Download citation
Download citation
link to html
The two title 5-oxa-2,6-di­aza­spiro­[3.4]­octan-1-one adducts, 7-benzoyl-2-(4-methoxy­phenyl)-6-phenyl-5-oxa-2,6-di­aza­spiro­[3.4]­octan-1-one, C25H22N2O4, (III), and 6-tert-butyl-2-(4-methyl­phenyl)-7-phenyl-5-oxa-2,6-di­aza­spiro­[3.4]­octan-1-one, C22H26N2O2, (IV), were obtained from a stereospecific [3+2] 1,3-cyclo­addition of 3-methyl­ene azetidin-2-ones as dipolaro­philes with nitro­nes. The lactam ring is conjugated with the p-­methoxy­phenyl or p-methyl­phenyl moiety. The envelope conformations of the isoxazolidine rings in (III) and (IV) are different, leading the substituents to be pseudo-axial in (III) and pseudo-equatorial in (IV).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010000072X/gs1071sup1.cif
Contains datablocks III, IV, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010000072X/gs1071IIIsup2.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010000072X/gs1071IVsup3.hkl
Contains datablock IV

CCDC references: 144643; 144644

Comment top

Spirocompounds which incorporate highly strained methylenelactam moieties were unknown compounds at the begining of our work. In a preliminary communication (Rigolet et al., 1998), it was shown that 1,3-dipolar cycloaddition of nitrones and 3-methylene isoindolones proceeded with low stereoselectivity. Nevertheless, complete stereospecificity was possible when 3-methylene azetidin-2-ones, (I), were reacted as dipolarophiles. The present X-ray study was undertaken to elucidate the geometry of the title bicyclic adducts, (III) and (IV). The structures are depicted with the atom-labelling schemes in Fig. 1 and Fig. 2, respectively. \scheme

In both (III) and (IV), the lactam ring (2-azetidinone) is planar [maximum deviation 0.027 (2) Å for (III) and 0.045 (3) Å for (IV)] and is conjugated with the p-methoxyphenyl or p-methylphenyl substituent at N2. The dihedral angle between the two best mean planes (phenyl/azetidinone) is 16.7 (2)° in (III) and 12.2 (4)° in (IV). The folding occurs at atom N2 which appears slightly tetrahedral, being 0.101 (2) Å and 0.054 (5) Å out of the plane of atoms C3, C1 and C10 in (III) and (IV), respectively.

The conformations of the two molecules differ essentially by the conformations of the isoxazolidine rings. These five-membered rings adopt a different envelope conformation, where C7 is displaced by -0.542 (3) Å in (III) and 0.580 (8) Å in (IV) out of the best mean plane passing through atoms O5, C4, C8 and N6, the sign of the displacement being correlated with the positive distance of O9 from the mean plane. The substituents at N6 and C7 are pseudo-axial in (III) and pseudo-equatorial in (IV). The possible transition state of the cycloaddition process may be clearly depicted from this structure.

Experimental top

Compounds (III) and (IV) were obtained from dipolar cycloadditions of (I) and (II) in toluene at 353 K. Crystals were isolated by recrystallization from ethanol solutions.

Refinement top

The coordinates of the methyl H atoms on C17 in (III) were refined isotropically (C—H distances ?.??-?.??Å). All other H atoms were treated as riding.

Computing details top

For both compounds, data collection: CAD-4 Software (Enraf-Nonius, 1987); cell refinement: CAD-4 Software; data reduction: NONIUS (Riche, 1989); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: R3M (Riche, 1983) and ORTEP (Johnson, 1965).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecule of (III) showing 30% probability displacement ellipsoids. H atoms are drawn as spheres of arbitrary radii.
[Figure 2] Fig. 2. Perspective view of the molecule of (IV) showing 30% probability displacement ellipsoids. H atoms are drawn as spheres of arbitrary radii.
(III) 7-benzoyl-2-(4-methoxyphenyl)-6-phenyl-5-oxa-2,6-diazaspiro[3.4]octan-1-one top
Crystal data top
C25H22N2O4Dx = 1.322 Mg m3
Mr = 414.45Melting point = 428–429 K
Monoclinic, P21/nCu Kα radiation, λ = 1.54180 Å
a = 9.368 (5) ÅCell parameters from 25 reflections
b = 19.776 (7) Åθ = 9.6–18.2°
c = 11.484 (8) ŵ = 0.74 mm1
β = 101.92 (4)°T = 293 K
V = 2082 (2) Å3Prism, colourless
Z = 40.36 × 0.20 × 0.13 mm
F(000) = 872
Data collection top
Enraf-Nonius CAD4
diffractometer
Rint = 0.043
Radiation source: fine-focus sealed tubeθmax = 67.0°, θmin = 4.5°
Graphite monochromatorh = 1110
θ/2θ scansk = 2023
6167 measured reflectionsl = 013
3711 independent reflections3 standard reflections every 120 min
2276 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.120Calculated w = 1/[σ2(Fo2) + (0.0724P)2 + 0.164P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.013
3711 reflectionsΔρmax = 0.21 e Å3
282 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL93 (Sheldrick, 1993), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0026 (4)
Crystal data top
C25H22N2O4V = 2082 (2) Å3
Mr = 414.45Z = 4
Monoclinic, P21/nCu Kα radiation
a = 9.368 (5) ŵ = 0.74 mm1
b = 19.776 (7) ÅT = 293 K
c = 11.484 (8) Å0.36 × 0.20 × 0.13 mm
β = 101.92 (4)°
Data collection top
Enraf-Nonius CAD4
diffractometer
Rint = 0.043
6167 measured reflections3 standard reflections every 120 min
3711 independent reflections intensity decay: 2%
2276 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.21 e Å3
3711 reflectionsΔρmin = 0.19 e Å3
282 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating _R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2160 (2)0.09152 (11)0.5334 (2)0.0530 (6)
N20.2516 (2)0.12935 (9)0.6222 (2)0.0546 (5)
C30.1230 (3)0.17395 (12)0.6373 (2)0.0606 (7)
H3A0.06000.171780.71570.073*
H3B0.14560.220390.61310.073*
C40.0710 (2)0.13078 (11)0.5434 (2)0.0532 (6)
O50.0531 (2)0.16853 (7)0.44033 (15)0.0577 (5)
N60.0715 (2)0.14217 (9)0.3979 (2)0.0521 (5)
C70.1703 (2)0.12119 (11)0.5092 (2)0.0516 (6)
H70.24160.087940.49350.062*
C80.0696 (2)0.09035 (12)0.5829 (2)0.0547 (6)
H8A0.10870.095960.66740.066*
H8B0.05370.042620.56550.066*
O90.2763 (2)0.04440 (8)0.4760 (2)0.0636 (5)
C100.3512 (2)0.12200 (11)0.6979 (2)0.0525 (6)
C110.3413 (3)0.16374 (14)0.7952 (3)0.0692 (7)
H110.27330.198650.80660.083*
C120.4291 (3)0.15501 (15)0.8753 (3)0.0791 (9)
H120.42040.183520.94080.095*
C130.5314 (3)0.10334 (15)0.8583 (3)0.0713 (8)
C140.5453 (3)0.06272 (13)0.7586 (2)0.0652 (7)
H140.61560.028810.74590.078*
C150.4574 (2)0.07158 (11)0.6782 (2)0.0558 (6)
H150.46840.044200.61100.067*
O160.6222 (2)0.08993 (13)0.9351 (2)0.1058 (8)
C170.5825 (4)0.1119 (2)1.0514 (3)0.1034 (11)
H17A0.6455 (17)0.0918 (10)1.0978 (6)0.145*
H17B0.591 (3)0.1602 (2)1.0538 (4)0.145*
H17C0.4834 (9)0.0989 (11)1.0835 (8)0.145*
C180.2463 (3)0.18565 (12)0.5645 (2)0.0561 (6)
O190.2044 (2)0.21298 (10)0.6458 (2)0.0880 (7)
C200.3685 (2)0.21479 (11)0.5151 (2)0.0535 (6)
C210.4331 (3)0.27318 (13)0.5663 (3)0.0743 (8)
H210.40030.292930.62940.089*
C220.5462 (3)0.3025 (2)0.5243 (3)0.0904 (10)
H220.58900.34190.55950.109*
C230.5956 (3)0.2745 (2)0.4326 (3)0.0834 (9)
H230.67120.29500.40440.100*
C240.5342 (3)0.21589 (15)0.3813 (3)0.0751 (8)
H240.56910.196060.31920.090*
C250.4193 (3)0.18628 (13)0.4225 (2)0.0647 (7)
H250.37660.146900.38710.078*
C260.0272 (3)0.09079 (11)0.3107 (2)0.0507 (6)
C270.1302 (3)0.04808 (12)0.2785 (2)0.0600 (6)
H270.22730.051180.31770.072*
C280.0899 (3)0.00099 (13)0.1887 (2)0.0669 (7)
H280.15990.027220.16770.080*
C290.0537 (3)0.00425 (14)0.1303 (2)0.0708 (8)
H290.08170.036840.07160.085*
C300.1546 (3)0.03891 (15)0.1594 (2)0.0698 (7)
H300.25100.036370.11820.084*
C310.1166 (3)0.08612 (13)0.2486 (2)0.0614 (7)
H310.18710.114900.26730.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0511 (13)0.0473 (13)0.0591 (15)0.0004 (11)0.0083 (11)0.0014 (12)
N20.0507 (11)0.0510 (11)0.0631 (12)0.0072 (9)0.0141 (10)0.0060 (10)
C30.0577 (14)0.0543 (14)0.072 (2)0.0111 (12)0.0180 (13)0.0068 (12)
C40.0532 (13)0.0487 (13)0.0585 (14)0.0052 (11)0.0136 (11)0.0021 (12)
O50.0586 (10)0.0487 (9)0.0687 (11)0.0077 (7)0.0196 (8)0.0099 (8)
N60.0511 (11)0.0475 (11)0.0595 (12)0.0023 (8)0.0154 (9)0.0051 (9)
C70.0504 (12)0.0433 (12)0.0609 (14)0.0001 (10)0.0111 (11)0.0026 (11)
C80.0517 (13)0.0501 (13)0.063 (2)0.0016 (10)0.0130 (12)0.0048 (11)
O90.0638 (10)0.0549 (10)0.0719 (11)0.0096 (8)0.0138 (9)0.0126 (9)
C100.0438 (12)0.0507 (13)0.063 (2)0.0003 (10)0.0101 (11)0.0039 (12)
C110.061 (2)0.069 (2)0.082 (2)0.0172 (13)0.0240 (14)0.0241 (15)
C120.077 (2)0.081 (2)0.087 (2)0.0182 (15)0.035 (2)0.032 (2)
C130.059 (2)0.080 (2)0.080 (2)0.0068 (14)0.0268 (15)0.013 (2)
C140.0490 (14)0.066 (2)0.082 (2)0.0098 (12)0.0165 (13)0.0068 (14)
C150.0482 (13)0.0540 (13)0.064 (2)0.0021 (11)0.0093 (12)0.0073 (12)
O160.093 (2)0.135 (2)0.105 (2)0.0396 (14)0.0555 (14)0.037 (2)
C170.082 (2)0.143 (3)0.094 (3)0.018 (2)0.038 (2)0.006 (2)
C180.0552 (14)0.0514 (13)0.064 (2)0.0035 (11)0.0169 (12)0.0047 (12)
O190.0893 (14)0.0847 (14)0.101 (2)0.0267 (11)0.0450 (13)0.0371 (12)
C200.0490 (13)0.0449 (13)0.064 (2)0.0012 (10)0.0061 (11)0.0028 (11)
C210.068 (2)0.058 (2)0.097 (2)0.0155 (13)0.017 (2)0.009 (2)
C220.082 (2)0.077 (2)0.111 (3)0.031 (2)0.018 (2)0.009 (2)
C230.059 (2)0.089 (2)0.098 (2)0.020 (2)0.006 (2)0.023 (2)
C240.066 (2)0.083 (2)0.080 (2)0.000 (2)0.0228 (15)0.011 (2)
C250.063 (2)0.0585 (15)0.074 (2)0.0074 (12)0.0190 (14)0.0013 (13)
C260.0585 (14)0.0461 (12)0.0491 (13)0.0045 (10)0.0149 (11)0.0095 (11)
C270.065 (2)0.0574 (14)0.058 (2)0.0031 (12)0.0123 (13)0.0036 (13)
C280.080 (2)0.066 (2)0.057 (2)0.0066 (14)0.0200 (14)0.0022 (14)
C290.088 (2)0.073 (2)0.054 (2)0.015 (2)0.0191 (15)0.0004 (14)
C300.064 (2)0.087 (2)0.058 (2)0.0194 (15)0.0113 (14)0.003 (2)
C310.0570 (15)0.068 (2)0.060 (2)0.0025 (12)0.0146 (12)0.0085 (13)
Geometric parameters (Å, º) top
C1—O91.212 (3)C13—C141.382 (4)
C1—N21.361 (3)C14—C151.370 (4)
C1—C41.548 (3)O16—C171.380 (4)
N2—C101.408 (3)C18—O191.212 (3)
N2—C31.475 (3)C18—C201.494 (3)
C3—C41.532 (3)C20—C251.373 (4)
C4—O51.438 (3)C20—C211.378 (3)
O5—N61.452 (2)C21—C221.378 (4)
N6—C71.474 (3)C22—C231.354 (5)
C7—C81.520 (3)C23—C241.372 (4)
C4—C81.527 (3)C24—C251.391 (4)
N6—C261.427 (3)C26—C271.389 (3)
C7—C181.532 (3)C26—C311.391 (3)
C10—C111.377 (3)C27—C281.383 (4)
C10—C151.394 (3)C28—C291.378 (4)
C11—C121.366 (4)C29—C301.365 (4)
C12—C131.387 (4)C30—C311.377 (4)
C13—O161.372 (3)
O9—C1—N2132.2 (2)O16—C13—C14117.1 (2)
O9—C1—C4136.9 (2)O16—C13—C12123.6 (3)
N2—C1—C490.9 (2)C14—C13—C12119.3 (3)
C1—N2—C10134.6 (2)C15—C14—C13121.1 (2)
C1—N2—C395.5 (2)C14—C15—C10119.4 (2)
C10—N2—C3128.2 (2)C13—O16—C17118.8 (2)
N2—C3—C487.4 (2)O19—C18—C20121.0 (2)
O5—C4—C8106.1 (2)O19—C18—C7119.6 (2)
O5—C4—C3113.5 (2)C20—C18—C7119.4 (2)
C8—C4—C3117.5 (2)C25—C20—C21118.9 (2)
O5—C4—C1116.7 (2)C25—C20—C18123.4 (2)
C8—C4—C1116.7 (2)C21—C20—C18117.7 (2)
C1—C4—C386.0 (2)C20—C21—C22120.3 (3)
C4—O5—N6109.2 (2)C23—C22—C21120.8 (3)
O5—N6—C26110.7 (2)C22—C23—C24119.9 (3)
C26—N6—C7116.6 (2)C23—C24—C25119.7 (3)
O5—N6—C7102.4 (2)C20—C25—C24120.5 (3)
N6—C7—C8104.2 (2)C27—C26—C31118.4 (2)
N6—C7—C18106.3 (2)C27—C26—N6120.2 (2)
C8—C7—C18113.0 (2)C31—C26—N6121.2 (2)
C4—C8—C7102.7 (2)C28—C27—C26120.7 (2)
C11—C10—C15119.2 (2)C29—C28—C27120.2 (3)
C11—C10—N2119.8 (2)C30—C29—C28119.3 (3)
C15—C10—N2121.0 (2)C29—C30—C31121.4 (3)
C12—C11—C10121.5 (2)C30—C31—C26120.0 (3)
C11—C12—C13119.5 (3)
O9—C1—N2—C1015.1 (4)C11—C12—C13—C141.8 (4)
C4—C1—N2—C10162.3 (2)O16—C13—C14—C15178.7 (2)
O9—C1—N2—C3179.3 (3)C12—C13—C14—C151.7 (4)
C4—C1—N2—C33.3 (2)C13—C14—C15—C100.6 (4)
C1—N2—C3—C43.4 (2)C11—C10—C15—C142.8 (4)
C10—N2—C3—C4163.6 (2)N2—C10—C15—C14175.2 (2)
N2—C3—C4—O5120.4 (2)C14—C13—O16—C17158.4 (3)
N2—C3—C4—C8115.1 (2)C12—C13—O16—C1722.1 (5)
N2—C3—C4—C13.0 (2)N6—C7—C18—O19101.0 (3)
O9—C1—C4—O565.3 (4)C8—C7—C18—O1912.7 (3)
N2—C1—C4—O5117.5 (2)N6—C7—C18—C2077.4 (2)
O9—C1—C4—C861.5 (4)C8—C7—C18—C20168.9 (2)
N2—C1—C4—C8115.7 (2)O19—C18—C20—C25179.4 (3)
O9—C1—C4—C3179.6 (3)C7—C18—C20—C251.0 (3)
N2—C1—C4—C33.2 (2)O19—C18—C20—C210.9 (4)
C8—C4—O5—N613.5 (2)C7—C18—C20—C21179.3 (2)
C3—C4—O5—N6144.0 (2)C25—C20—C21—C220.4 (4)
C1—C4—O5—N6118.4 (2)C18—C20—C21—C22179.9 (3)
C4—O5—N6—C2691.6 (2)C20—C21—C22—C230.1 (5)
C4—O5—N6—C733.3 (2)C21—C22—C23—C240.8 (5)
O5—N6—C7—C839.5 (2)C22—C23—C24—C251.2 (4)
C26—N6—C7—C881.5 (2)C21—C20—C25—C240.1 (4)
C26—N6—C7—C18158.9 (2)C18—C20—C25—C24179.6 (2)
O5—N6—C7—C1880.1 (2)C23—C24—C25—C200.9 (4)
N6—C7—C8—C431.3 (2)O5—N6—C26—C27165.0 (2)
C18—C7—C8—C483.6 (2)C7—N6—C26—C2748.6 (3)
O5—C4—C8—C711.2 (2)O5—N6—C26—C3120.8 (3)
C3—C4—C8—C7116.9 (2)C7—N6—C26—C31137.3 (2)
C1—C4—C8—C7143.1 (2)C31—C26—C27—C281.5 (3)
C1—N2—C10—C11167.5 (3)N6—C26—C27—C28175.8 (2)
C3—N2—C10—C115.8 (4)C26—C27—C28—C290.3 (4)
C1—N2—C10—C1510.5 (4)C27—C28—C29—C302.1 (4)
C3—N2—C10—C15172.2 (2)C28—C29—C30—C312.1 (4)
C15—C10—C11—C122.8 (4)C29—C30—C31—C260.3 (4)
N2—C10—C11—C12175.3 (2)C27—C26—C31—C301.5 (3)
C10—C11—C12—C130.5 (5)N6—C26—C31—C30175.7 (2)
C11—C12—C13—O16178.7 (3)
(IV) 6-tert-butyl-2-(4-methylphenyl)-7-phenyl-5-oxa-2,6-diazaspiro[3.4]octan-1-one top
Crystal data top
C22H26N2O2F(000) = 376
Mr = 350.45Dx = 1.170 Mg m3
Triclinic, P1Melting point = 413–414 K
a = 6.272 (2) ÅCu Kα radiation, λ = 1.54180 Å
b = 10.687 (3) ÅCell parameters from 25 reflections
c = 15.327 (4) Åθ = 9.2–19.1°
α = 103.39 (2)°µ = 0.59 mm1
β = 87.79 (3)°T = 293 K
γ = 95.62 (2)°Prism, colourless
V = 994.5 (5) Å30.20 × 0.20 × 0.06 mm
Z = 2
Data collection top
Enraf-Nonius CAD4
diffractometer
Rint = 0.096
Radiation source: fine-focus sealed tubeθmax = 67.1°, θmin = 3.0°
Graphite monochromatorh = 77
θ/2θ scansk = 1212
7202 measured reflectionsl = 1818
3554 independent reflections3 standard reflections every 120 min
1374 reflections with I > 2σ(I) intensity decay: 6%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.083H-atom parameters constrained
wR(F2) = 0.218Calculated w = 1/[σ2(Fo2) + (0.1516P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.005
3548 reflectionsΔρmax = 0.23 e Å3
236 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL93 (Sheldrick, 1993), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0005 (9)
Crystal data top
C22H26N2O2γ = 95.62 (2)°
Mr = 350.45V = 994.5 (5) Å3
Triclinic, P1Z = 2
a = 6.272 (2) ÅCu Kα radiation
b = 10.687 (3) ŵ = 0.59 mm1
c = 15.327 (4) ÅT = 293 K
α = 103.39 (2)°0.20 × 0.20 × 0.06 mm
β = 87.79 (3)°
Data collection top
Enraf-Nonius CAD4
diffractometer
Rint = 0.096
7202 measured reflections3 standard reflections every 120 min
3554 independent reflections intensity decay: 6%
1374 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0830 restraints
wR(F2) = 0.218H-atom parameters constrained
S = 0.97Δρmax = 0.23 e Å3
3548 reflectionsΔρmin = 0.27 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 6 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating _R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1994 (8)0.4347 (5)0.2131 (4)0.0619 (15)
N20.0159 (6)0.4667 (4)0.1686 (3)0.0542 (11)
C30.1080 (8)0.3741 (5)0.1980 (4)0.0601 (14)
H3A0.23470.41360.23170.072*
H3B0.14140.30120.15040.072*
C40.0863 (7)0.3453 (5)0.2568 (4)0.0580 (14)
O50.1724 (6)0.2143 (3)0.2375 (2)0.0768 (12)
N60.2273 (7)0.1752 (4)0.3217 (3)0.0590 (12)
C70.2437 (8)0.2973 (5)0.3904 (4)0.0607 (15)
H70.38400.32900.38730.073*
C80.0689 (9)0.3857 (5)0.3569 (4)0.069 (2)
H8A0.09440.47570.37870.083*
H8B0.07140.37270.37600.083*
O90.3749 (6)0.4733 (4)0.2176 (3)0.098 (2)
C100.0466 (8)0.5618 (5)0.1223 (3)0.0502 (12)
C110.2539 (8)0.5742 (5)0.0904 (3)0.0611 (14)
H110.34990.51630.09720.073*
C120.3184 (9)0.6717 (6)0.0488 (4)0.070 (2)
H120.45990.67930.02870.084*
C130.1829 (10)0.7597 (5)0.0351 (4)0.068 (2)
C140.0235 (9)0.7441 (5)0.0671 (4)0.068 (2)
H140.11960.80170.05970.082*
C150.0939 (9)0.6480 (5)0.1094 (4)0.0637 (15)
H150.23540.64050.12940.076*
C160.2563 (12)0.8674 (6)0.0087 (5)0.104 (2)
H16A0.40430.86210.02640.156*
H16B0.24040.94850.03270.156*
H16C0.17160.86110.06070.156*
C170.2068 (9)0.2848 (5)0.4837 (4)0.0616 (15)
C180.0380 (11)0.2271 (6)0.5033 (5)0.085 (2)
H180.05460.19170.45730.102*
C190.0003 (14)0.2197 (8)0.5889 (6)0.107 (2)
H190.12010.18250.60070.128*
C200.1362 (18)0.2657 (8)0.6565 (5)0.111 (3)
H200.11100.25840.71440.133*
C210.3094 (15)0.3227 (7)0.6399 (5)0.100 (3)
H210.40270.35450.68670.120*
C220.3485 (10)0.3340 (5)0.5527 (5)0.083 (2)
H220.46660.37360.54110.099*
C230.4174 (9)0.0828 (5)0.3031 (4)0.064 (2)
C240.4862 (12)0.0422 (6)0.3885 (4)0.106 (3)
H24A0.36910.00790.41080.159*
H24B0.60510.02280.37660.159*
H24C0.52840.11560.43240.159*
C250.3510 (12)0.0330 (6)0.2315 (4)0.107 (3)
H25A0.30770.00550.17760.160*
H25B0.47000.09780.21910.160*
H25C0.23360.06830.25290.160*
C260.6016 (11)0.1379 (8)0.2661 (5)0.113 (3)
H26A0.55530.16330.21180.169*
H26B0.64420.21170.30950.169*
H26C0.72090.07330.25380.169*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.042 (3)0.071 (4)0.072 (4)0.002 (3)0.005 (3)0.020 (3)
N20.041 (2)0.061 (3)0.065 (3)0.006 (2)0.007 (2)0.025 (2)
C30.050 (3)0.067 (3)0.074 (4)0.004 (3)0.000 (3)0.037 (3)
C40.049 (3)0.053 (3)0.074 (4)0.012 (2)0.004 (3)0.026 (3)
O50.091 (3)0.064 (2)0.068 (3)0.027 (2)0.010 (2)0.017 (2)
N60.061 (3)0.051 (2)0.064 (3)0.000 (2)0.016 (2)0.016 (2)
C70.061 (3)0.046 (3)0.074 (4)0.001 (2)0.004 (3)0.016 (3)
C80.069 (4)0.059 (3)0.077 (4)0.011 (3)0.001 (3)0.018 (3)
O90.046 (2)0.115 (3)0.145 (4)0.015 (2)0.021 (2)0.054 (3)
C100.049 (3)0.052 (3)0.052 (3)0.002 (2)0.005 (2)0.021 (3)
C110.053 (3)0.064 (3)0.068 (4)0.003 (3)0.012 (3)0.021 (3)
C120.055 (3)0.090 (4)0.067 (4)0.014 (3)0.002 (3)0.029 (3)
C130.084 (4)0.062 (3)0.058 (4)0.016 (3)0.011 (3)0.022 (3)
C140.079 (4)0.057 (3)0.072 (4)0.009 (3)0.006 (3)0.021 (3)
C150.055 (3)0.070 (4)0.070 (4)0.007 (3)0.003 (3)0.023 (3)
C160.138 (6)0.083 (4)0.099 (5)0.018 (4)0.005 (5)0.052 (4)
C170.067 (4)0.053 (3)0.061 (4)0.010 (3)0.005 (3)0.013 (3)
C180.083 (5)0.100 (5)0.075 (5)0.009 (4)0.004 (4)0.024 (4)
C190.125 (7)0.116 (6)0.086 (6)0.001 (5)0.031 (5)0.032 (5)
C200.170 (9)0.086 (6)0.064 (5)0.049 (6)0.011 (6)0.015 (4)
C210.140 (7)0.063 (4)0.074 (5)0.034 (4)0.038 (5)0.005 (4)
C220.087 (4)0.061 (4)0.091 (5)0.012 (3)0.026 (4)0.012 (4)
C230.078 (4)0.041 (3)0.072 (4)0.005 (3)0.010 (3)0.016 (3)
C240.144 (6)0.072 (4)0.088 (5)0.049 (4)0.023 (4)0.020 (4)
C250.151 (7)0.057 (4)0.100 (6)0.004 (4)0.014 (5)0.003 (4)
C260.082 (5)0.116 (6)0.131 (7)0.012 (4)0.015 (5)0.016 (5)
Geometric parameters (Å, º) top
C1—O91.207 (6)C11—C121.364 (7)
C1—N21.370 (6)C12—C131.383 (8)
C1—C41.527 (7)C13—C141.376 (7)
N2—C101.388 (6)C13—C161.489 (7)
N2—C31.473 (6)C14—C151.366 (7)
C3—C41.537 (6)C17—C181.353 (8)
C4—O51.418 (5)C17—C221.395 (7)
C4—C81.500 (7)C18—C191.363 (9)
O5—N61.465 (5)C19—C201.349 (10)
N6—C231.464 (6)C20—C211.355 (10)
N6—C71.485 (6)C21—C221.404 (10)
C7—C81.528 (6)C23—C241.507 (7)
C7—C171.495 (7)C23—C261.530 (9)
C10—C111.376 (6)C23—C251.532 (8)
C10—C151.386 (7)
O9—C1—N2131.3 (5)C15—C10—N2121.4 (4)
O9—C1—C4136.4 (5)C12—C11—C10119.9 (5)
N2—C1—C492.1 (4)C11—C12—C13123.0 (5)
C1—N2—C10134.4 (4)C14—C13—C12115.7 (5)
C1—N2—C394.0 (4)C14—C13—C16121.8 (6)
C10—N2—C3131.1 (4)C12—C13—C16122.5 (6)
N2—C3—C487.9 (4)C15—C14—C13123.0 (5)
O5—C4—C8106.0 (4)C14—C15—C10119.7 (5)
C8—C4—C3119.1 (4)C18—C17—C22118.8 (6)
O5—C4—C1115.5 (4)C18—C17—C7121.6 (6)
C1—C4—C385.5 (4)C22—C17—C7119.6 (6)
C8—C4—C1115.6 (4)C17—C18—C19121.6 (7)
O5—C4—C3114.6 (4)C20—C19—C18120.6 (8)
C4—O5—N6109.3 (4)C19—C20—C21120.0 (8)
O5—N6—C23105.8 (4)C20—C21—C22120.3 (8)
C23—N6—C7118.7 (4)C17—C22—C21118.7 (7)
O5—N6—C7105.5 (4)N6—C23—C24108.3 (5)
N6—C7—C17113.3 (4)N6—C23—C26112.6 (5)
N6—C7—C8100.7 (4)C24—C23—C26110.5 (6)
C8—C7—C17112.8 (4)N6—C23—C25106.8 (5)
C4—C8—C7103.6 (4)C24—C23—C25110.6 (5)
C11—C10—C15118.7 (5)C26—C23—C25108.0 (6)
C11—C10—N2119.9 (5)
O9—C1—N2—C108.9 (11)C1—N2—C10—C153.3 (9)
C4—C1—N2—C10166.8 (6)C3—N2—C10—C15173.2 (5)
O9—C1—N2—C3178.7 (7)C15—C10—C11—C121.4 (8)
C4—C1—N2—C35.6 (4)N2—C10—C11—C12176.7 (5)
C1—N2—C3—C45.5 (4)C10—C11—C12—C131.2 (9)
C10—N2—C3—C4167.2 (5)C11—C12—C13—C140.7 (9)
O9—C1—C4—O564.1 (9)C11—C12—C13—C16178.7 (6)
N2—C1—C4—O5120.5 (4)C12—C13—C14—C150.5 (9)
O9—C1—C4—C860.4 (9)C16—C13—C14—C15178.4 (6)
N2—C1—C4—C8115.0 (4)C13—C14—C15—C100.7 (9)
O9—C1—C4—C3179.3 (7)C11—C10—C15—C141.2 (8)
N2—C1—C4—C35.3 (4)N2—C10—C15—C14176.9 (5)
N2—C3—C4—O5121.0 (5)N6—C7—C17—C1847.8 (7)
N2—C3—C4—C8112.0 (5)C8—C7—C17—C1865.7 (7)
N2—C3—C4—C15.0 (4)N6—C7—C17—C22132.5 (5)
C8—C4—O5—N65.0 (5)C8—C7—C17—C22113.9 (5)
C1—C4—O5—N6124.4 (5)C22—C17—C18—C192.0 (10)
C3—C4—O5—N6138.5 (4)C7—C17—C18—C19177.7 (6)
C4—O5—N6—C23146.3 (4)C17—C18—C19—C202.5 (12)
C4—O5—N6—C719.6 (5)C18—C19—C20—C211.5 (12)
O5—N6—C7—C17155.6 (4)C19—C20—C21—C220.1 (11)
O5—N6—C7—C834.9 (5)C18—C17—C22—C210.5 (8)
C23—N6—C7—C1786.0 (6)C7—C17—C22—C21179.2 (5)
C23—N6—C7—C8153.2 (5)C20—C21—C22—C170.4 (9)
O5—C4—C8—C726.9 (5)O5—N6—C23—C24178.1 (4)
C1—C4—C8—C7102.4 (5)C7—N6—C23—C2460.0 (6)
C3—C4—C8—C7157.9 (4)O5—N6—C23—C2655.6 (6)
N6—C7—C8—C437.7 (5)C7—N6—C23—C2662.5 (7)
C17—C7—C8—C4158.8 (5)O5—N6—C23—C2562.8 (5)
C1—N2—C10—C11174.8 (5)C7—N6—C23—C25179.1 (5)
C3—N2—C10—C114.9 (8)

Experimental details

(III)(IV)
Crystal data
Chemical formulaC25H22N2O4C22H26N2O2
Mr414.45350.45
Crystal system, space groupMonoclinic, P21/nTriclinic, P1
Temperature (K)293293
a, b, c (Å)9.368 (5), 19.776 (7), 11.484 (8)6.272 (2), 10.687 (3), 15.327 (4)
α, β, γ (°)90, 101.92 (4), 90103.39 (2), 87.79 (3), 95.62 (2)
V3)2082 (2)994.5 (5)
Z42
Radiation typeCu KαCu Kα
µ (mm1)0.740.59
Crystal size (mm)0.36 × 0.20 × 0.130.20 × 0.20 × 0.06
Data collection
DiffractometerEnraf-Nonius CAD4
diffractometer
Enraf-Nonius CAD4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6167, 3711, 2276 7202, 3554, 1374
Rint0.0430.096
(sin θ/λ)max1)0.5970.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.120, 1.01 0.083, 0.218, 0.97
No. of reflections37113548
No. of parameters282236
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.190.23, 0.27

Computer programs: CAD-4 Software (Enraf-Nonius, 1987), CAD-4 Software, NONIUS (Riche, 1989), SHELXS86 (Sheldrick, 1990), SHELXL93 (Sheldrick, 1993), R3M (Riche, 1983) and ORTEP (Johnson, 1965).

Selected geometric parameters (Å, º) for (III) top
C1—O91.212 (3)C4—O51.438 (3)
C1—N21.361 (3)O5—N61.452 (2)
C1—C41.548 (3)N6—C71.474 (3)
N2—C101.408 (3)C7—C81.520 (3)
N2—C31.475 (3)C4—C81.527 (3)
C3—C41.532 (3)
N2—C1—C490.9 (2)N2—C3—C487.4 (2)
C1—N2—C395.5 (2)C1—C4—C386.0 (2)
O9—C1—N2—C1015.1 (4)O5—C4—C8—C711.2 (2)
N2—C3—C4—O5120.4 (2)C3—N2—C10—C115.8 (4)
N2—C3—C4—C8115.1 (2)C1—N2—C10—C1510.5 (4)
C8—C4—O5—N613.5 (2)C12—C13—O16—C1722.1 (5)
C4—O5—N6—C2691.6 (2)C8—C7—C18—O1912.7 (3)
C4—O5—N6—C733.3 (2)O19—C18—C20—C210.9 (4)
O5—N6—C7—C839.5 (2)O5—N6—C26—C27165.0 (2)
N6—C7—C8—C431.3 (2)
Selected geometric parameters (Å, º) for (IV) top
C1—O91.207 (6)C4—O51.418 (5)
C1—N21.370 (6)C4—C81.500 (7)
C1—C41.527 (7)O5—N61.465 (5)
N2—C101.388 (6)N6—C71.485 (6)
N2—C31.473 (6)C7—C81.528 (6)
C3—C41.537 (6)
N2—C1—C492.1 (4)N2—C3—C487.9 (4)
C1—N2—C394.0 (4)C1—C4—C385.5 (4)
O9—C1—N2—C108.9 (11)O5—N6—C7—C834.9 (5)
N2—C3—C4—O5121.0 (5)N6—C7—C8—C437.7 (5)
N2—C3—C4—C8112.0 (5)C3—N2—C10—C114.9 (8)
C8—C4—O5—N65.0 (5)C1—N2—C10—C153.3 (9)
C4—O5—N6—C23146.3 (4)C8—C7—C17—C1865.7 (7)
C4—O5—N6—C719.6 (5)O5—N6—C23—C24178.1 (4)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds