Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The physicochemical aspects of protein crystallization in reduced-gravity environments (µg) have been investigated with the Advanced Protein Crystallization Facility during six space missions. This review summarizes the results, dealing with the mechanisms of nucleation and crystal growth and with the quality of the crystals that were obtained under reduced gravity as well as under normal gravity on earth. Statistical analyses of the experimental data strongly support the fact that µg has a positive effect on crystallization and on crystal quality. A comparison of experiments and theories of protein crystallization in reduced-gravity environments is presented. Recommendations for improving the performance of protein crystallization experiments in µg and on earth are discussed.

Subscribe to Acta Crystallographica Section D: Biological Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds