Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the course of our studies of trinuclear osmium cluster complexes with bridging sulfido and hydrido ligands, the new compounds Os3(μ-H)(μ-SR)(CO)9(PHCy2) (Cy = cyclo­hexyl) with R = phenyl, (I) (nona­carbonyl-1κ3C,2κ3C,3κ3C-di­cyclo­hexyl­phosphine-3κP-μ-hydrido-1:2κ2H-μ-phenyl­thio-1:2κ2S-triangulo-triosmium), [Os3H(C6H5S)(C12H23P)(CO)9], and R = naphthyl, (II) [nona­carbonyl-1κ3C,2κ2C,3κ4C-di­cyclo­hexyl­phosphine-2κP-μ-hydrido-1:2κ2H-μ-(2-naphthyl­thio)-1:2κ2S-triangulo-triosmium], [Os3H(C10H7S)(C12H23P)(CO)9], were prepared. We report on these two phosphine-substituted complexes, which exhibit perceptible changes of the Os—Os bond parameters due to the ligand-substitution pattern.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100004571/gs1077sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100004571/gs1077Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100004571/gs1077IIsup3.hkl
Contains datablock II

CCDC references: 147608; 147609

Comment top

Structure reports on triangular Os3(µ-H)(µ-SR)(CO)10-nLn (n = 0 or 1) compounds show rather differing patterns of Os—Os distances, and the positions of the µ-H atoms, though confirmed by spectroscopic methods, have not been determined (Adams & Dawoodi, 1981; Brodie et al., 1983; Ditzel et al., 1987; Holden et al., 1983; Monari et al., 1996). We present here the structures of two similar compounds, (I) and (II), together with details of the µ-H atoms. \sch

The molecular structure of (I) (Fig. 1) depicts a triangular arrangement of the three Os atoms. Of these, Os2 and Os3 each have three terminal carbonyl groups and the common bridging µ-H and µ-S atoms as ligands. The CO groups show ecliptic arrangement with torsion angles C5—Os2—Os3—C7 − 0.2 (5), C6—Os2—Os3—C8 − 2.2 (7) and C4—Os2—Os3—C9 − 6.4 (6)°. The third metal atom, Os1, has two axially and one equatorially attached CO groups, as well as the equatorially positioned PHCy2 ligand. Considering two Os—Os bonds for each metal atom, Os1 thus reaches a sixfold distorted octahedral coordination, whereas the two bridged atoms Os2 and Os3 have sevenfold coordination.

The two planes Os2µ-H and Os2µ-S form a dihedral angle of 52.0 (1)°, and the dihedral angles with the central Os3 ring are 73.7 (1) for the Os2µ-S plane and 125.7 (1)° for Os2µ-H. Two edges, Os1—Os3 = 2.8678 (7) and Os2—Os3 = 2.8674 (7) Å, are equal and clearly longer than the Os1—Os2 edge of 2.8382 (7) Å. One of the long edges is bridged by the two µ-H and µ-S ligands, and the short Os—Os edge has the PHCy2 ligand in the trans position.

The sulfido bridge is symmetric, with equal Os—S bond lengths of 2.412 (3) and 2.413 (3) Å, and compares well with that known from the above-mentioned related Os3-clusters. The S—Cphenyl distance of 1.803 (10) Å is consistent with a single bond and the plane of the phenyl ring is nearly perpendicular to the Os3 plane at an angle of 85.0 (1)°.

The molecular structure of (II) (Fig. 2) is closely related to that of (I) but with substitution of a naphthyl group rather than a phenyl group attached to the µ-S ligand. The deciding difference, however, is the position of the PHCy2 group, which is pseudo-trans to the bridged Os—Os bond and is attached to Os2. The Os2—P bond length of 2.345 (2) Å is equal to that for (I) [2.342 (3) Å] and the coordination geometry of (II) is almost the same as for (I), with torsion angles C5—Os2—Os3—C7 0.1 (4), C6—Os2—Os3—C8 1.3 (4) and P1—Os2—Os3—C9 9.9 (4)°.

The dihedral angle between planes Os2µ-H and Os2µ-S is 47.3 (1)° and the dihedral angles between the Os3 ring and Os2µ-S and Os2µ-H planes are 77.1 (1) and 124.4 (1)°, respectively. The Os—S bond lengths of 2.423 (2) and 2.434 (2) Å differ only slightly and S—Cnaphthyl is 1.798 (8) Å. However, the Os3 ring geometry has changed, obviously due to the different substitution pattern of the metal atoms. In (II) there are two nearly equal but short bond lengths, Os1—Os3 2.8544 (6) and Os2—Os3 2.8585 (5) Å, and one long Os1—Os2 edge of 2.8928 (5) Å. This latter edge is now cis to the PHCy2 ligand at Os2.

The µ-H atoms of (I) and (II) have been located from difference Fourier maps and refined. Both lie above the Os3 planes if the µ-S atoms are considered to lie below these planes. The mean Os—H bond lengths are 1.86 (8) for (I) and 1.70 (12) Å for (II).

The coordination geometry of (II) is just the same as for Os3(µ-H)(µ-SPh)(CO)9PEt3, (III) (Ditzel et al., 1987) but in this complex there are two long [2.883 (1) and 2.901 (1) Å] and one short [2.862 (1) Å] Os—Os edges. The short edge is between the two Os atoms which are not coordinated by the phosphine group and this ligand is pseudo-trans to the bridged Os—Os edge. The same order of long and short Os—Os edges [2.873 (1), 2.880 (1) and 2.855 (1) Å] is valid for the compound Os3(µ-H)(µ-SCH2CH=CH2)(CO)9PPh3, (IV) (Adams & Pompeo, 1992), but here the phosphine ligand is cis to the µ-H-µ-S bridged Os—Os edge.

In summary, these four phosphine-substituted cluster complexes each have in common two equal and one significantly different Os—Os edge. The accompanying bond length differences range from 0.015 for (IV) to 0.032 Å for (II), taking the reported s.u.s into account. There is, however, no clear conjunction between the substitution pattern and the sequence of the Os—Os bonds. Related unsubstituted Os3 carbonyl compounds exhibit almost equal bond lengths for all three Os—Os edges: Os3(µ-H)(µ-SC(H)N-p- C6H4F)(CO)10 (Adams & Dawoodi, 1981) with a bond difference, Δ, of 0.003 Å, Os3(µ-H)(µ-SC=NCH2CH2S)(CO)10 (Δ = 0.002 Å; Brodie et al., 1983), Os3(µ-H)(µ-SC(CH3)3)(CO)10 (Δ = 0.004 Å; Monari et al., 1996), and Os3(µ-H)(µ-SC(HPh2))(CO)10 (Δ = 0.008 Å; Holden et al., 1983).

Experimental top

In an argon atmosphere Os3(µ-H)(µ-SPh)(CO)10 (90 mg, 0.094 mmol) or Os3(µ-H)(µ-S(2-naphthyl))(CO)10 (95 mg, 0.094 mmol) were dissolved in a mixture of dichloromethane (15 ml) and acetonitrile (1 ml). Trimethylamine-N-oxide (9 mg) was then added. After 1 h the solvent was removed under reduced pressure and the crude material was purified by thin-layer chromatography (eluent: dichloromethane-n-hexane, 1:10). The resulting product fractions contained a mixture of four isomers of Os3(µ-H)(µ-SR)(CO)9(PHCy2) (R = Ph or naphthyl). Upon crystallization from n-pentane in both cases, single crystals of (I) and (II) were obtained.

Refinement top

For both structures, the phosphine H atoms as well as the bridging H atoms were located from difference Fourier maps. Their positional parameters were refined; the isotropic displacement parameters were held fixed. Phenyl, cyclohexyl and naphpthyl H atoms were fixed at idealized positions. Refinement used a riding model and Uiso(H) = 1.2Uiso(C). The maximum residual electron density peak in (I) was 1.2 Å from H36, while that in (II) was 1.0 Å from Os1.

Computing details top

For both compounds, data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL/NT (Siemens, 1995); program(s) used to refine structure: SHELXTL/NT; molecular graphics: SHELXTL/NT; software used to prepare material for publication: SHELXTL/NT.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids. Phenyl and cyclohexyl H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The molecular structure of (II) showing 50% probability displacement ellipsoids. Naphthyl and cyclohexyl H atoms have been omitted for clarity.
(I) nonacarbonyl-1κ3C,2κ3C,3κ3C-dicyclohexylphosphine-3κP-µ-hydrido- 1:2κ2H-µ-phenylthio-1:2κ2S-triangulo-triosmium top
Crystal data top
[Os3(CO)9H(C6H5S)(C12H23P)]F(000) = 4176
Mr = 1131.13Dx = 2.390 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 20.893 (3) ÅCell parameters from 23 reflections
b = 9.010 (2) Åθ = 14.5–38.0°
c = 33.399 (5) ŵ = 12.26 mm1
β = 91.04 (1)°T = 203 K
V = 6286.2 (19) Å3Block, yellow
Z = 80.27 × 0.14 × 0.08 mm
Data collection top
Siemens P4
diffractometer
4147 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.047
Graphite monochromatorθmax = 27.5°, θmin = 2.3°
ω scansh = 271
Absorption correction: ψ-scan
(North et al., 1968)
k = 111
Tmin = 0.146, Tmax = 0.375l = 4343
8816 measured reflections3 standard reflections every 397 reflections
7221 independent reflections intensity decay: 5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 0.92 w = 1/[σ2(Fo2) + (0.0145P)2]
where P = (Fo2 + 2Fc2)/3
7221 reflections(Δ/σ)max = 0.001
376 parametersΔρmax = 0.91 e Å3
4 restraintsΔρmin = 0.98 e Å3
Crystal data top
[Os3(CO)9H(C6H5S)(C12H23P)]V = 6286.2 (19) Å3
Mr = 1131.13Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.893 (3) ŵ = 12.26 mm1
b = 9.010 (2) ÅT = 203 K
c = 33.399 (5) Å0.27 × 0.14 × 0.08 mm
β = 91.04 (1)°
Data collection top
Siemens P4
diffractometer
4147 reflections with I > 2σ(I)
Absorption correction: ψ-scan
(North et al., 1968)
Rint = 0.047
Tmin = 0.146, Tmax = 0.3753 standard reflections every 397 reflections
8816 measured reflections intensity decay: 5%
7221 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0454 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 0.92Δρmax = 0.91 e Å3
7221 reflectionsΔρmin = 0.98 e Å3
376 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Os10.33880 (2)0.14011 (5)0.127082 (13)0.03545 (11)
Os20.28893 (2)0.01966 (5)0.054454 (13)0.03882 (12)
Os30.20756 (2)0.19213 (6)0.104673 (13)0.03985 (13)
S10.20468 (13)0.0736 (3)0.09604 (8)0.0408 (7)
P10.34617 (14)0.2789 (3)0.18630 (9)0.0384 (7)
H10.285 (4)0.372 (12)0.191 (3)0.080*
O10.2950 (4)0.1323 (9)0.1743 (2)0.056 (2)
C10.3092 (5)0.0341 (14)0.1555 (3)0.043 (3)
O20.3739 (4)0.4109 (10)0.0749 (2)0.063 (3)
C20.3603 (5)0.3090 (14)0.0940 (3)0.042 (3)
O30.4739 (4)0.0192 (10)0.1255 (3)0.066 (3)
C30.4230 (5)0.0695 (12)0.1267 (3)0.040 (3)
O40.3882 (4)0.1860 (10)0.0076 (2)0.071 (3)
C40.3506 (6)0.1229 (14)0.0258 (3)0.050 (3)
O50.2383 (4)0.0967 (10)0.0254 (2)0.063 (3)
C50.2537 (5)0.0513 (15)0.0045 (4)0.053 (3)
O60.3768 (4)0.2394 (11)0.0742 (3)0.072 (3)
C60.3444 (6)0.1396 (15)0.0665 (3)0.050 (3)
O70.0708 (4)0.2593 (10)0.0770 (2)0.065 (3)
C70.1216 (5)0.2278 (13)0.0853 (3)0.045 (3)
O80.1788 (4)0.1624 (10)0.1933 (2)0.060 (2)
C80.1903 (5)0.1791 (14)0.1602 (4)0.048 (3)
O90.2439 (4)0.5187 (11)0.1125 (3)0.066 (3)
C90.2295 (5)0.3977 (15)0.1090 (3)0.044 (3)
C110.4102 (5)0.4190 (13)0.1927 (3)0.045 (3)
H110.42010.42230.22150.054*
C120.4718 (5)0.3752 (12)0.1727 (3)0.050 (3)
H12A0.46340.35940.14440.060*
H12B0.48700.28220.18400.060*
C130.5243 (6)0.4939 (15)0.1779 (4)0.070 (4)
H13A0.53800.49740.20580.084*
H13B0.56100.46620.16210.084*
C140.5018 (6)0.6444 (15)0.1652 (4)0.070 (4)
H14A0.49410.64500.13650.084*
H14B0.53490.71680.17130.084*
C150.4415 (5)0.6879 (13)0.1859 (4)0.054 (3)
H15A0.42630.78140.17490.065*
H15B0.45100.70290.21410.065*
C160.3890 (5)0.5728 (14)0.1814 (4)0.063 (4)
H16A0.35350.60100.19810.075*
H16B0.37370.57210.15390.075*
C210.3462 (5)0.1668 (13)0.2324 (3)0.045 (3)
H210.31370.08960.22840.054*
C220.3280 (5)0.2510 (14)0.2696 (3)0.060 (4)
H22A0.28680.29850.26540.072*
H22B0.35950.32760.27530.072*
C230.3247 (5)0.1435 (14)0.3051 (3)0.055 (3)
H23A0.31520.19930.32910.066*
H23B0.28980.07430.30030.066*
C240.3865 (5)0.0561 (15)0.3121 (3)0.061 (4)
H24A0.42000.12270.32150.073*
H24B0.37990.01820.33270.073*
C250.4068 (6)0.0177 (15)0.2747 (3)0.064 (4)
H25A0.37710.09760.26840.077*
H25B0.44870.06140.27910.077*
C260.4096 (5)0.0869 (13)0.2388 (3)0.045 (3)
H26A0.44340.15920.24320.054*
H26B0.41960.03060.21490.054*
C310.1385 (4)0.1348 (13)0.0648 (3)0.040 (3)
C320.1132 (5)0.2716 (14)0.0747 (3)0.056 (4)
H320.12850.32200.09720.067*
C330.0651 (5)0.3330 (16)0.0511 (4)0.069 (4)
H330.04740.42420.05790.083*
C340.0437 (6)0.2579 (18)0.0176 (4)0.075 (5)
H340.01230.30110.00130.091*
C350.0676 (6)0.1194 (17)0.0074 (4)0.062 (4)
H350.05140.06800.01470.075*
C360.1156 (5)0.0609 (15)0.0309 (3)0.054 (3)
H360.13330.03010.02400.065*
H20.235 (4)0.185 (9)0.052 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Os10.0388 (2)0.0348 (3)0.0327 (2)0.0015 (2)0.00199 (19)0.0010 (2)
Os20.0407 (2)0.0420 (3)0.0339 (2)0.0005 (2)0.00148 (19)0.0016 (2)
Os30.0409 (3)0.0428 (3)0.0360 (2)0.0037 (2)0.0030 (2)0.0008 (2)
S10.0430 (16)0.0406 (17)0.0387 (16)0.0042 (15)0.0023 (13)0.0045 (14)
P10.0407 (16)0.0362 (19)0.0383 (16)0.0023 (14)0.0019 (13)0.0015 (15)
O10.054 (5)0.046 (6)0.067 (6)0.007 (5)0.010 (4)0.016 (5)
C10.032 (6)0.059 (9)0.036 (6)0.009 (6)0.009 (5)0.011 (7)
O20.073 (6)0.058 (6)0.058 (6)0.011 (5)0.012 (5)0.010 (5)
C20.047 (7)0.049 (8)0.031 (6)0.010 (6)0.004 (5)0.004 (6)
O30.050 (5)0.065 (7)0.082 (7)0.018 (5)0.018 (5)0.001 (6)
C30.053 (7)0.031 (7)0.037 (6)0.003 (6)0.005 (6)0.011 (6)
O40.073 (6)0.085 (8)0.053 (6)0.031 (6)0.009 (5)0.008 (6)
C40.063 (8)0.049 (8)0.038 (7)0.004 (7)0.012 (6)0.002 (6)
O50.075 (6)0.074 (7)0.039 (5)0.003 (5)0.005 (5)0.014 (5)
C50.045 (7)0.059 (9)0.054 (8)0.015 (7)0.010 (6)0.013 (7)
O60.074 (7)0.070 (7)0.071 (7)0.021 (6)0.007 (5)0.022 (6)
C60.052 (8)0.056 (9)0.041 (7)0.010 (7)0.004 (6)0.002 (7)
O70.040 (5)0.089 (8)0.065 (6)0.006 (5)0.000 (4)0.016 (6)
C70.037 (7)0.049 (8)0.049 (7)0.001 (6)0.004 (6)0.011 (6)
O80.068 (6)0.067 (7)0.045 (5)0.007 (5)0.014 (4)0.004 (5)
C80.045 (7)0.050 (8)0.050 (7)0.004 (6)0.009 (6)0.003 (7)
O90.076 (6)0.063 (7)0.060 (6)0.001 (6)0.007 (5)0.004 (6)
C90.042 (7)0.055 (9)0.036 (7)0.009 (7)0.001 (5)0.002 (7)
C110.038 (6)0.042 (7)0.055 (8)0.006 (6)0.001 (6)0.003 (6)
C120.051 (7)0.030 (7)0.068 (8)0.019 (6)0.006 (6)0.007 (7)
C130.056 (8)0.065 (10)0.088 (11)0.008 (8)0.000 (7)0.008 (9)
C140.053 (8)0.055 (10)0.103 (12)0.014 (8)0.003 (8)0.008 (9)
C150.054 (8)0.034 (7)0.074 (9)0.005 (7)0.009 (7)0.002 (7)
C160.053 (8)0.042 (8)0.093 (11)0.008 (7)0.011 (7)0.019 (8)
C210.059 (7)0.039 (8)0.038 (6)0.004 (6)0.005 (6)0.008 (6)
C220.054 (8)0.069 (10)0.057 (8)0.025 (7)0.008 (7)0.001 (8)
C230.072 (8)0.057 (9)0.037 (7)0.003 (8)0.016 (6)0.000 (7)
C240.067 (8)0.071 (10)0.046 (7)0.016 (8)0.007 (6)0.021 (8)
C250.072 (9)0.065 (10)0.055 (8)0.015 (8)0.009 (7)0.004 (8)
C260.056 (7)0.039 (7)0.041 (7)0.006 (6)0.012 (6)0.018 (6)
C310.028 (6)0.048 (7)0.043 (7)0.000 (6)0.004 (5)0.000 (6)
C320.060 (8)0.062 (10)0.045 (7)0.009 (7)0.002 (6)0.012 (7)
C330.052 (8)0.074 (11)0.081 (10)0.025 (8)0.005 (7)0.004 (9)
C340.044 (8)0.111 (14)0.072 (10)0.032 (9)0.004 (7)0.005 (10)
C350.053 (8)0.081 (11)0.053 (8)0.016 (8)0.003 (7)0.014 (8)
C360.050 (7)0.058 (9)0.055 (8)0.002 (7)0.001 (6)0.001 (7)
Geometric parameters (Å, º) top
Os1—C31.872 (11)O7—C71.129 (11)
Os1—C21.939 (12)O8—C81.145 (12)
Os1—C11.941 (13)O9—C91.137 (14)
Os1—P12.342 (3)C11—C161.500 (15)
Os1—Os22.8382 (7)C11—C121.513 (13)
Os1—Os32.8678 (7)C12—C131.540 (14)
Os2—C41.866 (12)C13—C141.494 (16)
Os2—C61.883 (13)C14—C151.499 (14)
Os2—C51.919 (12)C15—C161.515 (14)
Os2—S12.413 (3)C21—C221.510 (14)
Os2—Os32.8674 (7)C21—C261.519 (13)
Os3—C81.899 (12)C22—C231.533 (14)
Os3—C91.913 (14)C23—C241.527 (14)
Os3—C71.925 (11)C24—C251.485 (14)
Os3—S12.412 (3)C25—C261.527 (14)
S1—C311.803 (10)C31—C321.384 (15)
P1—C211.843 (11)C31—C361.392 (14)
P1—C111.849 (11)C32—C331.381 (15)
O1—C11.128 (13)C33—C341.377 (17)
O2—C21.155 (12)C34—C351.388 (18)
O3—C31.157 (11)C35—C361.367 (15)
O4—C41.154 (12)Os2—H21.86 (8)
O5—C51.121 (12)Os3—H21.85 (8)
O6—C61.152 (13)P1—H11.54 (10)
C3—Os1—C292.0 (4)C7—Os3—Os1175.4 (3)
C3—Os1—C192.1 (4)S1—Os3—Os183.72 (7)
C2—Os1—C1173.1 (4)Os2—Os3—Os159.324 (17)
C3—Os1—P198.1 (3)C31—S1—Os3112.9 (4)
C2—Os1—P192.9 (3)C31—S1—Os2109.4 (4)
C1—Os1—P192.0 (3)Os3—S1—Os272.92 (8)
C3—Os1—Os2101.2 (3)C21—P1—C11106.7 (5)
C2—Os1—Os284.1 (3)C21—P1—Os1114.4 (4)
C1—Os1—Os289.6 (3)C11—P1—Os1119.9 (4)
P1—Os1—Os2160.59 (7)O1—C1—Os1174.9 (10)
C3—Os1—Os3161.5 (3)O2—C2—Os1178.5 (10)
C2—Os1—Os387.3 (3)O3—C3—Os1176.5 (11)
C1—Os1—Os387.0 (3)O4—C4—Os2179.0 (11)
P1—Os1—Os3100.43 (7)O5—C5—Os2174.0 (11)
Os2—Os1—Os360.332 (18)O6—C6—Os2177.9 (12)
C4—Os2—C693.5 (5)O7—C7—Os3172.8 (11)
C4—Os2—C588.8 (5)O8—C8—Os3175.8 (12)
C6—Os2—C599.0 (5)O9—C9—Os3177.9 (12)
C4—Os2—S1170.4 (4)C16—C11—C12112.3 (10)
C6—Os2—S193.7 (4)C16—C11—P1113.1 (8)
C5—Os2—S196.4 (3)C12—C11—P1113.0 (8)
C4—Os2—Os190.1 (3)C11—C12—C13112.3 (10)
C6—Os2—Os183.9 (4)C14—C13—C12112.2 (10)
C5—Os2—Os1176.9 (4)C13—C14—C15111.7 (11)
S1—Os2—Os184.34 (7)C14—C15—C16112.8 (11)
C4—Os2—Os3116.8 (4)C11—C16—C15113.4 (10)
C6—Os2—Os3131.1 (4)C22—C21—C26110.8 (9)
C5—Os2—Os3117.8 (4)C22—C21—P1114.6 (8)
S1—Os2—Os353.52 (7)C26—C21—P1111.3 (7)
Os1—Os2—Os360.344 (18)C21—C22—C23109.5 (10)
C8—Os3—C992.0 (5)C24—C23—C22113.3 (9)
C8—Os3—C798.4 (5)C25—C24—C23110.7 (10)
C9—Os3—C794.9 (5)C24—C25—C26113.6 (11)
C8—Os3—S192.9 (4)C21—C26—C25110.8 (9)
C9—Os3—S1167.3 (3)C32—C31—C36119.5 (11)
C7—Os3—S196.0 (4)C32—C31—S1115.2 (9)
C8—Os3—Os2131.5 (4)C36—C31—S1125.0 (10)
C9—Os3—Os2115.2 (3)C33—C32—C31119.9 (12)
C7—Os3—Os2116.9 (3)C34—C33—C32119.3 (13)
S1—Os3—Os253.56 (7)C33—C34—C35121.9 (13)
C8—Os3—Os186.1 (3)C36—C35—C34118.0 (13)
C9—Os3—Os184.9 (3)C35—C36—C31121.4 (13)
(II) nonacarbonyl-1κ3C,2κ2C,3κ4C-dicyclohexylphosphine-2κP-µ-hydrido- 1:2κ2H-µ-(2-naphthylthio)-1:2κ2S-triangulo-triosmium top
Crystal data top
[Os3(CO)9H(C10H7S)(C12H23P)]Z = 2
Mr = 1181.19F(000) = 1096
Triclinic, P1Dx = 2.265 Mg m3
a = 10.214 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.997 (2) ÅCell parameters from 29 reflections
c = 14.409 (1) Åθ = 14.6–34.9°
α = 69.16 (1)°µ = 11.13 mm1
β = 80.58 (1)°T = 203 K
γ = 76.62 (1)°Block, yellow
V = 1732.2 (4) Å30.50 × 0.15 × 0.13 mm
Data collection top
Siemens P4
diffractometer
6138 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 27.5°, θmin = 3.0°
ω scansh = 113
Absorption correction: ψ-scan
(North et al., 1968)
k = 1515
Tmin = 0.126, Tmax = 0.235l = 1818
9107 measured reflections3 standard reflections every 397 reflections
7794 independent reflections intensity decay: 4%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0618P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.003
7794 reflectionsΔρmax = 0.99 e Å3
413 parametersΔρmin = 0.91 e Å3
14 restraintsExtinction correction: SHELXTL/NT (Siemens, 1995), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00020 (14)
Crystal data top
[Os3(CO)9H(C10H7S)(C12H23P)]γ = 76.62 (1)°
Mr = 1181.19V = 1732.2 (4) Å3
Triclinic, P1Z = 2
a = 10.214 (2) ÅMo Kα radiation
b = 12.997 (2) ŵ = 11.13 mm1
c = 14.409 (1) ÅT = 203 K
α = 69.16 (1)°0.50 × 0.15 × 0.13 mm
β = 80.58 (1)°
Data collection top
Siemens P4
diffractometer
6138 reflections with I > 2σ(I)
Absorption correction: ψ-scan
(North et al., 1968)
Rint = 0.019
Tmin = 0.126, Tmax = 0.2353 standard reflections every 397 reflections
9107 measured reflections intensity decay: 4%
7794 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04014 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.99 e Å3
7794 reflectionsΔρmin = 0.91 e Å3
413 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Os10.23656 (3)0.70810 (3)0.03218 (2)0.02584 (10)
Os20.21307 (3)0.79033 (2)0.18349 (2)0.02282 (10)
Os30.14439 (3)0.91348 (2)0.07477 (2)0.02251 (10)
S10.3504 (2)0.95826 (16)0.15536 (15)0.0250 (4)
P10.3944 (2)0.71616 (18)0.19791 (17)0.0291 (5)
H10.451 (12)0.643 (10)0.099 (9)0.080*
O10.5341 (7)0.8303 (6)0.0401 (5)0.0498 (18)
C10.4238 (9)0.7904 (7)0.0328 (6)0.032 (2)
O20.0609 (6)0.5985 (5)0.0031 (5)0.0387 (15)
C20.0514 (10)0.6385 (7)0.0128 (6)0.0306 (19)
O30.2044 (9)0.6870 (7)0.2463 (5)0.065 (2)
C30.2155 (10)0.6957 (8)0.1666 (7)0.040 (2)
O40.3434 (8)0.4966 (6)0.0673 (7)0.067 (2)
C40.3013 (10)0.5739 (8)0.0547 (8)0.042 (2)
O50.0027 (7)0.5891 (5)0.1917 (5)0.0423 (16)
C50.0832 (9)0.6627 (7)0.1853 (6)0.0292 (18)
O60.1546 (7)0.8904 (6)0.4081 (5)0.0459 (17)
C60.1819 (9)0.8548 (7)0.3226 (6)0.0317 (19)
O70.1288 (7)0.8063 (6)0.0088 (5)0.0441 (17)
C70.0259 (10)0.8457 (7)0.0202 (7)0.0313 (19)
O80.0333 (8)1.1267 (6)0.1954 (5)0.0482 (18)
C80.0782 (9)1.0491 (7)0.1541 (6)0.0276 (18)
O90.2683 (8)0.9848 (6)0.1054 (5)0.0454 (17)
C90.2232 (8)0.9604 (7)0.0372 (6)0.0284 (18)
C110.5451 (8)0.8208 (7)0.2457 (6)0.0295 (18)
H110.56890.86840.20270.035*
C120.6673 (9)0.7664 (8)0.2342 (8)0.044 (2)
H12A0.64820.71750.27510.052*
H12B0.68310.72000.16450.052*
C130.7933 (9)0.8540 (9)0.2658 (8)0.047 (3)
H13A0.86770.81640.26230.056*
H13B0.81910.89650.21930.056*
C140.7723 (11)0.9328 (10)0.3687 (8)0.054 (3)
H14A0.85340.99110.38410.065*
H14B0.75830.89200.41620.065*
C150.6503 (10)0.9876 (9)0.3805 (8)0.052 (3)
H15A0.63641.03580.44990.062*
H15B0.66821.03480.33810.062*
C160.5225 (9)0.8997 (8)0.3520 (7)0.040 (2)
H16A0.44700.93670.35690.048*
H16B0.49950.85670.39820.048*
C210.3600 (11)0.6110 (8)0.2625 (8)0.045 (3)
H210.44720.60960.28310.054*
C220.2629 (12)0.6376 (9)0.3564 (9)0.054 (3)
H22A0.17940.64950.34000.064*
H22B0.30350.70740.40550.064*
C230.2280 (14)0.5429 (11)0.4032 (11)0.077 (4)
H23A0.30860.53910.42970.092*
H23B0.15840.56050.45900.092*
C240.1793 (17)0.4337 (12)0.3303 (14)0.104 (7)
H24A0.09200.43460.31110.125*
H24B0.16510.37580.36160.125*
C250.2762 (16)0.4033 (10)0.2373 (13)0.084 (5)
H25A0.23530.33270.18940.101*
H25B0.35940.39220.25480.101*
C260.3104 (12)0.4935 (8)0.1894 (10)0.061 (3)
H26A0.23000.49490.16120.073*
H26B0.38060.47460.13440.073*
C310.3510 (8)1.0789 (6)0.2664 (6)0.0258 (17)
C320.2390 (8)1.1028 (6)0.3307 (6)0.0261 (17)
H320.15531.05420.31740.031*
C330.2473 (9)1.1998 (6)0.4170 (6)0.0289 (18)
C340.1318 (11)1.2264 (8)0.4829 (7)0.041 (2)
H340.04731.17890.47050.050*
C350.1431 (12)1.3210 (9)0.5646 (7)0.049 (3)
H350.06551.33850.60740.058*
C360.2660 (13)1.3918 (9)0.5859 (8)0.054 (3)
H360.27081.45540.64360.064*
C370.3807 (12)1.3707 (8)0.5244 (8)0.050 (3)
H370.46371.42000.53900.059*
C380.3727 (10)1.2715 (7)0.4362 (6)0.033 (2)
C390.4856 (9)1.2467 (8)0.3707 (7)0.039 (2)
H390.56951.29490.38390.046*
C400.4771 (8)1.1529 (7)0.2867 (7)0.0309 (19)
H400.55461.13780.24290.037*
H20.092 (12)0.853 (8)0.166 (8)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Os10.02409 (18)0.02190 (16)0.02724 (17)0.00312 (13)0.00059 (13)0.00500 (12)
Os20.02102 (17)0.02188 (16)0.02611 (17)0.00272 (12)0.00206 (13)0.00946 (12)
Os30.02165 (17)0.02190 (16)0.02495 (17)0.00516 (12)0.00030 (13)0.00901 (12)
S10.0215 (10)0.0235 (9)0.0284 (10)0.0038 (8)0.0008 (8)0.0076 (8)
P10.0272 (12)0.0263 (10)0.0360 (12)0.0068 (9)0.0038 (10)0.0113 (9)
O10.033 (4)0.046 (4)0.054 (4)0.004 (3)0.007 (3)0.008 (3)
C10.032 (5)0.029 (4)0.032 (5)0.012 (4)0.004 (4)0.006 (4)
O20.029 (4)0.033 (3)0.051 (4)0.004 (3)0.006 (3)0.014 (3)
C20.039 (5)0.022 (4)0.030 (4)0.005 (4)0.011 (4)0.006 (3)
O30.066 (6)0.088 (6)0.027 (4)0.001 (5)0.004 (4)0.011 (4)
C30.039 (6)0.040 (5)0.033 (5)0.003 (4)0.002 (4)0.010 (4)
O40.050 (5)0.040 (4)0.102 (7)0.019 (4)0.014 (5)0.017 (4)
C40.029 (5)0.031 (5)0.056 (6)0.003 (4)0.000 (5)0.006 (4)
O50.046 (4)0.036 (3)0.038 (4)0.004 (3)0.003 (3)0.014 (3)
C50.030 (5)0.026 (4)0.033 (4)0.000 (4)0.006 (4)0.014 (3)
O60.053 (5)0.045 (4)0.031 (4)0.001 (3)0.002 (3)0.010 (3)
C60.033 (5)0.037 (5)0.026 (4)0.000 (4)0.000 (4)0.017 (4)
O70.034 (4)0.045 (4)0.057 (4)0.002 (3)0.017 (3)0.021 (3)
C70.034 (5)0.025 (4)0.037 (5)0.005 (4)0.000 (4)0.015 (4)
O80.062 (5)0.042 (4)0.043 (4)0.029 (4)0.007 (4)0.005 (3)
C80.030 (5)0.028 (4)0.026 (4)0.007 (4)0.003 (4)0.009 (3)
O90.054 (5)0.049 (4)0.035 (4)0.009 (3)0.009 (3)0.023 (3)
C90.023 (4)0.025 (4)0.038 (5)0.003 (3)0.011 (4)0.011 (4)
C110.022 (4)0.030 (4)0.037 (5)0.005 (3)0.001 (4)0.013 (4)
C120.028 (5)0.034 (5)0.061 (7)0.001 (4)0.009 (5)0.006 (5)
C130.020 (5)0.061 (7)0.055 (6)0.013 (5)0.005 (5)0.014 (5)
C140.043 (7)0.066 (7)0.045 (6)0.001 (6)0.001 (5)0.017 (5)
C150.038 (6)0.055 (6)0.047 (6)0.005 (5)0.016 (5)0.005 (5)
C160.025 (5)0.049 (6)0.039 (5)0.010 (4)0.005 (4)0.004 (4)
C210.039 (6)0.045 (6)0.066 (7)0.002 (5)0.013 (5)0.036 (5)
C220.050 (7)0.057 (7)0.069 (7)0.006 (5)0.020 (6)0.043 (6)
C230.058 (8)0.095 (10)0.113 (11)0.015 (7)0.026 (8)0.088 (10)
C240.096 (12)0.086 (10)0.165 (17)0.054 (9)0.066 (12)0.104 (12)
C250.080 (10)0.040 (7)0.154 (15)0.002 (7)0.034 (11)0.055 (9)
C260.055 (7)0.030 (5)0.109 (10)0.001 (5)0.035 (7)0.028 (6)
C310.022 (4)0.024 (4)0.032 (4)0.006 (3)0.004 (4)0.009 (3)
C320.021 (4)0.031 (4)0.027 (4)0.002 (3)0.005 (3)0.011 (3)
C330.036 (5)0.027 (4)0.026 (4)0.005 (4)0.004 (4)0.011 (3)
C340.045 (6)0.048 (6)0.032 (5)0.011 (5)0.003 (4)0.015 (4)
C350.054 (7)0.053 (6)0.034 (5)0.021 (5)0.014 (5)0.009 (5)
C360.082 (9)0.043 (6)0.033 (5)0.030 (6)0.005 (6)0.002 (4)
C370.060 (7)0.033 (5)0.046 (6)0.003 (5)0.012 (6)0.003 (4)
C380.036 (5)0.028 (4)0.032 (5)0.007 (4)0.003 (4)0.005 (4)
C390.023 (5)0.038 (5)0.045 (5)0.006 (4)0.009 (4)0.007 (4)
C400.016 (4)0.034 (4)0.037 (5)0.001 (3)0.005 (4)0.007 (4)
Geometric parameters (Å, º) top
Os1—C41.909 (10)C11—C121.530 (12)
Os1—C21.920 (9)C11—C161.526 (12)
Os1—C31.929 (10)C12—C131.518 (13)
Os1—C11.964 (9)C13—C141.487 (14)
Os1—Os32.8544 (6)C14—C151.531 (15)
Os1—Os22.8928 (5)C15—C161.526 (13)
Os2—C51.874 (8)C21—C221.524 (15)
Os2—C61.882 (8)C21—C261.540 (14)
Os2—P12.345 (2)C22—C231.552 (13)
Os2—S12.434 (2)C23—C241.47 (2)
Os2—Os32.8585 (5)C24—C251.52 (2)
Os3—C91.916 (9)C25—C261.509 (15)
Os3—C71.914 (10)C31—C321.370 (11)
Os3—C81.933 (8)C31—C401.421 (11)
Os3—S12.423 (2)C32—C331.419 (11)
S1—C311.798 (8)C33—C381.402 (12)
P1—C111.845 (9)C33—C341.415 (13)
P1—C211.853 (9)C34—C351.364 (13)
O1—C11.131 (11)C35—C361.380 (16)
O2—C21.153 (10)C36—C371.367 (15)
O3—C31.135 (11)C37—C381.451 (12)
O4—C41.128 (11)C38—C391.386 (13)
O5—C51.158 (10)C39—C401.376 (12)
O6—C61.162 (10)P1—H11.42 (10)
O7—C71.133 (11)Os2—H21.70 (11)
O8—C81.131 (10)Os3—H21.70 (12)
O9—C91.133 (10)
C4—Os1—C293.0 (4)C31—S1—Os2111.8 (3)
C4—Os1—C3101.2 (4)Os3—S1—Os272.12 (6)
C2—Os1—C391.9 (4)C11—P1—C21108.4 (4)
C4—Os1—C189.6 (4)C11—P1—Os2115.2 (3)
C2—Os1—C1172.4 (4)C21—P1—Os2118.3 (3)
C3—Os1—C194.7 (4)O1—C1—Os1174.1 (8)
C4—Os1—Os3158.9 (3)O2—C2—Os1177.7 (8)
C2—Os1—Os385.0 (2)O3—C3—Os1178.8 (10)
C3—Os1—Os399.9 (3)O4—C4—Os1177.8 (9)
C1—Os1—Os390.0 (2)O5—C5—Os2174.9 (8)
C4—Os1—Os299.3 (3)O6—C6—Os2175.6 (8)
C2—Os1—Os282.8 (2)O7—C7—Os3177.6 (8)
C3—Os1—Os2159.1 (3)O8—C8—Os3175.0 (8)
C1—Os1—Os289.6 (3)O9—C9—Os3177.8 (8)
Os3—Os1—Os259.650 (14)C12—C11—C16111.0 (8)
C5—Os2—C690.7 (4)C12—C11—P1112.0 (6)
C5—Os2—P194.5 (3)C16—C11—P1114.5 (6)
C6—Os2—P192.4 (3)C13—C12—C11111.4 (8)
C5—Os2—S1167.3 (3)C14—C13—C12112.0 (8)
C6—Os2—S196.2 (3)C13—C14—C15111.5 (9)
P1—Os2—S195.91 (7)C16—C15—C14111.3 (9)
C5—Os2—Os3113.6 (3)C15—C16—C11109.8 (8)
C6—Os2—Os3113.5 (3)C22—C21—C26110.9 (9)
P1—Os2—Os3140.40 (6)C22—C21—P1114.3 (7)
S1—Os2—Os353.76 (5)C26—C21—P1110.0 (7)
C5—Os2—Os190.1 (3)C21—C22—C23112.5 (10)
C6—Os2—Os1172.5 (3)C24—C23—C22111.8 (11)
P1—Os2—Os194.91 (6)C23—C24—C25113.1 (12)
S1—Os2—Os181.68 (5)C24—C25—C26111.6 (11)
Os3—Os2—Os159.509 (14)C25—C26—C21113.3 (11)
C9—Os3—C793.7 (3)C32—C31—C40119.2 (8)
C9—Os3—C897.1 (3)C32—C31—S1124.2 (6)
C7—Os3—C891.4 (4)C40—C31—S1116.6 (6)
C9—Os3—S196.8 (2)C31—C32—C33121.1 (8)
C7—Os3—S1165.9 (2)C38—C33—C34119.5 (8)
C8—Os3—S196.6 (3)C38—C33—C32118.9 (8)
C9—Os3—Os186.5 (3)C34—C33—C32121.5 (8)
C7—Os3—Os188.6 (3)C35—C34—C33120.0 (10)
C8—Os3—Os1176.4 (2)C34—C35—C36121.5 (10)
S1—Os3—Os182.68 (5)C37—C36—C35121.1 (9)
C9—Os3—Os2136.6 (3)C36—C37—C38119.2 (10)
C7—Os3—Os2111.8 (2)C39—C38—C33119.7 (8)
C8—Os3—Os2115.9 (2)C39—C38—C37121.6 (9)
S1—Os3—Os254.12 (5)C33—C38—C37118.8 (9)
Os1—Os3—Os260.842 (14)C40—C39—C38121.3 (8)
C31—S1—Os3111.4 (3)C39—C40—C31119.9 (8)

Experimental details

(I)(II)
Crystal data
Chemical formula[Os3(CO)9H(C6H5S)(C12H23P)][Os3(CO)9H(C10H7S)(C12H23P)]
Mr1131.131181.19
Crystal system, space groupMonoclinic, C2/cTriclinic, P1
Temperature (K)203203
a, b, c (Å)20.893 (3), 9.010 (2), 33.399 (5)10.214 (2), 12.997 (2), 14.409 (1)
α, β, γ (°)90, 91.04 (1), 9069.16 (1), 80.58 (1), 76.62 (1)
V3)6286.2 (19)1732.2 (4)
Z82
Radiation typeMo KαMo Kα
µ (mm1)12.2611.13
Crystal size (mm)0.27 × 0.14 × 0.080.50 × 0.15 × 0.13
Data collection
DiffractometerSiemens P4
diffractometer
Siemens P4
diffractometer
Absorption correctionψ-scan
(North et al., 1968)
ψ-scan
(North et al., 1968)
Tmin, Tmax0.146, 0.3750.126, 0.235
No. of measured, independent and
observed [I > 2σ(I)] reflections
8816, 7221, 4147 9107, 7794, 6138
Rint0.0470.019
(sin θ/λ)max1)0.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.077, 0.92 0.040, 0.104, 1.03
No. of reflections72217794
No. of parameters376413
No. of restraints414
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.91, 0.980.99, 0.91

Computer programs: XSCANS (Siemens, 1994), XSCANS, SHELXTL/NT (Siemens, 1995), SHELXTL/NT.

Selected geometric parameters (Å, º) for (I) top
Os1—P12.342 (3)Os3—S12.412 (3)
Os1—Os22.8382 (7)S1—C311.803 (10)
Os1—Os32.8678 (7)Os2—H21.86 (8)
Os2—S12.413 (3)Os3—H21.85 (8)
Os2—Os32.8674 (7)P1—H11.54 (10)
P1—Os1—Os2160.59 (7)Os1—Os2—Os360.344 (18)
P1—Os1—Os3100.43 (7)S1—Os3—Os253.56 (7)
Os2—Os1—Os360.332 (18)S1—Os3—Os183.72 (7)
S1—Os2—Os184.34 (7)Os2—Os3—Os159.324 (17)
S1—Os2—Os353.52 (7)Os3—S1—Os272.92 (8)
Selected geometric parameters (Å, º) for (II) top
Os1—Os32.8544 (6)Os3—S12.423 (2)
Os1—Os22.8928 (5)S1—C311.798 (8)
Os2—P12.345 (2)P1—H11.42 (10)
Os2—S12.434 (2)Os2—H21.70 (11)
Os2—Os32.8585 (5)Os3—H21.70 (12)
Os3—Os1—Os259.650 (14)Os3—Os2—Os159.509 (14)
P1—Os2—S195.91 (7)S1—Os3—Os182.68 (5)
P1—Os2—Os3140.40 (6)S1—Os3—Os254.12 (5)
S1—Os2—Os353.76 (5)Os1—Os3—Os260.842 (14)
P1—Os2—Os194.91 (6)Os3—S1—Os272.12 (6)
S1—Os2—Os181.68 (5)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds