Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C25H19NO4S, (IV), was produced by a cyclo­condensation reaction similar to that which had previously produced an unexpected product, thus giving a novel route for such reactions. The structure of (IV) contains two S(6) motifs formed by strong intramolecular O—H...O hydrogen bonds. Weak C—H...O hydrogen bonds form primary C(11), R^1_2(7) and R^2_2(8) motifs which combine to form a complex three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100012397/gs1110sup1.cif
Contains datablocks global, IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100012397/gs1110IVsup2.hkl
Contains datablock IV

CCDC reference: 156159

Comment top

Recently we reported the formation of an unexpected product, 1,3,4-thiadiazolo[3,2-a]pyridine, produced by cyclocondensation of 2-amino-1,3,4-thiadiazole with two molecules of dimethylaminopropiophenone and elimination of ammonia (Quiroga, 1998). The title compound, C25H19NO4S, (IV), was obtained by a similar cyclocondensation reaction from 2-aminobenzothiazole, the reaction mechanism is shown in the schematic diagram. \sch

Two intramolecular strong hydrogen bonds are formed at the two 2-carbonylhydroxyphenyl residues, one with O15 as the donor atom and O13 as the acceptor, 2.5527 (18) Å and the other with O23 as the donor and O22 as the acceptor, 2.4919 (18) Å. Both of these have a primary S(6) motif. The latter shorter interaction occurs because of the higher nucleophilic character of oxygen, O22, resulting from the delocalization of the lone pair on N1 of the thiazole ring with the carbonyl group at C21, the observed bond distances N1–C2 1.359 (2), C2–C11 1.405 (2), C11–C21 1.419 (2) and C21–O22 1.2817 (18) support this view.

The benzene ring in the benzothiazole moiety has the bonds and angles expected for an isolated aromatic ring, with all its bonds distances varying between 1.378 (2) and 1.394 (2) Å. These π systems are inclined at 1.48 (5)° to one another. The angle between the mean plane of the phenyl group defined by atoms C22 through C27 to that of the benzothiazole moiety is 16.77 (2)°. Selected bond lengths are given in Table 1.

The conformation of the ring, N1–C2–C11–C10–C9–C8, is an envelope with a slight skew boat contribution [puckering parameter: amplitude, Q = 0.509 (2) Å, τ = 124.3 (2)° and ϕ = 70.0 (2)°] (Boeyens, 1978), with C9 above the mean plane formed by the other atoms. The phenyl ring attached to C9 through C12 makes a nearly orthogonal angle to the mean plane of the molecule, the angle between the latter ring and benzothiazole mean planes is around 81.01 (5)°, giving the molecule a shape similar to that of a scorpion with the latter phenyl ring the tail.

In addition the molecules in (IV) are linked together into a three-dimensional framework by means of C–H···O weak hydrogen bonds. Atom C4 acts as a donor and atom O15 (x, y, −1 + z), 3.345 (2) Å, which acts as an acceptor forming a C(11) motif which forms, by translation, an infinite chain which runs parallel to [001]. A second motif involves O22 (1 − x, 1 − y, z) as an acceptor atom with both C9, 3.498 (2) Å, and C19, 3.415 (2) Å, as donor atoms, thus giving rise to an R12(7) ring. This motif is repeated by the centre at (1/2, 1/2, 0) so forming a variety of further ring motifs which can be seen in Figure 2. Finally atom C24 acts as a donor to atom O23 (1 − x, 2 − y, z), 3.474 (2) Å, so forming an R22(8) motif centred at (1/2, 1. 0). Full details ofn the hydrogen bonding are given in Table 2. Examination of the structure with PLATON (Spek, 2000) showed that there were no solvent accessible voids in the crystal lattice.

Experimental top

A mixture of 2-aminobenzothiazole (2 mmol) and 3-(dimethylamino)-1-(2-hydroxyphenyl)-1-propanone hydrochloride (2 mmol) in ethanol (5 ml) was heated to reflux for 10 min. Yellow crystals appeared in hot solution and were filtered out without cooling, washed with fresh ethanol and dried to give the title compound. Suitable crystals for X-ray diffraction were obtained after recrystallization from ethanol (yield 45%, m.p. 252 K). Analysis, calculated for C25H19NO4S: C 69.9, H 4.46%, N 3.26%; found: C 70.17, H 4.27, N 3.14%.

Refinement top

Molecule (IV) crystallized in the monoclinic system; space group P21/n from the systematic absences. H atoms were treated as riding atoms with C—H 0.95 to 1.00 Å, O—H 0.9293 and 1.0269 Å. The hydroxyl H atom positions were determined from a difference map.

Computing details top

Data collection: Kappa-CCD Server Software (Nonius, 1997); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2000); software used to prepare material for publication: SHELXL97 and WORDPERFECT macro PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. A view of (IV) with our numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the R12(7) ring. This motif is repeated by the centre at (1/2, 1/2, 0) so forming a variety of further ring motifs.
2,4-bis(2-hydroxybenzoyl)-2,3-dihydro-1H-pyrido[2,1-b][1,3]benzothiazole top
Crystal data top
C25H19NO4SZ = 2
Mr = 429.47F(000) = 448
Triclinic, P1Dx = 1.477 Mg m3
a = 7.4978 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.265 (2) ÅCell parameters from 4393 reflections
c = 12.322 (3) Åθ = 3.0–27.5°
α = 108.12 (3)°µ = 0.20 mm1
β = 99.38 (3)°T = 150 K
γ = 94.75 (3)°Block, yellow
V = 966.0 (3) Å30.22 × 0.15 × 0.15 mm
Data collection top
Kappa-CCD
diffractometer
4393 independent reflections
Radiation source: fine-focus sealed X-ray tube3506 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ scans and ω scans with κ offsetsθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995 & 1997)
h = 99
Tmin = 0.956, Tmax = 0.970k = 1413
14805 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0558P)2 + 0.2149P]
where P = (Fo2 + 2Fc2)/3
4393 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C25H19NO4Sγ = 94.75 (3)°
Mr = 429.47V = 966.0 (3) Å3
Triclinic, P1Z = 2
a = 7.4978 (15) ÅMo Kα radiation
b = 11.265 (2) ŵ = 0.20 mm1
c = 12.322 (3) ÅT = 150 K
α = 108.12 (3)°0.22 × 0.15 × 0.15 mm
β = 99.38 (3)°
Data collection top
Kappa-CCD
diffractometer
4393 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995 & 1997)
3506 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.970Rint = 0.039
14805 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.05Δρmax = 0.25 e Å3
4393 reflectionsΔρmin = 0.33 e Å3
280 parameters
Special details top

Geometry. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

7.3029 (0.0039) x − 1.6209 (0.0039) y + 0.7940 (0.0060) z = 1.0215 (0.0019)

* 0.0075 (0.0011) N1 * −0.0164 (0.0010) C2 * −0.0084 (0.0008) S3 * 0.0195 (0.0013) C4A * 0.0154 (0.0013) C7A * −0.0039 (0.0012) C7 * −0.0099 (0.0013) C6 * −0.0076 (0.0013) C5 * 0.0038 (0.0012) C4

Rms deviation of fitted atoms = 0.0115

− 6.6000 (0.0042) x + 4.0752 (0.0073) y − 3.7065 (0.0081) z = 0.8765 (0.0061)

Angle to previous plane (with approximate e.s.d.) = 16.77 (0.06)

* −0.0322 (0.0010) C22 * 0.0287 (0.0011) C23 * −0.0020 (0.0012) C24 * −0.0215 (0.0012) C25 * 0.0171 (0.0012) C26 * 0.0099 (0.0011) C27 − 0.1186 (0.0023) C21 0.2236 (0.0025) O22 0.1099 (0.0022) O23

Rms deviation of fitted atoms = 0.0213

7.4914 (0.0039) x − 0.9841 (0.0071) y − 1.5187 (0.0077) z = 1.3123 (0.0027)

Angle to previous plane (with approximate e.s.d.) = 26.33 (0.05)

* 0.0298 (0.0010) N1 * 0.1173 (0.0010) C2 * −0.0390 (0.0010) C11 * −0.1953 (0.0010) C10 * 0.3599 (0.0011) C9 * −0.2727 (0.0011) C8

Rms deviation of fitted atoms = 0.2075

7.3478 (0.0040) x − 1.6648 (0.0070) y + 0.4516 (0.0093) z = 1.0099 (0.0027)

Angle to previous plane (with approximate e.s.d.) = 9.20 (0.04)

* 0.0330 (0.0010) N1 * 0.0101 (0.0010) C2 * −0.0462 (0.0010) C11 * 0.0402 (0.0007) C10 * −0.0371 (0.0007) C8 0.6909 (0.0021) C9

Rms deviation of fitted atoms = 0.0355

7.2980 (0.0040) x − 1.4730 (0.0063) y + 0.8146 (0.0071) z = 1.0606 (0.0023)

Angle to previous plane (with approximate e.s.d.) = 2.31 (0.05)

* 0.0048 (0.0009) N1 * −0.0026 (0.0008) C2 * −0.0001 (0.0007) S3 * 0.0027 (0.0008) C4A * −0.0047 (0.0009) C7A

Rms deviation of fitted atoms = 0.0034

7.4914 (0.0039) x − 0.9841 (0.0071) y − 1.5187 (0.0077) z = 1.3123 (0.0027)

Angle to previous plane (with approximate e.s.d.) = 10.91 (0.04)

* 0.0298 (0.0010) N1 * 0.1173 (0.0010) C2 * −0.0390 (0.0010) C11 * −0.1953 (0.0010) C10 * 0.3599 (0.0011) C9 * −0.2727 (0.0011) C8

Rms deviation of fitted atoms = 0.2075

7.2980 (0.0040) x − 1.4730 (0.0063) y + 0.8146 (0.0071) z = 1.0606 (0.0023)

Angle to previous plane (with approximate e.s.d.) = 10.91 (0.04)

* 0.0048 (0.0009) N1 * −0.0026 (0.0008) C2 * −0.0001 (0.0007) S3 * 0.0027 (0.0008) C4A * −0.0047 (0.0009) C7A

Rms deviation of fitted atoms = 0.0034

7.3044 (0.0040) x − 1.7387 (0.0074) y + 0.7873 (0.0085) z = 1.0185 (0.0027)

Angle to previous plane (with approximate e.s.d.) = 1.48 (0.05)

* 0.0017 (0.0011) C4A * 0.0012 (0.0011) C7A * −0.0031 (0.0011) C7 * 0.0021 (0.0012) C6 * 0.0008 (0.0012) C5 * −0.0027 (0.0012) C4

Rms deviation of fitted atoms = 0.0021

7.3984 (0.0039) x − 1.3092 (0.0035) y − 0.0231 (0.0037) z = 1.2618 (0.0015)

Angle to previous plane (with approximate e.s.d.) = 3.93 (0.04)

* −0.0939 (0.0012) N1 * −0.0678 (0.0013) C2 * −0.1261 (0.0012) C11 * −0.0993 (0.0013) C10 * 0.5058 (0.0013) C9 * −0.2226 (0.0014) C8 * 0.0541 (0.0008) S3 * 0.0580 (0.0014) C4A * −0.0378 (0.0014) C7A * −0.0912 (0.0014) C7 * −0.0377 (0.0014) C6 * 0.0565 (0.0015) C5 * 0.1019 (0.0014) C4

Rms deviation of fitted atoms = 0.1700

− 6.6000 (0.0042) x + 4.0752 (0.0073) y − 3.7065 (0.0081) z = 0.8765 (0.0061)

Angle to previous plane (with approximate e.s.d.) = 20.25 (0.05)

* −0.0322 (0.0010) C22 * 0.0287 (0.0011) C23 * −0.0020 (0.0012) C24 * −0.0215 (0.0012) C25 * 0.0171 (0.0012) C26 * 0.0099 (0.0011) C27

Rms deviation of fitted atoms = 0.0213

− 1.6998 (0.0049) x + 9.3510 (0.0064) y + 3.3241 (0.0081) z = 3.7445 (0.0040)

Angle to previous plane (with approximate e.s.d.) = 76.43 (0.06)

* −0.0112 (0.0011) C14 * 0.0183 (0.0011) C15 * −0.0103 (0.0012) C16 * −0.0050 (0.0012) C17 * 0.0120 (0.0012) C18 * −0.0039 (0.0011) C19 − 0.0671 (0.0025) C12 0.0826 (0.0027) O13 0.0465 (0.0023) O15

Rms deviation of fitted atoms = 0.0112

7.3029 (0.0039) x − 1.6209 (0.0039) y + 0.7940 (0.0060) z = 1.0215 (0.0019)

Angle to previous plane (with approximate e.s.d.) = 81.01 (0.05)

* 0.0075 (0.0011) N1 * −0.0164 (0.0010) C2 * −0.0084 (0.0008) S3 * 0.0195 (0.0013) C4A * 0.0154 (0.0013) C7A * −0.0039 (0.0012) C7 * −0.0099 (0.0013) C6 * −0.0076 (0.0013) C5 * 0.0038 (0.0012) C4

Rms deviation of fitted atoms = 0.0115

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.20366 (17)0.25960 (12)0.04732 (10)0.0237 (3)
C20.22741 (19)0.37418 (14)0.06199 (13)0.0230 (3)
S30.24046 (5)0.35729 (4)0.20631 (3)0.02600 (12)
C40.2014 (2)0.10249 (16)0.35162 (14)0.0325 (4)
C4A0.2117 (2)0.19239 (15)0.24326 (14)0.0267 (3)
C50.1729 (2)0.02376 (16)0.36146 (15)0.0352 (4)
C60.1541 (2)0.05965 (16)0.26489 (14)0.0333 (4)
C70.1629 (2)0.02904 (15)0.15719 (14)0.0292 (4)
C7A0.1925 (2)0.15571 (15)0.14726 (13)0.0257 (3)
C80.1844 (2)0.24727 (15)0.06499 (13)0.0265 (3)
C90.3030 (2)0.35906 (14)0.16069 (12)0.0248 (3)
C100.2429 (2)0.48209 (15)0.15036 (13)0.0248 (3)
C110.24005 (19)0.48849 (14)0.02915 (13)0.0227 (3)
C120.2835 (2)0.34616 (14)0.27747 (13)0.0248 (3)
O130.12733 (15)0.32762 (12)0.29478 (10)0.0338 (3)
C140.4439 (2)0.35016 (14)0.36504 (13)0.0243 (3)
C150.4194 (2)0.31428 (14)0.46234 (13)0.0280 (3)
O150.25259 (16)0.28063 (12)0.48018 (10)0.0368 (3)
C160.5700 (2)0.31000 (16)0.54274 (14)0.0345 (4)
C170.7441 (2)0.34662 (17)0.53040 (15)0.0374 (4)
C180.7709 (2)0.38635 (17)0.43742 (14)0.0346 (4)
C190.6225 (2)0.38677 (15)0.35556 (13)0.0282 (3)
C210.25597 (19)0.60106 (14)0.00058 (13)0.0232 (3)
C220.27510 (19)0.73090 (14)0.08596 (13)0.0238 (3)
O220.25849 (15)0.59285 (10)0.10525 (9)0.0285 (3)
C230.3465 (2)0.83447 (15)0.05621 (14)0.0273 (3)
O230.38526 (17)0.81974 (11)0.05084 (10)0.0352 (3)
C240.3813 (2)0.95588 (15)0.13599 (15)0.0320 (4)
C250.3378 (2)0.97916 (16)0.24438 (15)0.0345 (4)
C260.2553 (2)0.88126 (16)0.27329 (14)0.0328 (4)
C270.2253 (2)0.75987 (15)0.19514 (13)0.0273 (3)
H40.21360.12700.41750.039*
H50.16600.08660.43490.042*
H60.13490.14680.27350.040*
H70.14910.00430.09170.035*
H8A0.22390.16730.07060.032*
H8B0.05520.24650.07310.032*
H90.43340.35780.15260.030*
H10A0.11940.48850.16840.030*
H10B0.32780.55440.20800.030*
H1510.16340.29190.42380.044*
H160.55330.28200.60610.041*
H170.84660.34460.58610.045*
H180.89080.41300.43040.042*
H190.64140.41240.29130.034*
H2310.33710.72660.09720.042*
H240.43551.02320.11570.038*
H250.36421.06210.29930.041*
H260.21960.89770.34650.039*
H270.16900.69370.21610.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0292 (7)0.0205 (6)0.0225 (6)0.0001 (5)0.0026 (5)0.0107 (5)
C20.0216 (7)0.0255 (8)0.0244 (7)0.0003 (6)0.0016 (5)0.0139 (6)
S30.0323 (2)0.0242 (2)0.0234 (2)0.00018 (16)0.00556 (15)0.01144 (16)
C40.0389 (9)0.0312 (9)0.0274 (8)0.0008 (7)0.0066 (7)0.0108 (7)
C4A0.0270 (8)0.0255 (8)0.0277 (8)0.0000 (6)0.0031 (6)0.0111 (6)
C50.0436 (10)0.0281 (9)0.0283 (9)0.0004 (7)0.0049 (7)0.0037 (7)
C60.0379 (9)0.0237 (8)0.0359 (9)0.0008 (7)0.0032 (7)0.0099 (7)
C70.0319 (8)0.0267 (8)0.0290 (8)0.0009 (6)0.0018 (6)0.0127 (7)
C7A0.0244 (8)0.0258 (8)0.0249 (8)0.0003 (6)0.0001 (6)0.0090 (6)
C80.0333 (8)0.0250 (8)0.0242 (8)0.0007 (6)0.0034 (6)0.0144 (6)
C90.0275 (8)0.0266 (8)0.0226 (7)0.0017 (6)0.0035 (6)0.0126 (6)
C100.0281 (8)0.0245 (8)0.0234 (8)0.0005 (6)0.0040 (6)0.0114 (6)
C110.0234 (7)0.0223 (8)0.0233 (7)0.0003 (6)0.0024 (5)0.0108 (6)
C120.0293 (8)0.0217 (8)0.0250 (8)0.0009 (6)0.0051 (6)0.0109 (6)
O130.0294 (6)0.0454 (7)0.0316 (6)0.0012 (5)0.0066 (5)0.0206 (5)
C140.0324 (8)0.0184 (7)0.0224 (7)0.0032 (6)0.0038 (6)0.0081 (6)
C150.0382 (9)0.0203 (8)0.0245 (8)0.0018 (6)0.0047 (6)0.0074 (6)
O150.0409 (7)0.0437 (7)0.0307 (6)0.0027 (5)0.0068 (5)0.0216 (6)
C160.0499 (10)0.0316 (9)0.0225 (8)0.0090 (8)0.0022 (7)0.0114 (7)
C170.0429 (10)0.0362 (10)0.0273 (9)0.0127 (8)0.0034 (7)0.0059 (7)
C180.0310 (9)0.0351 (9)0.0305 (9)0.0049 (7)0.0028 (7)0.0025 (7)
C190.0326 (8)0.0267 (8)0.0238 (8)0.0031 (6)0.0054 (6)0.0065 (6)
C210.0209 (7)0.0261 (8)0.0249 (7)0.0016 (6)0.0032 (5)0.0127 (6)
C220.0212 (7)0.0247 (8)0.0283 (8)0.0033 (6)0.0039 (6)0.0132 (6)
O220.0381 (6)0.0266 (6)0.0246 (6)0.0017 (5)0.0071 (4)0.0141 (5)
C230.0268 (8)0.0281 (8)0.0329 (8)0.0055 (6)0.0077 (6)0.0170 (7)
O230.0509 (7)0.0264 (6)0.0372 (7)0.0049 (5)0.0191 (5)0.0180 (5)
C240.0326 (9)0.0225 (8)0.0446 (10)0.0029 (7)0.0082 (7)0.0165 (7)
C250.0388 (9)0.0243 (9)0.0378 (9)0.0057 (7)0.0039 (7)0.0080 (7)
C260.0403 (9)0.0302 (9)0.0284 (8)0.0075 (7)0.0075 (7)0.0095 (7)
C270.0287 (8)0.0260 (8)0.0303 (8)0.0035 (6)0.0061 (6)0.0138 (7)
Geometric parameters (Å, º) top
N1—C21.359 (2)C12—C141.466 (2)
N1—C7A1.395 (2)C14—C191.402 (2)
N1—C81.4617 (18)C14—C151.413 (2)
C2—C111.405 (2)C15—O151.3487 (19)
C2—S31.7485 (15)C15—C161.390 (2)
S3—C4A1.7551 (17)O15—H1510.9293
C4—C51.385 (2)C16—C171.383 (3)
C4—C4A1.388 (2)C16—H160.9500
C4—H40.9500C17—C181.390 (3)
C4A—C7A1.393 (2)C17—H170.9500
C5—C61.394 (2)C18—C191.376 (2)
C5—H50.9500C18—H180.9500
C6—C71.378 (2)C19—H190.9500
C6—H60.9500C21—O221.2817 (18)
C7—C7A1.389 (2)C21—C221.492 (2)
C7—H70.9500C22—C271.402 (2)
C8—C91.522 (2)C22—C231.417 (2)
C8—H8A0.9900C23—O231.3596 (19)
C8—H8B0.9900C23—C241.388 (2)
C9—C121.519 (2)O23—H2311.0269
C9—C101.528 (2)C24—C251.378 (2)
C9—H91.0000C24—H240.9500
C10—C111.514 (2)C25—C261.389 (2)
C10—H10A0.9900C25—H250.9500
C10—H10B0.9900C26—C271.381 (2)
C11—C211.419 (2)C26—H260.9500
C12—O131.2367 (18)C27—H270.9500
C2—N1—C7A115.44 (12)C21—C11—C10125.28 (14)
C2—N1—C8121.75 (13)O13—C12—C14120.88 (14)
C7A—N1—C8122.78 (12)O13—C12—C9117.73 (13)
N1—C2—C11122.94 (13)C14—C12—C9121.34 (13)
N1—C2—S3110.78 (11)C19—C14—C15118.16 (14)
C11—C2—S3126.28 (12)C19—C14—C12122.58 (14)
C2—S3—C4A90.82 (8)C15—C14—C12119.26 (14)
C5—C4—C4A118.42 (16)O15—C15—C16117.44 (14)
C5—C4—H4120.8O15—C15—C14122.32 (14)
C4A—C4—H4120.8C16—C15—C14120.24 (15)
C4—C4A—C7A120.46 (15)C15—O15—H151109.5
C4—C4A—S3128.26 (13)C17—C16—C15119.88 (16)
C7A—C4A—S3111.25 (12)C17—C16—H16120.1
C4—C5—C6120.74 (16)C15—C16—H16120.1
C4—C5—H5119.6C16—C17—C18120.74 (16)
C6—C5—H5119.6C16—C17—H17119.6
C7—C6—C5121.17 (16)C18—C17—H17119.6
C7—C6—H6119.4C19—C18—C17119.53 (16)
C5—C6—H6119.4C19—C18—H18120.2
C6—C7—C7A118.04 (15)C17—C18—H18120.2
C6—C7—H7121.0C18—C19—C14121.37 (15)
C7A—C7—H7121.0C18—C19—H19119.3
C7—C7A—C4A121.16 (15)C14—C19—H19119.3
C7—C7A—N1127.14 (14)O22—C21—C11118.72 (14)
C4A—C7A—N1111.69 (14)O22—C21—C22116.56 (13)
N1—C8—C9108.08 (12)C11—C21—C22124.71 (14)
N1—C8—H8A110.1C27—C22—C23116.33 (15)
C9—C8—H8A110.1C27—C22—C21124.81 (14)
N1—C8—H8B110.1C23—C22—C21118.86 (14)
C9—C8—H8B110.1O23—C23—C24116.97 (14)
H8A—C8—H8B108.4O23—C23—C22121.86 (15)
C12—C9—C8108.14 (12)C24—C23—C22121.18 (15)
C12—C9—C10110.98 (13)C23—O23—H231103.8
C8—C9—C10109.78 (12)C25—C24—C23120.31 (15)
C12—C9—H9109.3C25—C24—H24119.8
C8—C9—H9109.3C23—C24—H24119.8
C10—C9—H9109.3C24—C25—C26119.94 (16)
C11—C10—C9111.33 (13)C24—C25—H25120.0
C11—C10—H10A109.4C26—C25—H25120.0
C9—C10—H10A109.4C27—C26—C25119.70 (16)
C11—C10—H10B109.4C27—C26—H26120.1
C9—C10—H10B109.4C25—C26—H26120.1
H10A—C10—H10B108.0C26—C27—C22122.26 (15)
C2—C11—C21117.09 (14)C26—C27—H27118.9
C2—C11—C10117.58 (13)C22—C27—H27118.9
C7A—N1—C2—C11179.53 (13)C8—C9—C12—C14126.66 (15)
C8—N1—C2—C111.7 (2)C10—C9—C12—C14112.88 (16)
C7A—N1—C2—S30.79 (16)O13—C12—C14—C19171.61 (15)
C8—N1—C2—S3178.60 (11)C9—C12—C14—C1911.0 (2)
N1—C2—S3—C4A0.27 (11)O13—C12—C14—C159.3 (2)
C11—C2—S3—C4A179.95 (14)C9—C12—C14—C15168.11 (13)
C5—C4—C4A—C7A0.4 (2)C19—C14—C15—O15178.36 (14)
C5—C4—C4A—S3178.15 (13)C12—C14—C15—O152.5 (2)
C2—S3—C4A—C4178.21 (15)C19—C14—C15—C163.0 (2)
C2—S3—C4A—C7A0.28 (12)C12—C14—C15—C16176.10 (14)
C4A—C4—C5—C60.3 (3)O15—C15—C16—C17178.33 (15)
C4—C5—C6—C70.2 (3)C14—C15—C16—C173.0 (2)
C5—C6—C7—C7A0.5 (2)C15—C16—C17—C180.8 (3)
C6—C7—C7A—C4A0.4 (2)C16—C17—C18—C191.3 (3)
C6—C7—C7A—N1179.14 (14)C17—C18—C19—C141.2 (2)
C4—C4A—C7A—C70.0 (2)C15—C14—C19—C180.9 (2)
S3—C4A—C7A—C7178.13 (12)C12—C14—C19—C18178.19 (15)
C4—C4A—C7A—N1178.87 (14)C2—C11—C21—O220.2 (2)
S3—C4A—C7A—N10.76 (16)C10—C11—C21—O22177.32 (13)
C2—N1—C7A—C7177.80 (14)C2—C11—C21—C22178.54 (13)
C8—N1—C7A—C70.0 (2)C10—C11—C21—C221.0 (2)
C2—N1—C7A—C4A1.01 (18)O22—C21—C22—C27161.07 (14)
C8—N1—C7A—C4A178.80 (13)C11—C21—C22—C2720.5 (2)
C2—N1—C8—C934.14 (19)O22—C21—C22—C2318.2 (2)
C7A—N1—C8—C9148.21 (14)C11—C21—C22—C23160.22 (14)
N1—C8—C9—C12179.83 (12)C27—C22—C23—O23174.36 (14)
N1—C8—C9—C1058.95 (16)C21—C22—C23—O234.9 (2)
C12—C9—C10—C11173.14 (12)C27—C22—C23—C246.1 (2)
C8—C9—C10—C1153.65 (16)C21—C22—C23—C24174.59 (14)
N1—C2—C11—C21177.05 (13)O23—C23—C24—C25177.01 (14)
S3—C2—C11—C213.3 (2)C22—C23—C24—C253.4 (2)
N1—C2—C11—C105.2 (2)C23—C24—C25—C261.3 (3)
S3—C2—C11—C10174.40 (11)C24—C25—C26—C273.1 (3)
C9—C10—C11—C221.52 (18)C25—C26—C27—C220.2 (3)
C9—C10—C11—C21155.98 (14)C23—C22—C27—C264.3 (2)
C8—C9—C12—O1350.82 (19)C21—C22—C27—C26176.42 (14)
C10—C9—C12—O1369.65 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O15—H151···O130.931.742.5527 (18)144
O23—H231···O221.031.542.4919 (18)152
C4—H4···O15i0.952.463.345 (2)154
C9—H9···O22ii1.002.533.498 (2)162
C19—H19···O22ii0.952.513.415 (2)159
C24—H24···O23iii0.952.533.474 (2)171
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1, z; (iii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC25H19NO4S
Mr429.47
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)7.4978 (15), 11.265 (2), 12.322 (3)
α, β, γ (°)108.12 (3), 99.38 (3), 94.75 (3)
V3)966.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.22 × 0.15 × 0.15
Data collection
DiffractometerKappa-CCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995 & 1997)
Tmin, Tmax0.956, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
14805, 4393, 3506
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.111, 1.05
No. of reflections4393
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.33

Computer programs: Kappa-CCD Server Software (Nonius, 1997), DENZO (Otwinowski & Minor, 1997), DENZO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2000), SHELXL97 and WORDPERFECT macro PRPKAPPA (Ferguson, 1999).

Selected bond lengths (Å) top
N1—C21.359 (2)S3—C4A1.7551 (17)
C2—C111.405 (2)C11—C211.419 (2)
C2—S31.7485 (15)C21—O221.2817 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O15—H151···O130.931.742.5527 (18)143.8
O23—H231···O221.031.542.4919 (18)151.8
C4—H4···O15i0.952.463.345 (2)154.4
C9—H9···O22ii1.002.533.498 (2)162.1
C19—H19···O22ii0.952.513.415 (2)159.1
C24—H24···O23iii0.952.533.474 (2)171.2
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1, z; (iii) x+1, y+2, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds