Download citation
Download citation
link to html
We present the crystal and molecular structure of two key compounds of a new synthesis strategy for isomers of natural (2S,3R,4S)-4-hydroxyisoleucines, 2,3,5,6,7,8-hexa­hydro-3-(1-hydroxy-1-methyl-2-oxo­propyl)-6,8-methano-7,7,8a-tri­meth­yl-5H-1,4-benzoxazin-2-one, C16H23NO4, and 2,3,5,6,7,8-hexa­hydro-3-(1-methyl-2-oxo­propyl)-6,8-methano-7,7,8a-tri­meth­yl-5H-1,4-benzoxazin-2-one, C16H23NO3. A new optically pure chiral oxazinone auxiliary derived from (1R,2R,5R)-2-hydroxy­pinan-3-one was used.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010000740X/gs1091sup1.cif
Contains datablocks global, II, IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010000740X/gs1091IIsup2.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010000740X/gs1091IVsup3.hkl
Contains datablock IV

CCDC references: 150363; 150364

Comment top

As a part of an ongoing study aimed at synthesizing γ-hydroxy α-aminoacids (Jacob et al., 1997) and in particular 4-hydroxyisoleucine, we explored a new strategy using as starting material the oxazinone (El Achkar et al., 1988) derived from (1R,2R,5R)-2-hydroxypinan-3-one. The natural isomer (2S,3R,4S)-4-hydroxyisoleucine extracted from fenugrek seeds known in traditional medicine for its antidiabetic properties was recently characterized as a new insulinotropic compound (Sauvaire et al., 1998). For structure-activity studies it was necessary to prepare enantiomerically pure isomers of 4-hydroxyisoleucine and their precursors (Kassem et al., 2000). To unambiguously know the configuration of the different asymetric carbons at different synthesis steps, the structures of two key intermediates, (II) and (IV), were studied by X-ray diffraction. From the known R configuration of C7, C10 and C12 we found R configuration for C2 and S for C3 in compound (II) and R configuration for the C2 and C3 in compound (IV). The strategy used is outlined in the reaction scheme below. \sch

Compounds (II) and (IV) have similar structures except the O3 hydroxyl group attached to the C3-atom in (II), replaced by an hydrogen in compound (IV). They are composed of the six-membered ring (C1—C2—N1—C8—C7—O1) of the oxazinone sharing one side (C7—C8) with the bicyclo system from the (1R,2R,5R)-2-hydroxypinan-3-one and on C2 the future amino-acid side chain (C3—C4—C5). The C1—C2—N1—C8—C7—O1 ring can be described with a boat conformation more distorted for compound (IV) than for (II). The C2 and C7 are respectively 0.387 (6) and 0.507 (5) Å above the mean plane of the other four atoms (r.m.s. Δ = 0.090 Å) for compound (II). However, for compound (IV), C2 and C7 are, respectively, 0.526 (6) and 0.517 (6) Å out of the same mean plane (r.m.s. Δ = 0.099 Å). This is also indicated by the torsion angle O1—C1—C2—N1 of 29.2 (1) and 43.0 (1)°, respectively. The bicyclo system including a six-membered ring (C7—C8—C9—C10—C11—C12) is bridged between C12 and C10 with C13. Two methyl groups are attached to this bicyclo system on C13 and on C7.

Experimental top

The enantioselective condensation of butan-2,3-dione on the (1'R,2'R,5'R)-oxazinone (I) resulted in the alcohol (II). After a deshydration step, a stereoselective hydrogenation of the double bond of coumpound (III) gave the second optically pure intermediate (IV). After a reduction step, the final cleavage of the chiral auxiliary produced two pure isomers of 4-hydroxyisoleucine. For the X-ray diffraction analysis pure (II) (m.p. 375–377 K) and (IV) (m.p. 382–384 K) were dissolved in the required amount of anhydrous Et2O. Single crystals grew from the solution by slow evaporation at room temperature.

Refinement top

For both structures the H atoms were introduced at calculated positions and refined as riding with an isotropic displacement parameter U(H)eq = Ueq + 0.02 of the parent atoms [parent + option of maXus (Mackay et al., 1999)].

Computing details top

For both compounds, data collection: KappaCCD (Nonius, 1998); data reduction: DENZO and Scalepak (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: maXus (Mackay et al., 1999); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: maXus.

Figures top
[Figure 1] Fig. 1. An ORTEPII (Johnson, 1976) view of the molecular structure of (II) showing the labelling of all non-H atoms. Displacement ellipsoids are shown at the 50% probability level and H atoms are drawn as circles of arbitrary radius.
[Figure 2] Fig. 2. An ORTEPII (Johnson, 1976) view of the molecular structure of (IV) showing the labelling of all non-H atoms. Displacement ellipsoids are shown at the 50% probability level and H atoms are drawn as circles of arbitrary radius.
(II) top
Crystal data top
C16H23NO4Dx = 1.258 Mg m3
Mr = 293.36Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9594 reflections
a = 11.0434 (5) Åθ = 1.0–26.2°
b = 11.0028 (3) ŵ = 0.09 mm1
c = 12.7460 (6) ÅT = 298 K
V = 1548.70 (10) Å3Prism, colourless
Z = 40.40 × 0.30 × 0.20 mm
F(000) = 632
Data collection top
Kappa CCD area-detector
diffractometer
Rint = 0.062
ϕ–scanθmax = 26.2°
9422 measured reflectionsh = 1313
1719 independent reflectionsk = 1212
1576 reflections with I > 3σ(I)l = 1415
Refinement top
Refinement on F2190 parameters
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041Calculated w = 1/[σ2(Fo2) + 0.03Fo2)]
wR(F2) = 0.058(Δ/σ)max = 0.005
S = 1.32Δρmax = 0.14 e Å3
1576 reflectionsΔρmin = 0.16 e Å3
Crystal data top
C16H23NO4V = 1548.70 (10) Å3
Mr = 293.36Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.0434 (5) ŵ = 0.09 mm1
b = 11.0028 (3) ÅT = 298 K
c = 12.7460 (6) Å0.40 × 0.30 × 0.20 mm
Data collection top
Kappa CCD area-detector
diffractometer
1576 reflections with I > 3σ(I)
9422 measured reflectionsRint = 0.062
1719 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041190 parameters
wR(F2) = 0.058H-atom parameters constrained
S = 1.32Δρmax = 0.14 e Å3
1576 reflectionsΔρmin = 0.16 e Å3
Special details top

Geometry. All standard uncertainties (except dihedral angles between l.s. planes) are estimated using the full covariance matrix. The standard uncertainties in cell dimensions are are used in calculating the standard uncertainties of bond distances, angles and torsion angles. Angles between l.s. planes have standard uncertainties calculated from atomic positional standard uncertainties; the errors in cell dimensions are not used in this case.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.80675 (4)0.35476 (3)0.21678 (3)0.0454 (2)
O20.79030 (4)0.43003 (4)0.05802 (3)0.0531 (2)
O31.02965 (3)0.31680 (4)0.01746 (3)0.0458 (2)
O40.74352 (4)0.25746 (4)0.12923 (3)0.0682 (3)
N10.94190 (4)0.16070 (4)0.14153 (4)0.0403 (3)
C10.81495 (5)0.34393 (5)0.11209 (4)0.0394 (3)
C20.85985 (5)0.22308 (5)0.07032 (4)0.0354 (3)
C30.92549 (4)0.24173 (5)0.03478 (4)0.0372 (3)
C40.84108 (5)0.30457 (6)0.11267 (4)0.0435 (3)
C50.88272 (6)0.41535 (6)0.17025 (5)0.0526 (4)
C60.96583 (6)0.12218 (6)0.08264 (5)0.0527 (4)
C70.81782 (4)0.24540 (5)0.28220 (4)0.0358 (3)
C80.92169 (4)0.17113 (5)0.23934 (4)0.0349 (3)
C91.01064 (5)0.11875 (6)0.31786 (5)0.0488 (3)
C101.01181 (5)0.19512 (6)0.41786 (5)0.0486 (3)
C110.98768 (6)0.32829 (6)0.38611 (5)0.0567 (4)
C120.85161 (5)0.29493 (5)0.38928 (4)0.0435 (3)
C130.88557 (5)0.19499 (6)0.47131 (4)0.0417 (3)
C140.88872 (7)0.25258 (8)0.58073 (5)0.0682 (5)
C150.81863 (6)0.07469 (6)0.48100 (5)0.0552 (4)
C160.69496 (6)0.18218 (8)0.27725 (5)0.0594 (4)
H20.7896550.1728970.0601370.055054*
H31.0868610.2741440.0316340.064080*
H5A0.8189460.4439080.2140660.072486*
H5B0.9521930.3948270.2118190.072486*
H5C0.9045710.4770240.1202200.072486*
H6A1.0190130.0795710.0352490.071377*
H6B1.0072330.1381220.1469120.071377*
H6C0.8958230.0723450.0960540.071377*
H9A1.0901910.1189310.2872210.069343*
H9B0.9875830.0372460.3346800.069343*
H101.0807780.1752400.4592950.068900*
H11A1.0083920.3537610.3162960.077001*
H11B1.0048310.3926410.4345820.077001*
H120.7919500.3533320.4107080.061869*
H14A0.9298200.3290830.5777220.083805*
H14B0.9313350.1988990.6276860.083805*
H14C0.8076740.2639390.6053980.083805*
H15A0.8151190.0371990.4128320.076024*
H15B0.7377920.0880850.5061590.076024*
H15C0.8614540.0230450.5284460.076024*
H16A0.6820900.1534010.2075170.076153*
H16B0.6323430.2384720.2962690.076153*
H16C0.6949160.1151350.3254700.076153*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0540 (2)0.0419 (2)0.0402 (2)0.0178 (2)0.0002 (2)0.0014 (2)
O20.0627 (3)0.0482 (3)0.0484 (2)0.0192 (2)0.0005 (2)0.0083 (2)
O30.0324 (2)0.0466 (3)0.0584 (3)0.0092 (2)0.0039 (2)0.0082 (2)
O40.0445 (2)0.0962 (4)0.0640 (3)0.0136 (3)0.0147 (2)0.0057 (3)
N10.0392 (3)0.0384 (3)0.0433 (3)0.0068 (2)0.0018 (2)0.0011 (2)
C10.0309 (3)0.0437 (4)0.0434 (3)0.0045 (3)0.0003 (3)0.0004 (3)
C20.0305 (3)0.0355 (4)0.0401 (3)0.0005 (2)0.0018 (2)0.0019 (3)
C30.0295 (3)0.0367 (3)0.0453 (3)0.0040 (3)0.0019 (3)0.0002 (3)
C40.0376 (3)0.0528 (4)0.0401 (3)0.0013 (3)0.0021 (3)0.0006 (3)
C50.0500 (4)0.0559 (4)0.0521 (4)0.0068 (3)0.0009 (3)0.0084 (4)
C60.0515 (4)0.0485 (4)0.0581 (4)0.0016 (3)0.0123 (4)0.0062 (3)
C70.0315 (3)0.0375 (3)0.0384 (3)0.0051 (3)0.0022 (2)0.0027 (3)
C80.0282 (3)0.0293 (3)0.0471 (3)0.0013 (2)0.0005 (2)0.0006 (3)
C90.0382 (3)0.0588 (4)0.0493 (4)0.0185 (3)0.0024 (3)0.0058 (3)
C100.0323 (3)0.0615 (4)0.0519 (4)0.0016 (3)0.0133 (3)0.0015 (3)
C110.0604 (4)0.0536 (4)0.0561 (4)0.0218 (3)0.0127 (3)0.0021 (4)
C120.0473 (3)0.0398 (4)0.0432 (3)0.0106 (3)0.0045 (3)0.0053 (3)
C130.0394 (3)0.0467 (4)0.0390 (3)0.0041 (3)0.0062 (3)0.0016 (3)
C140.0725 (5)0.0864 (6)0.0457 (4)0.0108 (5)0.0112 (4)0.0052 (4)
C150.0503 (4)0.0564 (4)0.0590 (4)0.0039 (3)0.0064 (3)0.0115 (4)
C160.0314 (3)0.0943 (6)0.0527 (4)0.0119 (4)0.0045 (3)0.0048 (4)
Geometric parameters (Å, º) top
O1—C11.3427 (6)C7—C81.5106 (7)
O1—C71.4691 (6)C7—C121.5162 (7)
O2—C11.2028 (6)C7—C161.5260 (8)
O3—C31.4332 (6)C8—C91.5161 (7)
O4—C41.2141 (6)C9—C101.5268 (8)
N1—C21.4546 (6)C10—C111.5432 (9)
N1—C81.2716 (6)C10—C131.5517 (7)
C1—C21.5158 (7)C11—C121.5474 (8)
C2—C31.5370 (7)C12—C131.5631 (7)
C3—C41.5273 (7)C13—C141.5322 (8)
C3—C61.5168 (8)C13—C151.5211 (8)
C4—C51.4952 (8)
C1—O1—C7119.1 (1)C8—C7—C12109.5 (1)
C2—N1—C8117.4 (1)C8—C7—C16114.4 (1)
O1—C1—O2119.0 (1)C12—C7—C16114.8 (1)
O1—C1—C2116.7 (1)N1—C8—C7122.5 (1)
O2—C1—C2124.3 (1)N1—C8—C9119.9 (1)
N1—C2—C1113.5 (1)C7—C8—C9117.3 (1)
N1—C2—C3108.2 (1)C8—C9—C10110.3 (1)
C1—C2—C3110.1 (1)C9—C10—C11107.6 (1)
O3—C3—C2108.7 (1)C9—C10—C13111.0 (1)
O3—C3—C4109.2 (1)C11—C10—C1387.8 (1)
O3—C3—C6109.0 (1)C10—C11—C1286.3 (1)
C2—C3—C4109.8 (1)C7—C12—C11107.5 (1)
C2—C3—C6111.9 (1)C7—C12—C13114.1 (1)
C4—C3—C6108.1 (1)C11—C12—C1387.2 (1)
O4—C4—C3117.5 (1)C10—C13—C1285.5 (1)
O4—C4—C5122.4 (1)C10—C13—C14112.3 (1)
C3—C4—C5120.0 (1)C10—C13—C15118.2 (1)
O1—C7—C8107.5 (1)C12—C13—C14108.9 (1)
O1—C7—C12103.7 (1)C12—C13—C15123.4 (1)
O1—C7—C16106.0 (1)C14—C13—C15107.3 (1)
C7—O1—C1—O2170.4 (1)C12—C7—C8—N1150.6 (1)
C7—O1—C1—C211.8 (1)C12—C7—C8—C923.2 (1)
C1—O1—C7—C843.5 (1)C8—C7—C12—C1136.9 (1)
C1—O1—C7—C12159.4 (1)C8—C7—C12—C1357.9 (1)
C1—O1—C7—C1679.3 (1)C16—C7—C8—N178.9 (1)
C8—N1—C2—C135.4 (1)C16—C7—C8—C9107.3 (1)
C8—N1—C2—C3157.9 (1)C16—C7—C12—C11167.2 (1)
C2—N1—C8—C70.4 (1)C16—C7—C12—C1372.4 (1)
C2—N1—C8—C9174.0 (1)N1—C8—C9—C10148.6 (1)
O1—C1—C2—N129.2 (1)C7—C8—C9—C1025.4 (1)
O1—C1—C2—C3150.7 (1)C8—C9—C10—C1132.9 (1)
O2—C1—C2—N1148.4 (1)C8—C9—C10—C1361.6 (1)
O2—C1—C2—C327.0 (1)C9—C10—C11—C1284.1 (1)
N1—C2—C3—O361.8 (1)C9—C10—C13—C1281.0 (1)
N1—C2—C3—C4178.7 (1)C9—C10—C13—C14170.4 (1)
N1—C2—C3—C658.7 (1)C9—C10—C13—C1544.7 (1)
C1—C2—C3—O362.7 (1)C13—C10—C11—C1227.2 (1)
C1—C2—C3—C456.7 (1)C11—C10—C13—C1227.0 (1)
C1—C2—C3—C6176.8 (1)C11—C10—C13—C1481.6 (1)
O3—C3—C4—O4174.0 (1)C11—C10—C13—C15152.7 (1)
O3—C3—C4—C59.8 (1)C10—C11—C12—C787.4 (1)
C2—C3—C4—O454.8 (1)C10—C11—C12—C1327.0 (1)
C2—C3—C4—C5129.0 (1)C7—C12—C13—C1081.0 (1)
C6—C3—C4—O467.5 (1)C7—C12—C13—C14166.9 (1)
C6—C3—C4—C5108.7 (1)C7—C12—C13—C1540.0 (1)
O1—C7—C8—N138.5 (1)C11—C12—C13—C1026.9 (1)
O1—C7—C8—C9135.3 (1)C11—C12—C13—C1485.1 (1)
O1—C7—C12—C1177.6 (1)C11—C12—C13—C15148.0 (1)
O1—C7—C12—C13172.4 (1)
(IV) top
Crystal data top
C16H23NO3Dx = 1.193 Mg m3
Mr = 277.36Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 11140 reflections
a = 8.2610 (3) Åθ = 1.0–26.4°
b = 12.5168 (5) ŵ = 0.08 mm1
c = 14.9291 (3) ÅT = 298 K
V = 1543.69 (9) Å3Prism, colourless
Z = 40.40 × 0.30 × 0.20 mm
F(000) = 600
Data collection top
Kappa CCD area-detector
diffractometer
Rint = 0.028
ϕ–scanθmax = 26.4°
10011 measured reflectionsh = 1010
1793 independent reflectionsk = 1415
1630 reflections with I > 3σ(I)l = 1818
Refinement top
Refinement on F2181 parameters
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039Calculated w = 1/[σ2(Fo2) + 0.03Fo2)]
wR(F2) = 0.060(Δ/σ)max = 0.001
S = 1.31Δρmax = 0.17 e Å3
1630 reflectionsΔρmin = 0.31 e Å3
Crystal data top
C16H23NO3V = 1543.69 (9) Å3
Mr = 277.36Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.2610 (3) ŵ = 0.08 mm1
b = 12.5168 (5) ÅT = 298 K
c = 14.9291 (3) Å0.40 × 0.30 × 0.20 mm
Data collection top
Kappa CCD area-detector
diffractometer
1630 reflections with I > 3σ(I)
10011 measured reflectionsRint = 0.028
1793 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039181 parameters
wR(F2) = 0.060H-atom parameters constrained
S = 1.31Δρmax = 0.17 e Å3
1630 reflectionsΔρmin = 0.31 e Å3
Special details top

Geometry. All standard uncertainties (except dihedral angles between l.s. planes) are estimated using the full covariance matrix. The standard uncertainties in cell dimensions are are used in calculating the standard uncertainties of bond distances, angles and torsion angles. Angles between l.s. planes have standard uncertainties calculated from atomic positional standard uncertainties; the errors in cell dimensions are not used in this case.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.84959 (5)0.37220 (3)0.77036 (2)0.0410 (2)
O20.86251 (5)0.54706 (3)0.78450 (3)0.0531 (2)
O31.02798 (6)0.60814 (4)0.97029 (3)0.0733 (3)
N10.66951 (6)0.36927 (4)0.92778 (3)0.0432 (3)
C10.84195 (7)0.46150 (4)0.81984 (3)0.0365 (3)
C20.80140 (7)0.44768 (4)0.91804 (3)0.0363 (3)
C30.75404 (7)0.55366 (4)0.96073 (4)0.0405 (3)
C40.88997 (8)0.63417 (5)0.95388 (4)0.0499 (4)
C50.8458 (1)0.74627 (5)0.93186 (6)0.0815 (5)
C60.71612 (9)0.53928 (6)1.05987 (4)0.0679 (4)
C70.82091 (7)0.26836 (4)0.81462 (3)0.0359 (3)
C80.68062 (7)0.28621 (4)0.87948 (4)0.0403 (3)
C90.54188 (8)0.20840 (5)0.87675 (5)0.0596 (4)
C100.53561 (8)0.15005 (5)0.78696 (5)0.0571 (4)
C110.58995 (8)0.22898 (5)0.71260 (5)0.0553 (4)
C120.76450 (7)0.19647 (4)0.73793 (4)0.0417 (3)
C130.69283 (7)0.08731 (4)0.77030 (4)0.0506 (3)
C140.6789 (1)0.01124 (5)0.69040 (5)0.0752 (5)
C150.7632 (1)0.02463 (5)0.84758 (5)0.0745 (5)
C160.98016 (8)0.23392 (5)0.85619 (4)0.0524 (4)
H20.8956980.4214760.9485370.055864*
H120.8479000.1943690.6931320.060903*
H30.6601360.5816550.9310290.060233*
H100.4298050.1229540.7730590.076141*
H16A1.0593590.2237170.8098930.071199*
H16B0.9657590.1683170.8885930.071199*
H16C1.0164600.2886170.8964930.071199*
H11A0.5458500.2061810.6563040.074133*
H11B0.5520500.2996810.7260040.074133*
H9A0.4425770.2464010.8866500.078735*
H9B0.5566770.1565010.9233500.078735*
H6A0.6295180.4886801.0664700.085913*
H6B0.6842180.6065801.0851700.085913*
H6C0.8105180.5133801.0903700.085913*
H15A0.7741280.0709290.8984810.092678*
H15B0.8676280.0028710.8312810.092678*
H15C0.6924280.0335710.8622800.092678*
H5A0.9420680.7890700.9287550.099180*
H5B0.7753680.7740700.9773550.099180*
H5C0.7913680.7479700.8750550.099180*
H14A0.6347380.0481440.6395970.093213*
H14B0.6088380.0468560.7064970.093213*
H14C0.7840380.0161560.6754970.093213*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0556 (2)0.0347 (2)0.0326 (2)0.0069 (2)0.0083 (2)0.0013 (2)
O20.0781 (3)0.0368 (2)0.0443 (2)0.0085 (2)0.0069 (2)0.0085 (2)
O30.0525 (3)0.0817 (3)0.0858 (3)0.0037 (3)0.0124 (3)0.0150 (3)
N10.0519 (3)0.0398 (3)0.0379 (3)0.0034 (3)0.0113 (2)0.0030 (2)
C10.0389 (3)0.0346 (3)0.0361 (3)0.0023 (3)0.0030 (3)0.0019 (3)
C20.0437 (3)0.0331 (3)0.0321 (3)0.0046 (3)0.0022 (2)0.0016 (2)
C30.0428 (3)0.0380 (3)0.0408 (3)0.0083 (3)0.0008 (3)0.0039 (3)
C40.0540 (4)0.0488 (4)0.0469 (4)0.0002 (3)0.0051 (3)0.0119 (3)
C50.0864 (6)0.0384 (4)0.1198 (7)0.0025 (4)0.0269 (5)0.0088 (4)
C60.0882 (6)0.0626 (4)0.0529 (4)0.0023 (4)0.0241 (4)0.0125 (3)
C70.0417 (3)0.0307 (3)0.0354 (3)0.0026 (3)0.0018 (3)0.0033 (2)
C80.0428 (3)0.0403 (3)0.0378 (3)0.0041 (3)0.0048 (3)0.0081 (3)
C90.0543 (4)0.0520 (4)0.0724 (5)0.0150 (3)0.0201 (4)0.0008 (3)
C100.0434 (4)0.0534 (4)0.0745 (5)0.0138 (3)0.0031 (3)0.0053 (4)
C110.0506 (4)0.0559 (4)0.0593 (4)0.0023 (3)0.0129 (3)0.0047 (3)
C120.0422 (3)0.0399 (3)0.0429 (3)0.0047 (3)0.0037 (3)0.0030 (3)
C130.0491 (4)0.0380 (3)0.0648 (4)0.0086 (3)0.0029 (3)0.0006 (3)
C140.0686 (5)0.0547 (4)0.1023 (6)0.0197 (4)0.0043 (5)0.0225 (4)
C150.0819 (5)0.0417 (4)0.0998 (6)0.0056 (4)0.0014 (5)0.0193 (4)
C160.0511 (4)0.0470 (4)0.0591 (4)0.0035 (3)0.0090 (3)0.0060 (3)
Geometric parameters (Å, º) top
O1—C11.3412 (6)C7—C81.5266 (8)
O1—C71.4772 (6)C7—C121.5290 (7)
O2—C11.2059 (6)C7—C161.5171 (8)
O3—C41.2108 (7)C8—C91.5046 (8)
N1—C21.4736 (7)C9—C101.527 (1)
N1—C81.2687 (6)C10—C111.5523 (9)
C1—C21.5138 (7)C10—C131.5381 (9)
C2—C31.5228 (7)C11—C121.5453 (8)
C3—C41.5124 (8)C12—C131.5655 (7)
C3—C61.5235 (9)C13—C141.5305 (9)
C4—C51.4867 (9)C13—C151.5116 (9)
C1—O1—C7118.6 (1)C12—C7—C16113.8 (1)
C2—N1—C8115.9 (1)N1—C8—C7122.4 (1)
O1—C1—O2119.5 (1)N1—C8—C9119.4 (1)
O1—C1—C2116.6 (1)C7—C8—C9117.8 (1)
O2—C1—C2123.8 (1)C8—C9—C10111.0 (1)
N1—C2—C1109.6 (1)C9—C10—C11108.3 (1)
N1—C2—C3110.4 (1)C9—C10—C13110.9 (1)
C1—C2—C3111.3 (1)C11—C10—C1388.0 (1)
C2—C3—C4111.2 (1)C10—C11—C1285.8 (1)
C2—C3—C6110.9 (1)C7—C12—C11108.2 (1)
C4—C3—C6107.3 (1)C7—C12—C13113.4 (1)
O3—C4—C3120.4 (1)C11—C12—C1387.3 (1)
O3—C4—C5122.0 (1)C10—C13—C1285.6 (1)
C3—C4—C5117.5 (1)C10—C13—C14112.4 (1)
O1—C7—C8106.1 (1)C10—C13—C15117.8 (1)
O1—C7—C12103.4 (1)C12—C13—C14109.3 (1)
O1—C7—C16107.1 (1)C12—C13—C15122.9 (1)
C8—C7—C12109.2 (1)C14—C13—C15107.5 (1)
C8—C7—C16116.1 (1)
C7—O1—C1—O2178.8 (1)C8—C7—C12—C1139.2 (1)
C7—O1—C1—C20.9 (1)C8—C7—C12—C1355.8 (1)
C1—O1—C7—C840.7 (1)C16—C7—C8—N176.8 (1)
C1—O1—C7—C12155.6 (1)C16—C7—C8—C9110.8 (1)
C1—O1—C7—C1683.9 (1)C16—C7—C12—C11170.8 (1)
C8—N1—C2—C143.1 (1)C16—C7—C12—C1375.7 (1)
C8—N1—C2—C3166.0 (1)N1—C8—C9—C10151.1 (1)
C2—N1—C8—C70.4 (1)C7—C8—C9—C1021.5 (1)
C2—N1—C8—C9172.7 (1)C8—C9—C10—C1135.1 (1)
O1—C1—C2—N143.0 (1)C8—C9—C10—C1359.9 (1)
O1—C1—C2—C3165.4 (1)C9—C10—C11—C1284.1 (1)
O2—C1—C2—N1134.9 (1)C9—C10—C13—C1281.9 (1)
O2—C1—C2—C312.5 (1)C9—C10—C13—C14169.0 (1)
N1—C2—C3—C4178.3 (1)C9—C10—C13—C1543.3 (1)
N1—C2—C3—C659.0 (1)C13—C10—C11—C1227.3 (1)
C1—C2—C3—C459.8 (1)C11—C10—C13—C1227.0 (1)
C1—C2—C3—C6179.1 (1)C11—C10—C13—C1482.1 (1)
C2—C3—C4—O344.4 (1)C11—C10—C13—C15152.1 (1)
C2—C3—C4—C5139.2 (1)C10—C11—C12—C787.0 (1)
C6—C3—C4—O377.0 (1)C10—C11—C12—C1326.8 (1)
C6—C3—C4—C599.4 (1)C7—C12—C13—C1081.6 (1)
O1—C7—C8—N142.0 (1)C7—C12—C13—C14166.2 (1)
O1—C7—C8—C9130.4 (1)C7—C12—C13—C1538.9 (1)
O1—C7—C12—C1173.4 (1)C11—C12—C13—C1027.1 (1)
O1—C7—C12—C13168.5 (1)C11—C12—C13—C1485.1 (1)
C12—C7—C8—N1152.8 (1)C11—C12—C13—C15147.6 (1)
C12—C7—C8—C919.5 (1)

Experimental details

(II)(IV)
Crystal data
Chemical formulaC16H23NO4C16H23NO3
Mr293.36277.36
Crystal system, space groupOrthorhombic, P212121Orthorhombic, P212121
Temperature (K)298298
a, b, c (Å)11.0434 (5), 11.0028 (3), 12.7460 (6)8.2610 (3), 12.5168 (5), 14.9291 (3)
V3)1548.70 (10)1543.69 (9)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.090.08
Crystal size (mm)0.40 × 0.30 × 0.200.40 × 0.30 × 0.20
Data collection
DiffractometerKappa CCD area-detector
diffractometer
Kappa CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 3σ(I)] reflections
9422, 1719, 1576 10011, 1793, 1630
Rint0.0620.028
(sin θ/λ)max1)0.6220.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.058, 1.32 0.039, 0.060, 1.31
No. of reflections15761630
No. of parameters190181
No. of restraints??
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.160.17, 0.31

Computer programs: KappaCCD (Nonius, 1998), DENZO and Scalepak (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), maXus (Mackay et al., 1999), ORTEPII (Johnson, 1976), maXus.

Selected geometric parameters (Å, º) for (II) top
O1—C11.3427 (6)C1—C21.5158 (7)
O1—C71.4691 (6)C2—C31.5370 (7)
O2—C11.2028 (6)C3—C41.5273 (7)
O3—C31.4332 (6)C3—C61.5168 (8)
O4—C41.2141 (6)C4—C51.4952 (8)
N1—C21.4546 (6)C7—C81.5106 (7)
N1—C81.2716 (6)
C1—O1—C7119.1 (1)O3—C3—C4109.2 (1)
C2—N1—C8117.4 (1)O3—C3—C6109.0 (1)
O1—C1—O2119.0 (1)C2—C3—C4109.8 (1)
O1—C1—C2116.7 (1)C2—C3—C6111.9 (1)
O2—C1—C2124.3 (1)C4—C3—C6108.1 (1)
N1—C2—C1113.5 (1)O4—C4—C3117.5 (1)
N1—C2—C3108.2 (1)O4—C4—C5122.4 (1)
C1—C2—C3110.1 (1)C3—C4—C5120.0 (1)
O3—C3—C2108.7 (1)O1—C7—C8107.5 (1)
O1—C1—C2—C3150.7 (1)C2—C3—C4—C5129.0 (1)
C1—C2—C3—C456.7 (1)
Selected geometric parameters (Å, º) for (IV) top
O1—C11.3412 (6)C1—C21.5138 (7)
O1—C71.4772 (6)C2—C31.5228 (7)
O2—C11.2059 (6)C3—C41.5124 (8)
O3—C41.2108 (7)C3—C61.5235 (9)
N1—C21.4736 (7)C4—C51.4867 (9)
N1—C81.2687 (6)C7—C81.5266 (8)
C1—O1—C7118.6 (1)C2—C3—C4111.2 (1)
C2—N1—C8115.9 (1)C2—C3—C6110.9 (1)
O1—C1—O2119.5 (1)C4—C3—C6107.3 (1)
O1—C1—C2116.6 (1)O3—C4—C3120.4 (1)
O2—C1—C2123.8 (1)O3—C4—C5122.0 (1)
N1—C2—C1109.6 (1)C3—C4—C5117.5 (1)
N1—C2—C3110.4 (1)O1—C7—C8106.1 (1)
C1—C2—C3111.3 (1)
O1—C1—C2—C3165.4 (1)C6—C3—C4—O377.0 (1)
C1—C2—C3—C459.8 (1)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds