Download citation
Download citation
link to html
The silaproline-containing dipeptide N-(3,3-di­methyl-1-pivaloyl-1-aza-3-sila-5-cyclo­pentyl­carbonyl)-L-alanine iso­propyl­amide, C17H33N3O3Si, has two independent molecules in the asymmetric unit and each adopts a β-II folded conformation, where the amide on the terminal C interacts intramolecularly with the pivaloyl O atom. The five-membered silaproline ring is Cβ-puckered, an infrequent conformation for the homol­ogous proline ring.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100012294/gs1107sup1.cif
Contains datablocks III, sip

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100012294/gs1107IIIsup2.hkl
Contains datablock III

CCDC reference: 156156

Comment top

Proline analogues are of great interest due to the importance of such a residue in peptide reverse-turn structures. Recently, we reported the synthesis of 4-(dimethylsila)-L-proline or silaproline (Sip) in both optically pure forms (Vivet et al., 2000) by diastereoselective alkylation of a chiral glycine equivalent using Schöllkopf's bis-lactim ether method (Schöllkopf et al., 1981). These Si-containing proline analogues may also be useful as solubilizing building blocks, due to the high lipophilicity of silyl groups. This new proline surrogate has been introduced in model peptides in place of Pro to investigate the structural consequences of this modification. One of the targeted peptides, N-(3,3-dimethyl-1-pivaloyl-1-aza-3-sila-5-cyclopentylcarbonyl)-L-alanine isopropylamide, or Piv-L-Sip-L-Ala-NHiPr, (III), gave satisfactory single crystals for X-ray diffraction. We report here the first crystal molecular structure, to our knowledge, of a silaproline-containing peptide. \sch

The dimensions of both independent molecules, A and B, in the monoclinic unit cell of (III) are quite similar. As expected, the Si—C bonds in the five-membered ring of the silaproline are longer by about 0.55 Å than the C—C bonds in proline, and the intracyclic C—Si—C angle is significantly smaller (about 92°) than the homologous C—C—C angle in proline (Table 1; Aubry, Vitoux & Marraud, 1985). The five-membered ring of silaproline assumes a skew conformation of the Cβ-endo type (Nair & Vijayan, 1981), which is otherwise only found in the cis-proline residue involved in the 2,5-diketopiperazine ring (Aubry, Cung & Marraud, 1985).

Both independent molecules are folded by an intramolecular hydrogen bond between the amide on the terminal C and the pivaloyl O atom, which closes a ten-membered pseudocycle (Fig. 1). The orientation of the central amide group (Table 1) with reference to the average plane of the molecules is typical of a type II β-turn (Rose et al., 1985). Although this turn type is not frequently found for homochiral dipeptide sequences in solution, it is classically observed in the crystal structures of similar dipeptides due to favorable intermolecular packing forces involving the central amide NH and CO groups (Table 2; Aubry, Cung & Marraud, 1985). In solution, at very low concentration in order to avoid autoassociation, the folded structure turns into a type I β-turn, as already observed in L-Pro-L-Xaa sequences by Aubry, Cung & Marraud (1985).

The crystal structure of (III) is composed of layers containing molecules A and layers containing molecules B, both oriented parallel to (100) (Fig. 2). In each layer the molecules are stabilized by van der Waals interactions and the layers held together by NH···O hydrogen bonds (Table 2). Moreover, the independent molecules are connected by a non-crystallographic twofold screw axis which is in the crystallographic a direction and located at y = 0.26 (near 1/4) and z = 0.38 (near 3/8). The non-crystallographic operator, identified by the program BUNYIP (Hester & Hall, 1996), is (1/2 + x, 1/2 − y, 3/4 − z). Operation of the crystallographic twofold screw symmetry on the non-crystallographic twofold screw axis yields a second non-crystallographic twofold screw axis in the same direction and associated with the operator (1/2 + x, 1/2 − y, 1/4 − z). It is interesting to note that both non-crystallographic axes extend througout the crystal since their self operation yields (x, y, z). Combinations of the non- and the true crystallographic axes result in two more non-crystallographic twofold screw axes, which present the operators (1/2 − x, −y, 1/4 + z) and (1/2 − x, −y, 3/4 + z). These twofold screw axes do not extend througout the crystal because their self operation does not yield (x, y, z) or any other symmetry element.

Experimental top

The N-(tert-butyloxycarbonyl)-L-alanine (Boc-L-Ala-OH) and benzotriazole-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate (BOP) were purchased from Novabiochem, and the diisopropylethylamine (DIEA), isopropylamine and pivaloyl chloride (PivCl) from Aldrich. Dichloromethane (DCM) was dried overnight over CaCl2 then distilled on K2CO3 and stored away from bright light in a brown bottle. Dimethylformamide (DMF), acetonitrile and trifluoroacetic acid (TFA) were purchased from Merck. Thin layer chromatography was performed on Merck precoated silica gel 60F254 plates and spots were visualized by staining with phosphomolybdic acid or ninhydrin. Flash chromatography was performed using Merck silica gel 60 (230–400 mesh). To prepare Boc-L-Ala-NHiPr, (I), Boc-L-Ala-OH (350 mg, 1.85 mmol) was dissolved in DMF (5 ml) then BOP (900 mg, 2.40 mmol), isopropylamine (170 µl, 2 mmol) and DIEA (785 µl, 4.62 mmol) were added. After 4 h at room temperature, the reaction mixture was evaporated in vacuo and the resulting residue dissolved in EtOAc (15 ml). The organic phase was washed successively with aqueous 0.1 N KHSO4 (3 × 5 ml) and saturated NaHCO3 (3 × 5 ml), dried over MgSO4 and then concentrated in vacuo. The crude product was purified by chromatography on silica gel in EtOAc/hexane (6:4) to give 360 mg of (I) (85% yield) as an oil; Rf = 0.30 (EtOAc/hexane 6:4); Rf = 0.55 (EtOAc/hexane 7:3). To prepare Boc-L-Sip-L-Ala-NHiPr, (II), a solution of (I) (250 mg, 1.08 mmol) in DCM (3 ml) was stirred for 1 h at room temperature with TFA (3 ml). The mixture was evaporated in vacuo and the residue was coevaporated three times with hexane/Et2O 4:2 (10 ml) to remove excess TFA. The TFA salt (260 mg, 1.06 mmol) was dissolved in DMF (5 ml). DIEA (450 µl, 2.65 mmol), BOP (514 mg, 1.16 mmol) and Boc-L-Sip-OH (Vivet et al., 2000) (275 mg, 1.06 mmol) were then added. After stirring overnight at room temperature, the reaction mixture was evaporated in vacuo and the resulting residue dissolved in EtOAc (15 ml). The organic phase was washed successively with aqueous 0.1 N KHSO4 (3 × 5 ml) and saturated NaHCO3 (3 × 5 ml), dried over MgSO4 and then concentrated in vacuo. The crude product was purified by chromatography on silica gel in EtOAc/hexane 6:4, to give 300 mg of (II) (76% yield) as an oil; Rf = 0.40 (EtOAc/hexane: 6/4). To prepare Piv-L-Sip-L-Ala-NHiPr, (III), a solution of (II) (250 mg, 0.67 mmol) in DCM (3 ml) was stirred for 1 h at room temperature with TFA (3 ml). The mixture was evaporated in vacuo and the residue was coevaporated three times with hexane/Et2O 4:2 (10 ml) to remove excess TFA. The TFA salt (240 mg, 0.62 mmol) was dissolved in DCM (5 ml). DIEA (210 µl, 1.24 mmol) and PivCl (85 µl, 0.68 mmol) were then added. After stirring overnight at room temperature, the reaction mixture was evaporated in vacuo and the resulting residue dissolved in EtOAc (15 ml). The organic phase was washed successively with aqueous 0.1 N KHSO4 (3 × 5 ml) and saturated NaHCO3 (3 × 5 ml), dried over MgSO4 and then concentrated in vacuo. The crude product was purified by chromatography on silica gel in EtOAc/hexane 6:4, to give 154 mg of (III) (70% yield) as a solid; Rf = 0.50 (EtOAc/hexane 6:4). Single crystals of (III) were obtained at room temperature by slow evaporation of a solution in a mixture of diisopropyl ether and ethyl acetate.

Refinement top

The atom-numbering chosen for the independent molecules A and B is in the range 1–17 and 21–37, respectively. The absolute stereochemistry of the L-Sip derivative was confirmed on the basis of the L-Ala residue. The positions of H atoms attached to N were located from a difference map and refined with the N—H bond distance restrained to 1.03 (1) Å (Taylor & Kennard, 1983). H atoms connected to C were placed at calculated positions and refined using a riding model (C—H distance?). All H atoms had their isotropic displacement parameters fixed at 1.3 times that of the parent atom.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT (Nonius, 1998); data reduction: HKL suite (Otwinoski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: maXus (Mackay et al., 1999) and WebLab ViewerPro 3.5 (MSI, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the independent molecule A in (III) with the atom-numbering scheme and 25% probability displacement ellipsoids. H atoms, except those of the NH groups, are omitted for clarity. The intramolecular hydrogen bond is marked as a dashed line.
[Figure 2] Fig. 2. A stereoview of the crystal structure of (III), which is composed of alternating layers of molecules A (stick representation) and molecules B (ball and stick representation), oriented parallel to (100). The intermolecular hydrogen bonds are marked as dashed lines. H atoms, except those of the NH groups involved in the intermolecular interactions, are omitted for clarity.
N-(3,3-dimethyl-1-pivaloyl-1-aza-3-sila-5-cyclopentylcarbonyl)-L-alanine isopropylamide top
Crystal data top
C17H33N3O3SiF(000) = 776
Mr = 355.55Dx = 1.117 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71070 Å
a = 9.6650 (5) ÅCell parameters from 9566 reflections
b = 19.6620 (9) Åθ = 2.1–25.0°
c = 11.123 (2) ŵ = 0.13 mm1
β = 89.602 (5)°T = 293 K
V = 2113.7 (4) Å3Prismatic, colourless
Z = 40.3 × 0.2 × 0.2 mm
Data collection top
Nonius KAPPA CCD
diffractometer
3090 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.055
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
oscillation scansh = 1010
9566 measured reflectionsk = 2323
3659 independent reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0749P)2 + 0.8441P]
where P = (Fo2 + 2Fc2)/3
3659 reflections(Δ/σ)max = 0.001
445 parametersΔρmax = 0.23 e Å3
5 restraintsΔρmin = 0.22 e Å3
Crystal data top
C17H33N3O3SiV = 2113.7 (4) Å3
Mr = 355.55Z = 4
Monoclinic, P21Mo Kα radiation
a = 9.6650 (5) ŵ = 0.13 mm1
b = 19.6620 (9) ÅT = 293 K
c = 11.123 (2) Å0.3 × 0.2 × 0.2 mm
β = 89.602 (5)°
Data collection top
Nonius KAPPA CCD
diffractometer
3090 reflections with I > 2σ(I)
9566 measured reflectionsRint = 0.055
3659 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0555 restraints
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.23 e Å3
3659 reflectionsΔρmin = 0.22 e Å3
445 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0153 (6)0.0826 (3)0.6235 (5)0.0520 (14)
C20.1723 (8)0.0820 (4)0.6431 (9)0.106 (3)
H2A0.21900.08890.56770.138*
H2B0.19930.03900.67630.138*
H2C0.19680.11780.69780.138*
C30.0555 (12)0.0714 (4)0.7429 (8)0.121 (4)
H3A0.03660.10910.79520.157*
H3B0.02150.03030.77860.157*
H3C0.15350.06770.73120.157*
C40.0184 (10)0.0239 (4)0.5410 (8)0.093 (3)
H4A0.02680.03050.46470.120*
H4B0.11660.02160.52950.120*
H4C0.01330.01780.57630.120*
C50.0262 (5)0.1492 (3)0.5626 (5)0.0421 (12)
O10.0838 (4)0.14747 (19)0.4631 (3)0.0538 (10)
N10.0031 (4)0.2112 (2)0.6098 (3)0.0410 (10)
C60.0383 (5)0.2713 (2)0.5416 (4)0.0384 (11)
H6A0.13930.27540.54450.050*
C70.0254 (6)0.3357 (3)0.5939 (5)0.0503 (14)
H7A0.03200.37510.57730.065*
H7B0.11710.34350.56070.065*
Si10.03382 (14)0.31900 (8)0.75980 (13)0.0420 (3)
C80.0376 (6)0.2246 (3)0.7387 (5)0.0523 (14)
H8A0.12860.20680.75720.068*
H8B0.02970.20290.79120.068*
C90.1237 (6)0.3492 (4)0.8421 (6)0.0622 (16)
H9A0.12050.39780.84960.081*
H9B0.12660.32900.92070.081*
H9C0.20480.33630.79830.081*
C100.1928 (6)0.3524 (3)0.8310 (5)0.0539 (14)
H10A0.18600.40090.83870.070*
H10B0.27170.34120.78200.070*
H10C0.20320.33240.90920.070*
C110.0085 (4)0.2663 (2)0.4097 (4)0.0355 (11)
O20.1289 (3)0.2523 (2)0.3825 (3)0.0467 (9)
N20.0848 (4)0.2853 (2)0.3289 (3)0.0403 (10)
H20.1874 (18)0.287 (3)0.353 (5)0.052*
C120.0519 (5)0.2946 (3)0.2016 (4)0.0438 (12)
H120.13910.30750.16350.057*
C130.0460 (7)0.3543 (3)0.1809 (5)0.0631 (17)
H13A0.01070.39380.22150.082*
H13B0.05340.36340.09630.082*
H13C0.13570.34320.21190.082*
C140.0052 (5)0.2300 (3)0.1378 (5)0.0471 (13)
O30.0504 (5)0.2343 (2)0.0387 (4)0.0697 (13)
N30.0381 (5)0.1706 (2)0.1884 (4)0.0530 (12)
H30.054 (6)0.174 (3)0.2795 (13)0.069*
C150.0061 (8)0.1053 (4)0.1377 (6)0.077 (2)
H150.01240.11030.05020.100*
C160.1479 (9)0.0856 (5)0.1836 (9)0.108 (3)
H16A0.21430.11930.15920.140*
H16B0.17380.04220.15100.140*
H16C0.14530.08290.26980.140*
C170.1022 (11)0.0529 (5)0.1654 (10)0.115 (3)
H17A0.18970.06770.13460.149*
H17B0.10940.04690.25090.149*
H17C0.07690.01050.12860.149*
C210.5124 (6)0.4464 (3)0.1441 (5)0.0509 (14)
C220.4844 (7)0.5041 (3)0.2338 (6)0.0679 (17)
H22A0.54040.49770.30380.088*
H22B0.38850.50380.25660.088*
H22C0.50700.54690.19710.088*
C230.6683 (8)0.4473 (4)0.1157 (8)0.093 (3)
H23A0.71920.43860.18790.120*
H23B0.69370.49110.08420.120*
H23C0.68930.41280.05730.120*
C240.4275 (11)0.4591 (4)0.0320 (7)0.112 (3)
H24A0.33080.45730.05210.145*
H24B0.44840.42480.02690.145*
H24C0.44970.50310.00010.145*
C250.4715 (5)0.3796 (3)0.2058 (5)0.0403 (12)
O210.4120 (4)0.3812 (2)0.3043 (3)0.0539 (10)
N210.5030 (4)0.3175 (2)0.1564 (4)0.0413 (9)
C260.4597 (5)0.2579 (3)0.2292 (4)0.0402 (11)
H260.35870.25370.22800.052*
C270.5258 (6)0.1942 (3)0.1743 (5)0.0493 (14)
H27A0.47050.15430.19250.064*
H27B0.61810.18740.20570.064*
Si210.53255 (15)0.20964 (8)0.00767 (13)0.0433 (4)
C280.5437 (6)0.3048 (3)0.0291 (5)0.0516 (14)
H28A0.63720.32080.01390.067*
H28B0.48140.32810.02510.067*
C290.6898 (6)0.1752 (3)0.0664 (5)0.0570 (14)
H29A0.68100.12680.07500.074*
H29B0.76930.18540.01840.074*
H29C0.70060.19560.14440.074*
C300.3735 (6)0.1838 (4)0.0714 (5)0.0598 (16)
H30A0.37180.13520.07960.078*
H30B0.37210.20440.14970.078*
H30C0.29400.19840.02610.078*
C310.5084 (4)0.2631 (3)0.3570 (4)0.0386 (12)
O220.6292 (3)0.2778 (2)0.3837 (3)0.0477 (9)
N220.4148 (4)0.2442 (2)0.4409 (3)0.0402 (10)
H220.3128 (18)0.241 (3)0.417 (4)0.052*
C320.4493 (5)0.2353 (3)0.5663 (4)0.0444 (13)
H320.36290.22200.60650.058*
C330.5484 (7)0.1753 (4)0.5832 (6)0.0632 (17)
H33A0.51300.13610.54210.082*
H33B0.55670.16540.66740.082*
H33C0.63770.18680.55080.082*
C340.4978 (5)0.3002 (3)0.6304 (5)0.0499 (14)
O230.5543 (5)0.2957 (3)0.7277 (4)0.0731 (13)
N230.4608 (5)0.3591 (3)0.5786 (4)0.0507 (11)
H230.449 (6)0.358 (3)0.4870 (12)0.066*
C350.5047 (8)0.4239 (4)0.6288 (6)0.0695 (18)
H350.50840.41960.71650.090*
C360.6459 (9)0.4439 (5)0.5834 (8)0.106 (3)
H36A0.71210.41000.60650.137*
H36B0.67140.48700.61730.137*
H36C0.64430.44750.49730.137*
C370.3967 (9)0.4768 (4)0.5973 (8)0.100 (3)
H37A0.30850.46310.62920.130*
H37B0.39100.48110.51150.130*
H37C0.42240.51990.63140.130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.064 (4)0.043 (3)0.048 (3)0.003 (3)0.007 (3)0.000 (3)
C20.082 (5)0.064 (5)0.172 (9)0.027 (4)0.046 (5)0.016 (5)
C30.210 (11)0.045 (4)0.107 (7)0.008 (5)0.072 (7)0.014 (4)
C40.131 (7)0.048 (4)0.099 (6)0.000 (4)0.032 (5)0.005 (4)
C50.030 (3)0.053 (3)0.043 (3)0.000 (2)0.002 (2)0.003 (3)
O10.057 (2)0.052 (2)0.053 (2)0.0051 (17)0.0137 (18)0.0011 (18)
N10.044 (2)0.044 (2)0.035 (2)0.007 (2)0.0017 (16)0.001 (2)
C60.033 (3)0.042 (3)0.040 (3)0.002 (2)0.0016 (19)0.005 (2)
C70.063 (4)0.050 (4)0.038 (3)0.004 (2)0.003 (2)0.005 (2)
Si10.0443 (8)0.0447 (8)0.0369 (8)0.0019 (6)0.0019 (5)0.0027 (7)
C80.067 (4)0.055 (4)0.035 (3)0.003 (3)0.010 (2)0.004 (3)
C90.050 (4)0.082 (5)0.055 (4)0.005 (3)0.001 (3)0.001 (3)
C100.046 (3)0.062 (4)0.054 (3)0.007 (3)0.001 (2)0.007 (3)
C110.025 (3)0.041 (3)0.040 (3)0.0020 (19)0.0048 (19)0.003 (2)
O20.0273 (19)0.068 (2)0.0444 (19)0.0029 (16)0.0026 (14)0.0005 (18)
N20.028 (2)0.056 (3)0.037 (2)0.0077 (18)0.0008 (16)0.003 (2)
C120.038 (3)0.058 (3)0.036 (3)0.004 (2)0.005 (2)0.005 (2)
C130.079 (4)0.060 (4)0.050 (4)0.010 (3)0.007 (3)0.002 (3)
C140.040 (3)0.063 (4)0.039 (3)0.001 (2)0.007 (2)0.003 (3)
O30.090 (3)0.074 (3)0.044 (2)0.008 (2)0.025 (2)0.004 (2)
N30.061 (3)0.052 (3)0.045 (3)0.007 (2)0.004 (2)0.001 (2)
C150.115 (6)0.055 (4)0.060 (4)0.001 (4)0.003 (4)0.007 (3)
C160.091 (6)0.089 (6)0.143 (8)0.023 (5)0.031 (5)0.014 (6)
C170.142 (8)0.069 (5)0.134 (8)0.023 (5)0.034 (6)0.001 (5)
C210.061 (4)0.049 (4)0.042 (3)0.000 (3)0.005 (2)0.003 (3)
C220.076 (4)0.045 (3)0.083 (5)0.003 (3)0.000 (3)0.003 (3)
C230.082 (5)0.067 (5)0.128 (7)0.025 (4)0.045 (5)0.019 (4)
C240.189 (10)0.061 (5)0.086 (6)0.000 (6)0.070 (6)0.016 (4)
C250.030 (3)0.044 (3)0.047 (3)0.000 (2)0.010 (2)0.001 (2)
O210.065 (2)0.052 (2)0.045 (2)0.0067 (18)0.0072 (18)0.0022 (18)
N210.047 (2)0.041 (2)0.036 (2)0.000 (2)0.0004 (17)0.002 (2)
C260.038 (3)0.047 (3)0.036 (3)0.001 (2)0.003 (2)0.005 (2)
C270.063 (4)0.039 (3)0.046 (3)0.004 (2)0.001 (3)0.004 (2)
Si210.0458 (8)0.0481 (8)0.0360 (7)0.0009 (7)0.0009 (6)0.0061 (6)
C280.072 (4)0.046 (4)0.036 (3)0.004 (3)0.013 (2)0.002 (2)
C290.052 (3)0.066 (4)0.053 (3)0.002 (3)0.008 (3)0.010 (3)
C300.047 (3)0.075 (4)0.058 (4)0.002 (3)0.006 (3)0.008 (3)
C310.021 (3)0.053 (3)0.041 (3)0.001 (2)0.002 (2)0.003 (2)
O220.0263 (19)0.072 (3)0.045 (2)0.0050 (16)0.0009 (14)0.0007 (18)
N220.029 (2)0.055 (3)0.036 (2)0.0037 (18)0.0001 (16)0.0060 (19)
C320.040 (3)0.061 (4)0.032 (3)0.001 (2)0.001 (2)0.005 (2)
C330.071 (4)0.067 (4)0.052 (4)0.014 (3)0.006 (3)0.009 (3)
C340.039 (3)0.066 (4)0.045 (3)0.001 (3)0.005 (2)0.006 (3)
O230.087 (3)0.085 (4)0.048 (2)0.007 (2)0.027 (2)0.005 (2)
N230.055 (3)0.061 (3)0.037 (2)0.000 (2)0.005 (2)0.001 (2)
C350.100 (5)0.061 (4)0.047 (4)0.008 (4)0.008 (3)0.005 (3)
C360.089 (6)0.115 (8)0.113 (7)0.041 (5)0.024 (5)0.021 (6)
C370.115 (7)0.072 (6)0.112 (7)0.008 (5)0.014 (5)0.002 (5)
Geometric parameters (Å, º) top
N1—C61.462 (7)N21—C261.483 (6)
N1—C81.497 (6)N21—C281.488 (6)
C6—C71.525 (7)C26—C271.532 (7)
Si1—C71.877 (6)Si21—C271.879 (6)
Si1—C81.872 (6)Si21—C281.890 (6)
Si1—C91.868 (6)Si21—C291.852 (5)
Si1—C101.854 (5)Si21—C301.848 (6)
C1—C31.507 (10)C21—C241.518 (9)
C1—C41.512 (9)C21—C221.533 (8)
C1—C51.529 (8)C21—C251.533 (8)
C1—C21.534 (10)C21—C231.538 (9)
C2—H2A0.9600C22—H22A0.9600
C2—H2B0.9600C22—H22B0.9600
C2—H2C0.9600C22—H22C0.9600
C3—H3A0.9600C23—H23A0.9600
C3—H3B0.9600C23—H23B0.9600
C3—H3C0.9600C23—H23C0.9600
C4—H4A0.9600C24—H24A0.9600
C4—H4B0.9600C24—H24B0.9600
C4—H4C0.9600C24—H24C0.9600
C5—O11.242 (6)C25—O211.234 (6)
C5—N11.358 (7)C25—N211.371 (7)
C6—C111.535 (7)C26—C311.504 (7)
C6—H6A0.9800C26—H260.9800
C7—H7A0.9700C27—H27A0.9700
C7—H7B0.9700C27—H27B0.9700
C8—H8A0.9700C28—H28A0.9700
C8—H8B0.9700C28—H28B0.9700
C9—H9A0.9600C29—H29A0.9600
C9—H9B0.9600C29—H29B0.9600
C9—H9C0.9600C29—H29C0.9600
C10—H10A0.9600C30—H30A0.9600
C10—H10B0.9600C30—H30B0.9600
C10—H10C0.9600C30—H30C0.9600
C11—O21.232 (6)C31—O221.241 (6)
C11—N21.331 (6)C31—N221.347 (6)
N2—C121.461 (6)N22—C321.447 (6)
N2—H21.025 (11)N22—H221.025 (11)
C12—C141.522 (8)C32—C331.531 (8)
C12—C131.524 (8)C32—C341.537 (8)
C12—H120.9800C32—H320.9800
C13—H13A0.9600C33—H33A0.9600
C13—H13B0.9600C33—H33B0.9600
C13—H13C0.9600C33—H33C0.9600
C14—O31.226 (6)C34—O231.219 (7)
C14—N31.332 (7)C34—N231.343 (8)
N3—C151.465 (8)N23—C351.456 (8)
N3—H31.025 (11)N23—H231.027 (11)
C15—C171.500 (12)C35—C361.504 (10)
C15—C161.516 (11)C35—C371.517 (11)
C15—H150.9800C35—H350.9800
C16—H16A0.9600C36—H36A0.9600
C16—H16B0.9600C36—H36B0.9600
C16—H16C0.9600C36—H36C0.9600
C17—H17A0.9600C37—H37A0.9600
C17—H17B0.9600C37—H37B0.9600
C17—H17C0.9600C37—H37C0.9600
C3—C1—C4109.0 (6)C24—C21—C22108.6 (6)
C3—C1—C5113.4 (5)C24—C21—C25111.7 (5)
C4—C1—C5109.1 (5)C22—C21—C25107.4 (5)
C3—C1—C2108.4 (7)C24—C21—C23111.3 (7)
C4—C1—C2107.3 (6)C22—C21—C23107.0 (5)
C5—C1—C2109.4 (5)C25—C21—C23110.5 (5)
C1—C2—H2A109.5C21—C22—H22A109.5
C1—C2—H2B109.5C21—C22—H22B109.5
H2A—C2—H2B109.5H22A—C22—H22B109.5
C1—C2—H2C109.5C21—C22—H22C109.5
H2A—C2—H2C109.5H22A—C22—H22C109.5
H2B—C2—H2C109.5H22B—C22—H22C109.5
C1—C3—H3A109.5C21—C23—H23A109.5
C1—C3—H3B109.5C21—C23—H23B109.5
H3A—C3—H3B109.5H23A—C23—H23B109.5
C1—C3—H3C109.5C21—C23—H23C109.5
H3A—C3—H3C109.5H23A—C23—H23C109.5
H3B—C3—H3C109.5H23B—C23—H23C109.5
C1—C4—H4A109.5C21—C24—H24A109.5
C1—C4—H4B109.5C21—C24—H24B109.5
H4A—C4—H4B109.5H24A—C24—H24B109.5
C1—C4—H4C109.5C21—C24—H24C109.5
H4A—C4—H4C109.5H24A—C24—H24C109.5
H4B—C4—H4C109.5H24B—C24—H24C109.5
O1—C5—N1117.7 (5)O21—C25—N21118.6 (5)
O1—C5—C1119.4 (5)O21—C25—C21119.5 (5)
N1—C5—C1122.8 (5)N21—C25—C21121.9 (5)
C5—N1—C6117.8 (4)C25—N21—C26115.0 (4)
C5—N1—C8125.1 (4)C25—N21—C28125.9 (4)
C6—N1—C8114.8 (4)N21—C26—C31112.0 (4)
N1—C6—C7111.1 (4)C26—N21—C28117.3 (4)
C6—C7—Si1104.5 (3)N21—C26—C27108.3 (4)
N1—C8—Si1106.8 (4)C26—C27—Si21105.8 (3)
C7—Si1—C892.9 (2)N21—C28—Si21105.7 (3)
C7—Si1—C9112.7 (3)C27—Si21—C2892.1 (2)
C7—Si1—C10113.6 (3)C27—Si21—C29113.8 (3)
C8—Si1—C9113.1 (3)C27—Si21—C30113.7 (3)
C8—Si1—C10112.9 (3)C28—Si21—C29111.8 (3)
C9—Si1—C10110.7 (3)C28—Si21—C30112.4 (3)
N1—C6—C11111.3 (4)C29—Si21—C30111.7 (3)
C7—C6—C11107.5 (4)C31—C26—C27107.4 (4)
N1—C6—H6A108.9N21—C26—H26109.7
C7—C6—H6A108.9C31—C26—H26109.7
C11—C6—H6A108.9C27—C26—H26109.7
C6—C7—H7A110.9C26—C27—H27A110.6
Si1—C7—H7A110.9Si21—C27—H27A110.6
C6—C7—H7B110.9C26—C27—H27B110.6
Si1—C7—H7B110.9Si21—C27—H27B110.6
H7A—C7—H7B108.9H27A—C27—H27B108.7
N1—C8—H8A110.4N21—C28—H28A110.6
Si1—C8—H8A110.4Si21—C28—H28A110.6
N1—C8—H8B110.4N21—C28—H28B110.6
Si1—C8—H8B110.4Si21—C28—H28B110.6
H8A—C8—H8B108.6H28A—C28—H28B108.7
Si1—C9—H9A109.5Si21—C29—H29A109.5
Si1—C9—H9B109.5Si21—C29—H29B109.5
H9A—C9—H9B109.5H29A—C29—H29B109.5
Si1—C9—H9C109.5Si21—C29—H29C109.5
H9A—C9—H9C109.5H29A—C29—H29C109.5
H9B—C9—H9C109.5H29B—C29—H29C109.5
Si1—C10—H10A109.5Si21—C30—H30A109.5
Si1—C10—H10B109.5Si21—C30—H30B109.5
H10A—C10—H10B109.5H30A—C30—H30B109.5
Si1—C10—H10C109.5Si21—C30—H30C109.5
H10A—C10—H10C109.5H30A—C30—H30C109.5
H10B—C10—H10C109.5H30B—C30—H30C109.5
O2—C11—N2122.7 (4)O22—C31—N22121.8 (4)
O2—C11—C6121.4 (4)O22—C31—C26122.9 (4)
N2—C11—C6115.5 (4)N22—C31—C26115.0 (4)
C11—N2—C12123.1 (4)C31—N22—C32122.9 (4)
C11—N2—H2119 (3)C31—N22—H22119 (3)
C12—N2—H2117 (3)C32—N22—H22118 (3)
N2—C12—C14114.2 (4)N22—C32—C33111.1 (4)
N2—C12—C13111.9 (4)N22—C32—C34114.8 (4)
C14—C12—C13113.0 (5)C33—C32—C34112.9 (4)
N2—C12—H12105.6N22—C32—H32105.7
C14—C12—H12105.6C33—C32—H32105.7
C13—C12—H12105.6C34—C32—H32105.7
C12—C13—H13A109.5C32—C33—H33A109.5
C12—C13—H13B109.5C32—C33—H33B109.5
H13A—C13—H13B109.5H33A—C33—H33B109.5
C12—C13—H13C109.5C32—C33—H33C109.5
H13A—C13—H13C109.5H33A—C33—H33C109.5
H13B—C13—H13C109.5H33B—C33—H33C109.5
O3—C14—N3122.9 (5)O23—C34—N23124.4 (6)
O3—C14—C12119.1 (5)O23—C34—C32119.5 (5)
N3—C14—C12117.7 (5)N23—C34—C32115.8 (5)
C14—N3—C15122.5 (5)C34—N23—C35120.8 (5)
C14—N3—H3114 (4)C34—N23—H23116 (4)
C15—N3—H3118 (4)C35—N23—H23116 (4)
N3—C15—C17108.8 (7)N23—C35—C36111.5 (6)
N3—C15—C16110.8 (6)N23—C35—C37108.0 (6)
C17—C15—C16112.7 (7)C36—C35—C37111.5 (7)
N3—C15—H15108.1N23—C35—H35108.6
C17—C15—H15108.1C36—C35—H35108.6
C16—C15—H15108.1C37—C35—H35108.6
C15—C16—H16A109.5C35—C36—H36A109.5
C15—C16—H16B109.5C35—C36—H36B109.5
H16A—C16—H16B109.5H36A—C36—H36B109.5
C15—C16—H16C109.5C35—C36—H36C109.5
H16A—C16—H16C109.5H36A—C36—H36C109.5
H16B—C16—H16C109.5H36B—C36—H36C109.5
C15—C17—H17A109.5C35—C37—H37A109.5
C15—C17—H17B109.5C35—C37—H37B109.5
H17A—C17—H17B109.5H37A—C37—H37B109.5
C15—C17—H17C109.5C35—C37—H37C109.5
H17A—C17—H17C109.5H37A—C37—H37C109.5
H17B—C17—H17C109.5H37B—C37—H37C109.5
C3—C1—C5—O1118.7 (7)C24—C21—C25—O21111.2 (7)
C4—C1—C5—O13.0 (8)C22—C21—C25—O217.9 (7)
C2—C1—C5—O1120.1 (6)C23—C21—C25—O21124.3 (6)
C3—C1—C5—N164.7 (8)C24—C21—C25—N2170.9 (7)
C4—C1—C5—N1173.6 (6)C22—C21—C25—N21170.1 (5)
C2—C1—C5—N156.5 (7)C23—C21—C25—N2153.6 (7)
O1—C5—N1—C61.6 (7)O21—C25—N21—C260.4 (6)
C1—C5—N1—C6178.2 (4)C21—C25—N21—C26178.3 (4)
O1—C5—N1—C8163.5 (5)O21—C25—N21—C28164.9 (5)
C1—C5—N1—C819.9 (7)C21—C25—N21—C2817.1 (7)
C5—N1—C6—C7169.3 (4)C25—N21—C26—C3151.2 (5)
C8—N1—C6—C727.0 (6)N21—C26—C31—N22137.9 (5)
C5—N1—C6—C1149.5 (6)C31—N22—C32—C3463.5 (6)
N1—C6—C11—N2136.5 (4)N22—C32—C34—N2320.9 (6)
C11—N2—C12—C1463.3 (6)N21—C26—C27—Si2133.8 (5)
N2—C12—C14—N320.1 (6)C26—C27—Si21—C2828.3 (4)
N1—C6—C7—Si133.1 (5)C27—Si21—C28—N2115.0 (4)
C6—C7—Si1—C824.9 (4)Si21—C28—N21—C262.9 (5)
C7—Si1—C8—N111.3 (4)C28—N21—C26—C31142.8 (5)
Si1—C8—N1—C66.6 (5)C25—N21—C26—C27169.4 (4)
C8—N1—C6—C11146.8 (4)C28—N21—C26—C2724.6 (6)
C11—C6—C7—Si1155.2 (3)C31—C26—C27—Si21154.9 (3)
C6—C7—Si1—C10141.5 (4)C26—C27—Si21—C3087.3 (4)
C6—C7—Si1—C991.6 (4)C26—C27—Si21—C29143.2 (4)
C5—N1—C8—Si1169.0 (4)C25—N21—C28—Si21167.1 (4)
C10—Si1—C8—N1128.5 (4)C30—Si21—C28—N21101.7 (4)
C9—Si1—C8—N1104.8 (4)C29—Si21—C28—N21131.7 (4)
N1—C6—C11—O250.5 (6)N21—C26—C31—O2248.1 (7)
C7—C6—C11—O271.4 (6)C27—C26—C31—O2270.6 (6)
C7—C6—C11—N2101.5 (5)C27—C26—C31—N22103.4 (5)
O2—C11—N2—C123.1 (8)O22—C31—N22—C324.3 (8)
C6—C11—N2—C12169.7 (4)C26—C31—N22—C32169.8 (5)
C11—N2—C12—C1366.6 (7)C31—N22—C32—C3366.2 (7)
N2—C12—C14—O3165.7 (5)N22—C32—C34—O23165.8 (5)
C13—C12—C14—O336.4 (7)C33—C32—C34—O2337.0 (7)
C13—C12—C14—N3149.5 (5)C33—C32—C34—N23149.7 (5)
O3—C14—N3—C158.6 (9)O23—C34—N23—C359.2 (9)
C12—C14—N3—C15177.5 (5)C32—C34—N23—C35177.9 (5)
C14—N3—C15—C17148.3 (6)C34—N23—C35—C3685.6 (7)
C14—N3—C15—C1687.2 (8)C34—N23—C35—C37151.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O22i1.03 (2)1.81 (2)2.831 (5)172 (5)
N23—H23···O211.03 (2)2.13 (2)3.122 (6)166 (5)
N3—H3···O11.03 (2)2.13 (2)3.118 (6)163 (5)
N22—H22···O21.02 (2)1.83 (2)2.847 (5)169 (5)
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC17H33N3O3Si
Mr355.55
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)9.6650 (5), 19.6620 (9), 11.123 (2)
β (°) 89.602 (5)
V3)2113.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerNonius KAPPA CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9566, 3659, 3090
Rint0.055
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.143, 1.07
No. of reflections3659
No. of parameters445
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.22

Computer programs: COLLECT (Nonius, 1998), HKL suite (Otwinoski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), maXus (Mackay et al., 1999) and WebLab ViewerPro 3.5 (MSI, 1999).

Selected geometric parameters (Å, º) top
N1—C61.462 (7)N21—C261.483 (6)
N1—C81.497 (6)N21—C281.488 (6)
C6—C71.525 (7)C26—C271.532 (7)
Si1—C71.877 (6)Si21—C271.879 (6)
Si1—C81.872 (6)Si21—C281.890 (6)
Si1—C91.868 (6)Si21—C291.852 (5)
Si1—C101.854 (5)Si21—C301.848 (6)
C6—N1—C8114.8 (4)C26—N21—C28117.3 (4)
N1—C6—C7111.1 (4)N21—C26—C27108.3 (4)
C6—C7—Si1104.5 (3)C26—C27—Si21105.8 (3)
N1—C8—Si1106.8 (4)N21—C28—Si21105.7 (3)
C7—Si1—C892.9 (2)C27—Si21—C2892.1 (2)
C7—Si1—C9112.7 (3)C27—Si21—C29113.8 (3)
C7—Si1—C10113.6 (3)C27—Si21—C30113.7 (3)
C8—Si1—C9113.1 (3)C28—Si21—C29111.8 (3)
C8—Si1—C10112.9 (3)C28—Si21—C30112.4 (3)
C9—Si1—C10110.7 (3)C29—Si21—C30111.7 (3)
C5—N1—C6—C1149.5 (6)C25—N21—C26—C3151.2 (5)
N1—C6—C11—N2136.5 (4)N21—C26—C31—N22137.9 (5)
C11—N2—C12—C1463.3 (6)C31—N22—C32—C3463.5 (6)
N2—C12—C14—N320.1 (6)N22—C32—C34—N2320.9 (6)
N1—C6—C7—Si133.1 (5)N21—C26—C27—Si2133.8 (5)
C6—C7—Si1—C824.9 (4)C26—C27—Si21—C2828.3 (4)
C7—Si1—C8—N111.3 (4)C27—Si21—C28—N2115.0 (4)
Si1—C8—N1—C66.6 (5)Si21—C28—N21—C262.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O22i1.03 (2)1.81 (2)2.831 (5)172 (5)
N23—H23···O211.03 (2)2.13 (2)3.122 (6)166 (5)
N3—H3···O11.03 (2)2.13 (2)3.118 (6)163 (5)
N22—H22···O21.02 (2)1.83 (2)2.847 (5)169 (5)
Symmetry code: (i) x1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds