Download citation
Download citation
link to html
The title compound, C36H44N6O4+·2Cl·2ClO4·0.132H2O, is shown to be protonated at all the pyridine N atoms; the two chloride ions are hydrogen bonded to three pyridine N atoms and to the phenolic O atom of the same cation [Cl...N = 3.045 (2)–3.131 (2) Å and Cl...O = 2.938 (2) Å], and the remaining pyridine N atom is hydrogen bonded to the phenolic O atom [N...O = 2.861 (2) Å]. The mean value of the C—N—C angle of the protonated pyridine rings is 123.4 (1)°, which is significantly larger than that found for unprotonated pyridine rings.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199016315/gs1067sup1.cif
Contains datablocks jtg, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199016315/gs1067Isup2.hkl
Contains datablock I

CCDC reference: 143270

Comment top

Compounds containing two transition metal ions have received considerable attention in the past two decades because of their potential reactivity in the activation of small molecules and catalysis of organic reactions, and as model systems for dimetallic enzymes (Reedijk, 1993; van der Beuken & Feringa, 1998). Several synthetic strategies for their preparation have been developed. These include self-asssembly methods, for example the spontaneous formation of dimetallic compounds with oxide and sulfide bridges, or the templated formation of suitable ditopic macrocyclic and acyclic ligands. The design of ligands containing two cavities suitable for metal binding is an important approach to a more controlled stepwise preparation of dimetallic compounds.

The title compound, bpbpH54+·2Cl-·2ClO4-.0.132H2O, (I), contains an example of such a preformed ditopic ligand. The compound bpbpH is an acyclic ditopic ligand precursor (it needs to be deprotonated in order to bind two metal ions); it has been used successfully by us for the preparation of dimetallic compounds. The ligand is normally septadentate, providing an amine and two pyridine donors to each metal ion in a dinuclear complex; the phenolate O atom `bridges' the two metal ions. The remaining coordination sphere of the metal ions is usually filled by small `exogenous' ligands, e.g. a typical formulation is [M2(bpbp)(CH3CO2)2](ClO4)2, M = a transition metal ion.

Interestingly bpbp- shows a remarkable ability to stabilize mixed-metal and mixed-valent compounds (Ghiladi et al., 1997, 1999). In the attempted preparation of one such compound from an acidic solution, we isolated a small amount of a colourless crystalline product, which has been shown, by X-ray diffraction, to be the double salt (I). The ligand is protonated at the pyridine N atoms and not at the tertiary N atoms as might be expected from their acidities (cf. pKa = 5.17 for pyridine and pKa = 11.72 for triethylamine). We have also observed this preference for protonation at the pyridine N atoms in salts of trispicolylamine (tpa), i.e. in (H3tpa)(SO4)(NO3) (Hazell et al., 1999) and in (H3tpa)2(HPO4)(ClO4)4·2H2O (Hazell & Toftlund, unpublished results).

The two Cl- ions are both hydrogen bonded (Fig. 1) to three pyridine N atoms and to the phenolic O atom of the same cation [Cl···N = 3.045 (2)–3.131 (2) Å, Cl···O = 2.938 (2) Å]; the remaining pyridine N atom is hydrogen bonded to the phenolic O atom [N···O = 2.861 (2) Å].

Bond distances and angles are generally similar to those in bpbp complexes, the exception being that the C—N(py)—C angles are in the range 123.0 (2)–123.7 (2)°, whereas in both coordinated and non-coordinated pyridine groups this angle is less than 120°. Mean values from the Cambridge Structural Database (Allen & Kennard, 1993): 117.8° for non-coordinated pyridine (5255 observations mean standard uncertainty 0.03), 118.6° for pyridine coordinated to a metal atom (10000 observations, mean standard uncertainty 0.02) and 122.6° for pyridinium compounds (901 observations, mean standard uncertainty 0.07). The molecule is not as symmetric as might have been expected: C51—O1 is bent towards N1 and the torsion angle C51—C52—C57—N2 is 11.4° larger than C51—C56—C58—N1, distortions which may be caused by repusion between N41 and O1 [O1···N41 = 2.982 (2) Å]. This result is interesting with respect to the apparent propensity of bpbp- to form unsymmetric dimetallic complexes, i.e. the incorporation of different metal ions in each cavity (Ghiladi et al.; 1997, 1999). A difference map showed a small peak which is interpreted as a partially occupied water site 2.62 (1) Å from one of the perchlorate O atoms.

Experimental top

Please give some indication of the method of preparation of the compound (reference?).

Refinement top

H atoms were located from a difference map, the phenolic H atom was refined isotropically, H atoms of the ligand were kept fixed at calculated positions (C—H = 0.95 Å) with Uiso = 1.2Ueq of the atom to which each is attached. H atoms of the water molecule were not included in the calculations.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SIR97 (Cascarano et al., 1996), KRYSTAL (Hazell, 1995); program(s) used to refine structure: modified ORFLS (Reference? 1962), KRYSTAL; molecular graphics: ORTEPIII (Burnett & Johnson, 1996), KRYSTAL; software used to prepare material for publication: KRYSTAL.

Figures top
[Figure 1] Fig. 1. View of (I) showing the hydrogen bonding. Displacement ellipsoids are shown at the 50% probability level; H atoms involved in hydrogen bonds are drawn as small circles of arbitrary radii; the other H atoms are ommitted.
insert name here top
Crystal data top
C36H44N6O4+·2Cl·2ClO4·0.132H2OF(000) = 1773.3
Mr = 848.97Dx = 1.425 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5631 reflections
a = 20.376 (1) Åθ = 1.9–29.8°
b = 13.0504 (8) ŵ = 0.36 mm1
c = 15.8870 (9) ÅT = 120 K
β = 110.491 (1)°Prism, colourless
V = 3957.4 (4) Å30.40 × 0.24 × 0.10 mm
Z = 4
Data collection top
Siemens SMART CCD
diffractometer
10979 independent reflections
Radiation source: x-ray tube6374 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.055
ω rotation scans with narrow framesθmax = 29.8°, θmin = 1.9°
Absorption correction: integration
(XPREP; Siemens, 1995)
h = 2625
Tmin = 0.885, Tmax = 0.975k = 1718
39525 measured reflectionsl = 2221
Refinement top
Refinement on F0 constraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.0331/{[σcs(F2) + 1.03F2]1/2 - F|}2 1/{[σcs(F2) + 1.03F2]1/2 - F|}2
wR(F2) = 0.037(Δ/σ)max = 0.002
S = 1.08Δρmax = 0.40 (5) e Å3
6374 reflectionsΔρmin = 0.46 (5) e Å3
506 parametersExtinction correction: Becker & Coppens (1974) type 1 Lorentzian isotropic
0 restraintsExtinction coefficient: 150 (17)
Crystal data top
C36H44N6O4+·2Cl·2ClO4·0.132H2OV = 3957.4 (4) Å3
Mr = 848.97Z = 4
Monoclinic, P21/cMo Kα radiation
a = 20.376 (1) ŵ = 0.36 mm1
b = 13.0504 (8) ÅT = 120 K
c = 15.8870 (9) Å0.40 × 0.24 × 0.10 mm
β = 110.491 (1)°
Data collection top
Siemens SMART CCD
diffractometer
10979 independent reflections
Absorption correction: integration
(XPREP; Siemens, 1995)
6374 reflections with I > 3σ(I)
Tmin = 0.885, Tmax = 0.975Rint = 0.055
39525 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.037H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.40 (5) e Å3
6374 reflectionsΔρmin = 0.46 (5) e Å3
506 parameters
Special details top

Refinement. See_publ_section_exptl_refinement

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.53355 (3)0.15020 (4)0.27732 (3)0.0222 (3)
Cl20.03101 (3)0.21425 (4)0.36138 (3)0.0202 (3)
Cl30.22969 (3)0.36994 (4)0.49059 (3)0.0220 (3)
Cl40.28673 (3)0.27507 (4)0.25560 (3)0.0247 (3)
O10.2192 (1)0.1475 (1)0.3543 (1)0.019 (1)
O20.6034 (1)0.1307 (1)0.2773 (1)0.032 (1)
O30.5266 (1)0.1068 (1)0.3567 (1)0.043 (1)
O40.5213 (1)0.2590 (1)0.2742 (1)0.032 (1)
O50.4839 (1)0.1028 (1)0.1993 (1)0.032 (1)
O60.0123 (1)0.1193 (1)0.4098 (1)0.031 (1)
O70.0221 (1)0.2899 (1)0.4014 (1)0.043 (1)
O80.0965 (1)0.2496 (1)0.3661 (1)0.034 (1)
O90.0385 (1)0.1980 (1)0.2693 (1)0.039 (1)
N10.1265 (1)0.0691 (1)0.1783 (1)0.018 (1)
N20.3569 (1)0.1432 (1)0.5299 (1)0.017 (1)
N110.1118 (1)0.2636 (1)0.2242 (1)0.024 (1)
N210.2743 (1)0.0511 (1)0.1946 (1)0.020 (1)
N310.3723 (1)0.3489 (1)0.4705 (1)0.022 (1)
N410.2234 (1)0.1400 (1)0.5437 (1)0.019 (1)
C120.1126 (1)0.3566 (2)0.2617 (1)0.028 (1)
C130.0579 (1)0.4224 (2)0.2237 (1)0.028 (1)
C140.0031 (1)0.3907 (2)0.1484 (1)0.027 (1)
C150.0035 (1)0.2946 (2)0.1127 (1)0.025 (1)
C160.0594 (1)0.2301 (2)0.1521 (1)0.022 (1)
C170.0665 (1)0.1249 (2)0.1173 (1)0.025 (1)
C220.3442 (1)0.0413 (2)0.2273 (1)0.024 (1)
C230.3737 (1)0.0544 (2)0.2428 (1)0.027 (1)
C240.3304 (1)0.1389 (2)0.2259 (1)0.027 (1)
C250.2583 (1)0.1262 (1)0.1917 (1)0.023 (1)
C260.2297 (1)0.0292 (1)0.1750 (1)0.020 (1)
C270.1529 (1)0.0078 (1)0.1308 (1)0.022 (1)
C320.3706 (1)0.4286 (2)0.4171 (1)0.028 (1)
C330.4259 (1)0.4490 (2)0.3898 (1)0.031 (1)
C340.4824 (1)0.3829 (2)0.4164 (1)0.033 (1)
C350.4822 (1)0.2995 (2)0.4703 (1)0.029 (1)
C360.4266 (1)0.2830 (1)0.4987 (1)0.021 (1)
C370.4229 (1)0.2004 (2)0.5625 (1)0.023 (1)
C420.1540 (1)0.1306 (2)0.5246 (1)0.021 (1)
C430.1280 (1)0.0434 (2)0.5494 (1)0.023 (1)
C440.1741 (1)0.0331 (2)0.5943 (1)0.026 (1)
C450.2450 (1)0.0211 (2)0.6119 (1)0.023 (1)
C460.2698 (1)0.0674 (1)0.5856 (1)0.018 (1)
C470.3458 (1)0.0889 (1)0.6046 (1)0.020 (1)
C510.2305 (1)0.0440 (1)0.3669 (1)0.015 (1)
C520.2948 (1)0.0040 (1)0.4207 (1)0.016 (1)
C530.2996 (1)0.1016 (1)0.4371 (1)0.017 (1)
C540.2425 (1)0.1677 (1)0.4014 (1)0.016 (1)
C550.1803 (1)0.1242 (1)0.3433 (1)0.016 (1)
C560.1737 (1)0.0204 (1)0.3242 (1)0.016 (1)
C570.3587 (1)0.0711 (1)0.4586 (1)0.019 (1)
C580.1093 (1)0.0230 (1)0.2536 (1)0.019 (1)
C590.2457 (1)0.2829 (1)0.4214 (1)0.019 (1)
C600.2368 (1)0.3437 (2)0.3350 (1)0.027 (1)
C610.3150 (1)0.3140 (2)0.4932 (1)0.027 (1)
C620.1854 (1)0.3121 (2)0.4540 (1)0.029 (1)
O100.9244 (7)0.0260 (10)0.0858 (8)0.043 (5)*0.132 (5)
HO10.249 (1)0.178 (2)0.341 (2)0.043 (8)*
HN110.15060.21930.25060.029*
HN210.25510.11820.18460.025*
HN310.33350.33810.48950.026*
HN410.24050.20140.52660.022*
H120.15070.37610.31380.033*
H130.05760.48850.24860.034*
H140.03520.43560.12100.033*
H150.03450.27290.06130.029*
H17a0.07220.13160.06070.030*
H17b0.02500.08710.11020.030*
H220.37320.10050.23970.028*
H230.42320.06240.26480.032*
H240.34990.20570.23780.033*
H250.22850.18450.17960.027*
H27a0.12790.06990.12840.026*
H27b0.14470.01610.07150.026*
H320.33040.47160.39780.033*
H330.42550.50710.35360.037*
H340.52130.39460.39780.039*
H350.52070.25330.48770.034*
H37a0.42750.23100.61850.028*
H37b0.46050.15400.57040.028*
H420.12320.18410.49410.025*
H430.07900.03550.53590.028*
H440.15710.09350.61300.031*
H450.27680.07370.64200.028*
H47a0.37050.02580.61420.025*
H47b0.36320.12980.65720.025*
H530.34330.12950.47390.020*
H550.14110.16750.31600.019*
H57a0.36360.11020.41070.022*
H57b0.39830.02790.48300.022*
H58a0.08970.07420.28020.023*
H58b0.07610.03040.23080.023*
H60a0.23880.41510.34740.032*
H60b0.19270.32760.29070.032*
H60c0.27320.32590.31340.032*
H61a0.31700.38540.50560.032*
H61b0.35220.29670.47290.032*
H61c0.32030.27750.54690.032*
H62a0.18750.38350.46640.034*
H62b0.18980.27490.50710.034*
H62c0.14190.29610.40870.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0193 (3)0.0198 (2)0.0263 (3)0.0036 (2)0.0063 (2)0.0038 (2)
Cl20.0178 (3)0.0205 (2)0.0205 (2)0.0006 (2)0.0044 (2)0.0034 (2)
Cl30.0240 (3)0.0208 (2)0.0213 (2)0.0048 (2)0.0079 (2)0.0004 (2)
Cl40.0310 (3)0.0204 (3)0.0229 (3)0.0062 (2)0.0097 (2)0.0013 (2)
O10.022 (1)0.014 (1)0.023 (1)0.001 (1)0.008 (1)0.002 (1)
O20.018 (1)0.027 (1)0.049 (1)0.003 (1)0.009 (1)0.006 (1)
O30.055 (1)0.046 (1)0.036 (1)0.015 (1)0.025 (1)0.017 (1)
O40.035 (1)0.020 (1)0.039 (1)0.007 (1)0.009 (1)0.000 (1)
O50.025 (1)0.029 (1)0.037 (1)0.005 (1)0.006 (1)0.005 (1)
O60.035 (1)0.022 (1)0.032 (1)0.008 (1)0.006 (1)0.009 (1)
O70.036 (1)0.036 (1)0.048 (1)0.017 (1)0.002 (1)0.001 (1)
O80.028 (1)0.029 (1)0.049 (1)0.009 (1)0.018 (1)0.005 (1)
O90.046 (1)0.051 (1)0.024 (1)0.003 (1)0.017 (1)0.003 (1)
N10.019 (1)0.017 (1)0.017 (1)0.001 (1)0.004 (1)0.003 (1)
N20.014 (1)0.017 (1)0.017 (1)0.002 (1)0.003 (1)0.002 (1)
N110.019 (1)0.021 (1)0.027 (1)0.005 (1)0.003 (1)0.005 (1)
N210.021 (1)0.020 (1)0.021 (1)0.001 (1)0.008 (1)0.002 (1)
N310.022 (1)0.021 (1)0.022 (1)0.002 (1)0.008 (1)0.002 (1)
N410.020 (1)0.019 (1)0.017 (1)0.002 (1)0.007 (1)0.000 (1)
C120.030 (1)0.024 (1)0.028 (1)0.001 (1)0.007 (1)0.000 (1)
C130.034 (1)0.025 (1)0.031 (1)0.007 (1)0.016 (1)0.005 (1)
C140.024 (1)0.031 (1)0.032 (1)0.008 (1)0.016 (1)0.013 (1)
C150.019 (1)0.030 (1)0.025 (1)0.001 (1)0.008 (1)0.010 (1)
C160.019 (1)0.025 (1)0.022 (1)0.001 (1)0.007 (1)0.007 (1)
C170.022 (1)0.024 (1)0.022 (1)0.000 (1)0.000 (1)0.006 (1)
C220.021 (1)0.028 (1)0.024 (1)0.003 (1)0.011 (1)0.001 (1)
C230.024 (1)0.031 (1)0.028 (1)0.003 (1)0.013 (1)0.001 (1)
C240.031 (1)0.025 (1)0.030 (1)0.006 (1)0.016 (1)0.001 (1)
C250.029 (1)0.021 (1)0.022 (1)0.003 (1)0.014 (1)0.004 (1)
C260.023 (1)0.024 (1)0.015 (1)0.004 (1)0.010 (1)0.002 (1)
C270.023 (1)0.022 (1)0.019 (1)0.003 (1)0.006 (1)0.001 (1)
C320.035 (1)0.018 (1)0.027 (1)0.002 (1)0.007 (1)0.001 (1)
C330.041 (1)0.024 (1)0.029 (1)0.011 (1)0.013 (1)0.002 (1)
C340.033 (1)0.033 (1)0.038 (1)0.016 (1)0.020 (1)0.013 (1)
C350.023 (1)0.026 (1)0.037 (1)0.004 (1)0.011 (1)0.007 (1)
C360.019 (1)0.017 (1)0.023 (1)0.003 (1)0.003 (1)0.007 (1)
C370.018 (1)0.021 (1)0.026 (1)0.001 (1)0.001 (1)0.001 (1)
C420.018 (1)0.026 (1)0.019 (1)0.006 (1)0.006 (1)0.000 (1)
C430.019 (1)0.031 (1)0.021 (1)0.001 (1)0.008 (1)0.001 (1)
C440.025 (1)0.026 (1)0.028 (1)0.000 (1)0.013 (1)0.006 (1)
C450.024 (1)0.023 (1)0.024 (1)0.005 (1)0.009 (1)0.006 (1)
C460.019 (1)0.020 (1)0.014 (1)0.004 (1)0.006 (1)0.001 (1)
C470.019 (1)0.023 (1)0.018 (1)0.003 (1)0.004 (1)0.000 (1)
C510.018 (1)0.015 (1)0.015 (1)0.001 (1)0.008 (1)0.000 (1)
C520.016 (1)0.019 (1)0.015 (1)0.002 (1)0.006 (1)0.003 (1)
C530.016 (1)0.019 (1)0.017 (1)0.003 (1)0.006 (1)0.000 (1)
C540.018 (1)0.017 (1)0.017 (1)0.000 (1)0.009 (1)0.000 (1)
C550.016 (1)0.016 (1)0.016 (1)0.002 (1)0.007 (1)0.000 (1)
C560.015 (1)0.018 (1)0.015 (1)0.001 (1)0.006 (1)0.001 (1)
C570.017 (1)0.019 (1)0.020 (1)0.000 (1)0.007 (1)0.001 (1)
C580.017 (1)0.018 (1)0.021 (1)0.000 (1)0.005 (1)0.002 (1)
C590.020 (1)0.015 (1)0.021 (1)0.001 (1)0.006 (1)0.002 (1)
C600.030 (1)0.018 (1)0.028 (1)0.003 (1)0.005 (1)0.001 (1)
C610.026 (1)0.020 (1)0.029 (1)0.003 (1)0.003 (1)0.005 (1)
C620.029 (1)0.023 (1)0.035 (1)0.001 (1)0.012 (1)0.010 (1)
Geometric parameters (Å, º) top
Cl1—O21.447 (1)C55—C561.384 (3)
Cl1—O31.434 (2)C56—C581.508 (3)
Cl1—O41.439 (2)C59—C611.527 (3)
Cl1—O51.437 (2)C59—C621.539 (3)
Cl2—O61.438 (1)C59—C601.540 (3)
Cl2—O71.438 (2)O1—HO10.81 (2)
Cl2—O81.439 (2)N11—HN110.950
Cl2—O91.432 (2)N21—HN210.950
O1—C511.373 (2)N31—HN310.950
N1—C171.461 (2)N41—HN410.950
N1—C271.467 (3)C53—H530.950
N1—C581.487 (2)C55—H550.950
N2—C371.465 (2)C57—H57a0.950
N2—C471.467 (2)C57—H57b0.950
N2—C571.483 (2)C58—H58a0.950
N11—C121.349 (3)C58—H58b0.950
N11—C161.337 (3)C12—H120.950
N21—C221.341 (3)C13—H130.950
N21—C261.350 (3)C14—H140.950
N31—C321.335 (3)C15—H150.950
N31—C361.348 (3)C17—H17a0.950
N41—C421.345 (2)C17—H17b0.950
N41—C461.339 (2)C22—H220.950
C12—C131.370 (3)C23—H230.950
C13—C141.385 (3)C24—H240.950
C14—C151.378 (3)C25—H250.950
C15—C161.378 (3)C27—H27a0.950
C16—C171.505 (3)C27—H27b0.950
C22—C231.371 (3)C32—H320.950
C23—C241.380 (3)C33—H330.950
C24—C251.386 (3)C34—H340.950
C25—C261.381 (3)C35—H350.950
C26—C271.500 (3)C37—H37a0.950
C32—C331.370 (3)C37—H37b0.950
C33—C341.381 (3)C42—H420.950
C34—C351.386 (3)C43—H430.950
C35—C361.376 (3)C44—H440.950
C36—C371.499 (3)C45—H450.950
C42—C431.370 (3)C47—H47a0.950
C43—C441.386 (3)C47—H47b0.950
C44—C451.381 (3)C60—H60a0.950
C45—C461.382 (3)C60—H60b0.950
C46—C471.496 (3)C60—H60c0.950
C51—C521.391 (3)C61—H61a0.950
C51—C561.399 (3)C61—H61b0.950
C52—C531.400 (3)C61—H61c0.950
C52—C571.508 (3)C62—H62a0.950
C53—C541.399 (3)C62—H62b0.950
C54—C551.400 (3)C62—H62c0.950
C54—C591.533 (3)
O7i···O102.617 (13)O1···N12.955 (2)
O1···N412.982 (2)O1···N23.192 (2)
O2—Cl1—O3109.3 (1)C54—C53—H53118.7
O2—Cl1—O4109.39 (9)C52—C53—H53118.7
O2—Cl1—O5108.72 (9)C56—C55—H55118.8
O3—Cl1—O4110.5 (1)C54—C55—H55118.8
O3—Cl1—O5109.4 (1)H57a—C57—H57b109.5
O4—Cl1—O5109.49 (9)N2—C57—H57a108.0
O6—Cl2—O7109.7 (1)C52—C57—H57a108.0
O6—Cl2—O8109.02 (9)N2—C57—H57b108.0
O6—Cl2—O9109.4 (1)C52—C57—H57b108.0
O7—Cl2—O8109.0 (1)H58a—C58—H58b109.5
O7—Cl2—O9110.4 (1)N1—C58—H58a109.0
O8—Cl2—O9109.3 (1)C56—C58—H58a109.0
C17—N1—C27111.9 (2)N1—C58—H58b109.0
C58—N1—C17110.9 (2)C56—C58—H58b109.0
C58—N1—C27111.6 (1)N11—C12—H12120.4
C37—N2—C47110.1 (1)C13—C12—H12120.4
C57—N2—C37109.1 (1)C12—C13—H13120.7
C57—N2—C47111.3 (1)C14—C13—H13120.7
C12—N11—C16123.7 (2)C15—C14—H14119.7
C22—N21—C26123.6 (2)C13—C14—H14119.7
C32—N31—C36123.0 (2)C16—C15—H15120.2
C42—N41—C46123.4 (2)C14—C15—H15120.2
N11—C12—C13119.2 (2)H17a—C17—H17b109.5
C12—C13—C14118.7 (2)N1—C17—H17a108.8
C13—C14—C15120.5 (2)C16—C17—H17a108.8
C14—C15—C16119.5 (2)N1—C17—H17b108.8
N11—C16—C15118.4 (2)C16—C17—H17b108.8
N11—C16—C17117.5 (2)N21—C22—H22120.1
C15—C16—C17124.1 (2)C23—C22—H22120.1
N1—C17—C16112.1 (2)C22—C23—H23120.6
N21—C22—C23119.7 (2)C24—C23—H23120.6
C22—C23—C24118.8 (2)C23—C24—H24120.0
C23—C24—C25120.0 (2)C25—C24—H24120.0
C24—C25—C26120.2 (2)C26—C25—H25119.9
N21—C26—C25117.6 (2)C24—C25—H25119.9
N21—C26—C27118.1 (2)H27a—C27—H27b109.5
C25—C26—C27124.1 (2)N1—C27—H27a108.5
N1—C27—C26113.4 (2)C26—C27—H27a108.5
N31—C32—C33120.8 (2)N1—C27—H27b108.5
C32—C33—C34118.2 (2)C26—C27—H27b108.5
C33—C34—C35119.8 (2)N31—C32—H32119.6
C34—C35—C36120.4 (2)C33—C32—H32119.6
N31—C36—C35117.8 (2)C32—C33—H33120.9
N31—C36—C37117.0 (2)C34—C33—H33120.9
C35—C36—C37125.1 (2)C33—C34—H34120.1
N2—C37—C36112.6 (2)C35—C34—H34120.1
N41—C42—C43119.5 (2)C36—C35—H35119.8
C42—C43—C44119.1 (2)C34—C35—H35119.8
C43—C44—C45119.7 (2)H37a—C37—H37b109.5
C44—C45—C46120.0 (2)N2—C37—H37a108.7
N41—C46—C45118.3 (2)C36—C37—H37a108.7
N41—C46—C47117.9 (2)N2—C37—H37b108.7
C45—C46—C47123.8 (2)C36—C37—H37b108.7
N2—C47—C46111.7 (2)N41—C42—H42120.2
O1—C51—C52122.2 (2)C43—C42—H42120.2
O1—C51—C56116.9 (2)C42—C43—H43120.5
C52—C51—C56120.9 (2)C44—C43—H43120.5
C51—C52—C53118.2 (2)C45—C44—H44120.2
C51—C52—C57121.5 (2)C43—C44—H44120.1
C53—C52—C57120.2 (2)C44—C45—H45120.0
C52—C53—C54122.5 (2)C46—C45—H45120.0
C53—C54—C55116.7 (2)H47a—C47—H47b109.5
C53—C54—C59123.4 (2)N2—C47—H47a108.9
C55—C54—C59119.8 (2)C46—C47—H47a108.9
C54—C55—C56122.5 (2)N2—C47—H47b108.9
C51—C56—C55118.8 (2)C46—C47—H47b108.9
C55—C56—C58121.5 (2)H60a—C60—H60b109.4
C51—C56—C58119.5 (2)H60a—C60—H60c109.4
N2—C57—C52115.2 (2)C59—C60—H60a109.7
N1—C58—C56111.2 (2)H60b—C60—H60c109.5
C54—C59—C61112.2 (2)C59—C60—H60b109.4
C61—C59—C62108.7 (2)C59—C60—H60c109.4
C60—C59—C61108.6 (2)H61a—C61—H61b108.8
C54—C59—C62109.4 (2)H61a—C61—H61c108.8
C54—C59—C60109.7 (2)C59—C61—H61a112.2
C60—C59—C62108.2 (2)H61b—C61—H61c109.5
C51—O1—HO1115 (2)C59—C61—H61b108.8
C16—N11—HN11118.2C59—C61—H61c108.8
C12—N11—HN11118.1H62a—C62—H62b109.5
C22—N21—HN21118.2H62a—C62—H62c109.5
C26—N21—HN21118.2C59—C62—H62a109.4
C32—N31—HN31118.5H62b—C62—H62c109.5
C36—N31—HN31118.5C59—C62—H62b109.5
C46—N41—HN41118.3C59—C62—H62c109.5
C42—N41—HN41118.3
C51—C52—C57—N270.3 (2)C51—C56—C58—N158.9 (2)
Symmetry code: (i) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—HN11···O10.951.982.861 (2)152.8
N21—HN21···Cl40.952.323.062 (2)134.8
N31—HN31···Cl30.952.163.045 (2)154.1
N41—HN41···Cl30.952.263.131 (2)151.5
O1—HO1···Cl40.81 (2)2.18 (3)2.938 (2)155 (2)

Experimental details

Crystal data
Chemical formulaC36H44N6O4+·2Cl·2ClO4·0.132H2O
Mr848.97
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)20.376 (1), 13.0504 (8), 15.8870 (9)
β (°) 110.491 (1)
V3)3957.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.40 × 0.24 × 0.10
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionIntegration
(XPREP; Siemens, 1995)
Tmin, Tmax0.885, 0.975
No. of measured, independent and
observed [I > 3σ(I)] reflections
39525, 10979, 6374
Rint0.055
(sin θ/λ)max1)0.699
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.037, 1.08
No. of reflections6374
No. of parameters506
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40 (5), 0.46 (5)

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SAINT, SIR97 (Cascarano et al., 1996), KRYSTAL (Hazell, 1995), modified ORFLS (Reference? 1962), KRYSTAL, ORTEPIII (Burnett & Johnson, 1996), KRYSTAL, KRYSTAL.

Selected bond and torsion angles (º) top
C12—N11—C16123.7 (2)C42—N41—C46123.4 (2)
C22—N21—C26123.6 (2)O1—C51—C52122.2 (2)
C32—N31—C36123.0 (2)O1—C51—C56116.9 (2)
C51—C52—C57—N270.3 (2)C51—C56—C58—N158.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—HN11···O10.951.982.861 (2)152.8
N21—HN21···Cl40.952.323.062 (2)134.8
N31—HN31···Cl30.952.163.045 (2)154.1
N41—HN41···Cl30.952.263.131 (2)151.5
O1—HO1···Cl40.81 (2)2.18 (3)2.938 (2)155 (2)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds