C10—C11—C128.2 (2)
O2i—Mn1—O1—C1035.51 (11)N1—C10—C11—C12171.83 (13)
O3—Mn1—O2—C2065.08 (12)Mn1—O2—C20—N214.2 (2)
O3i—Mn1—O2—C20114.92 (12)Mn1—O2—C20—C21166.40 (9)
O1i—Mn1—O2—C20157.74 (12)O2—C20—C21—C220.4 (2)
O1—Mn1—O2—C2022.26 (12)N2—C20—C21—C22179.81 (14)
O1i—Mn1—O3—C3016.17 (13)Mn1—O3—C30—N3102.43 (15)
O1—Mn1—O3—C30163.83 (13)Mn1—O3—C30—C3178.62 (17)
O2—Mn1—O3—C3070.91 (13)O3—C30—C31—C326.9 (2)
O2i—Mn1—O3—C30109.09 (13)N3—C30—C31—C32172.10 (14)
Mn1—O1—C10—N13.33 (19)
Symmetry code: (i) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.882.282.9678 (15)135
N1—H1B···O1Sii0.882.303.1153 (15)155
N2—H2A···O10.882.102.9241 (14)155
N2—H2B···O1Siii0.882.463.2343 (16)147
N2—H2B···O2Siv0.882.553.2121 (18)133
N3—H3A···O1Siv0.882.243.0030 (16)145
N3—H3B···O3S0.882.153.0206 (16)168
Symmetry codes: (i) x, y, z+2; (ii) x1, y+1/2, z+1/2; (iii) x, y, z+1; (iv) x, y+1/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Cu(C3H5NO)6](ClO4)2[Mn(C3H5NO)6](ClO4)2
Mr688.92680.32
Crystal system, space groupTriclinic, P1Monoclinic, P21/c
Temperature (K)100100
a, b, c (Å)8.4577 (5), 9.8762 (6), 17.7889 (11)9.2804 (6), 15.9533 (10), 10.6876 (7)
α, β, γ (°)88.392 (3), 85.871 (3), 83.690 (3)90, 111.642 (3), 90
V3)1472.77 (15)1470.79 (16)
Z22
Radiation typeMo KαMo Kα
µ (mm1)1.000.70
Crystal size (mm)0.80 × 0.58 × 0.320.64 × 0.58 × 0.42
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Bruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Multi-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.503, 0.7410.662, 0.757
No. of measured, independent and
observed [I > 2σ(I)] reflections
34176, 9130, 7503 43193, 5063, 4083
Rint0.0310.042
(sin θ/λ)max1)0.7250.744
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.081, 1.01 0.034, 0.090, 1.08
No. of reflections91305063
No. of parameters457187
No. of restraints1650
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.580.52, 0.52

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O4Si0.831 (14)2.209 (15)2.9997 (18)158.9 (17)
N1—H1A···O2ii0.839 (14)2.124 (15)2.9049 (17)154.8 (17)
N2—H2A···O8Tiii0.831 (15)2.21 (3)2.97 (2)153 (2)
N2—H2B···O1Siii0.831 (15)2.240 (16)2.9952 (18)151.2 (19)
N3—H3B···O20.829 (14)2.148 (16)2.8759 (17)146.6 (18)
N3—H3A···O1S0.851 (14)2.199 (15)3.0219 (17)162.4 (18)
N4—H4A···O6S0.831 (14)2.228 (17)3.037 (8)164.3 (17)
N4—H4A···O5T0.831 (14)2.38 (2)3.19 (2)165.7 (17)
N4—H4B···O6iv0.841 (14)2.207 (16)2.9362 (16)145.0 (16)
N5—H5B···O6Sv0.835 (14)2.273 (16)3.100 (6)171.0 (17)
N5—H5B···O5Tv0.835 (14)2.19 (2)3.027 (15)178.6 (18)
N5—H5A···O60.848 (14)2.054 (15)2.8676 (17)160.5 (17)
N6—H6B···O2Svi0.857 (14)2.154 (15)3.0019 (18)170.0 (17)
N6—H6A···O8Svi0.853 (14)2.245 (17)3.080 (9)165.9 (18)
N6—H6A···O8Tvi0.853 (14)2.32 (3)3.15 (2)166.1 (18)
Symmetry codes: (i) x1, y+1, z; (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) x, y+2, z+1; (v) x+1, y+2, z+1; (vi) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.882.282.9678 (15)135.0
N1—H1B···O1Sii0.882.303.1153 (15)154.8
N2—H2A···O10.882.102.9241 (14)154.8
N2—H2B···O1Siii0.882.463.2343 (16)147.3
N2—H2B···O2Siv0.882.553.2121 (18)132.7
N3—H3A···O1Siv0.882.243.0030 (16)145.0
N3—H3B···O3S0.882.153.0206 (16)168.3
Symmetry codes: (i) x, y, z+2; (ii) x1, y+1/2, z+1/2; (iii) x, y, z+1; (iv) x, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds