Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
We have redetermined the known structures of (i) methylthiourea (MTU) and (ii) 1,1-dimethylthiourea (1,1-DMTU), and investigated the structure of 1,3-dimethylthiourea (1,3-DMTU), which was however severely disordered. We report the structures of crystalline adducts of (iii) MTU with morpholine (1:1), (iv) 1,1-DMTU with 1,4-dioxane (2:1) and (v) 1,3-DMTU with 1,4-dioxane (2:1). Finally, (vi) we determined the structure of tetramethylthiourea (TetMTU). (i) In both independent molecules of MTU, the methyl group is trans to the C=S group across the C—N bond. The two molecules are connected to form an R22(8) dimer by mutual N—H...S=C interactions. The packing involves six N—H...S=C interactions and is three-dimensional. (ii) The packing of the MTU–morpholine adduct is a layer structure, within which both molecules form linear aggregates parallel to the b axis. (iii) The packing of 1,1-DMTU involves N—H...S=C hydrogen bonds forming a corrugated layer structure. (iv) In the 2:1 adduct between 1,1-DMTU and 1,4-dioxane, the DMTU molecule occupies a general position whereas the dioxane molecule lies across an inversion centre. The crystal packing involves chains of alternating 1,1-DMTU R22(8) dimers and dioxanes, both across inversion centres. (v) In the 2:1 adduct between 1,3-DMTU and dioxane, the 1,3-DMTU molecule occupies a general position, while the dioxane molecule lies across an inversion centre. One methyl group of the DMTU is trans and one cis to the sulfur across the corresponding C—N bond. The molecules form chains of alternating 1,3-DMTU R22(8) dimers and dioxanes, both across inversion centres. Crystals of the 2:1 adduct between 1,3-DMTU and morpholine were also obtained, and were isotypic with the dioxane adduct. The morpholine molecule is disordered across the inversion centre. (vi) The molecule of TetMTU displays crystallographic twofold symmetry. Significant distortions reflect the steric pressure between methyl groups trans to sulfur. The packing of TetMTU involves only a weak hydrogen bond, C—Hmethyl...S, which connects the molecules to form layers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052519213013481/gp5065sup1.cif
Contains datablocks birke, fichte, buche, kirsche, laerche, judo, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052519213013481/gp5065birkesup2.hkl
Contains datablock birke

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052519213013481/gp5065fichtesup3.hkl
Contains datablock fichte

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052519213013481/gp5065buchesup4.hkl
Contains datablock buche

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052519213013481/gp5065kirschesup5.hkl
Contains datablock kirsche

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052519213013481/gp5065laerchesup6.hkl
Contains datablock laerche

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052519213013481/gp5065judosup7.hkl
Contains datablock judo

zip

Zip compressed file https://doi.org/10.1107/S2052519213013481/gp5065sup8.zip
CIF/FCF for the disordered structure

CCDC references: 958014; 958015; 958016; 958017; 958018; 958019

Computing details top

Data collection: CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11) for birke, fichte, buche, kirsche, laerche; CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.35.21 (release 20-01-2012 CrysAlis171 .NET) (compiled Jan 23 2012,18:06:46) for judo. Cell refinement: CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11) for birke, fichte, buche, kirsche, laerche; CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.35.21 (release 20-01-2012 CrysAlis171 .NET) (compiled Jan 23 2012,18:06:46) for judo. Data reduction: CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11) for birke, fichte, buche, kirsche, laerche; CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.35.21 (release 20-01-2012 CrysAlis171 .NET) (compiled Jan 23 2012,18:06:46) for judo. For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Bruker XP; software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
[Figure 10]
[Figure 11]
[Figure 12]
[Figure 13]
[Figure 14]
[Figure 15]
(birke) top
Crystal data top
C2H6N2SZ = 4
Mr = 90.15F(000) = 192
Triclinic, P1Dx = 1.353 Mg m3
a = 7.6615 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.6945 (6) ÅCell parameters from 8424 reflections
c = 8.0283 (6) Åθ = 2.7–30.8°
α = 78.182 (7)°µ = 0.54 mm1
β = 73.785 (7)°T = 100 K
γ = 81.448 (7)°Needle, colourless
V = 442.71 (6) Å30.30 × 0.08 × 0.07 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
2543 independent reflections
Radiation source: Enhance (Mo) X-ray Source2283 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 16.1419 pixels mm-1θmax = 30.0°, θmin = 2.7°
ω–scanh = 1010
Absorption correction: multi-scan
CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11)
k = 1010
Tmin = 0.888, Tmax = 1.000l = 1110
23416 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0254P)2 + 0.1207P]
where P = (Fo2 + 2Fc2)/3
2543 reflections(Δ/σ)max = 0.001
117 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C2H6N2Sγ = 81.448 (7)°
Mr = 90.15V = 442.71 (6) Å3
Triclinic, P1Z = 4
a = 7.6615 (7) ÅMo Kα radiation
b = 7.6945 (6) ŵ = 0.54 mm1
c = 8.0283 (6) ÅT = 100 K
α = 78.182 (7)°0.30 × 0.08 × 0.07 mm
β = 73.785 (7)°
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
2543 independent reflections
Absorption correction: multi-scan
CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11)
2283 reflections with I > 2σ(I)
Tmin = 0.888, Tmax = 1.000Rint = 0.032
23416 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.31 e Å3
2543 reflectionsΔρmin = 0.28 e Å3
117 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. NH H atoms were refined freely. The methyl groups were refined as idealized rigid groups allowed to rotate but not tip.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.80694 (3)0.72454 (3)0.06315 (3)0.01543 (7)
N10.69504 (13)0.65131 (12)0.41019 (12)0.01731 (18)
H010.637 (2)0.746 (2)0.3992 (19)0.026 (4)*
N30.87845 (14)0.42681 (12)0.27962 (13)0.01890 (19)
H020.850 (2)0.351 (2)0.374 (2)0.025 (4)*
H030.945 (2)0.393 (2)0.188 (2)0.024 (4)*
C20.79128 (13)0.59066 (13)0.26493 (13)0.01379 (18)
C110.68790 (17)0.55940 (15)0.58900 (14)0.0230 (2)
H11A0.61020.46140.61840.034*
H11B0.63720.64340.67110.034*
H11C0.81140.51150.59800.034*
S1'0.30721 (3)0.94926 (3)0.42276 (3)0.01560 (7)
N1'0.35908 (12)0.84136 (12)0.11870 (11)0.01543 (17)
H01'0.467 (2)0.8374 (19)0.1169 (19)0.024 (4)*
N3'0.05947 (12)0.89571 (13)0.26743 (12)0.01723 (18)
H02'0.021 (2)0.866 (2)0.184 (2)0.028 (4)*
H03'0.019 (2)0.9311 (19)0.353 (2)0.024 (4)*
C2'0.23673 (13)0.89313 (12)0.25712 (13)0.01321 (18)
C11'0.31622 (15)0.78088 (16)0.02406 (14)0.0204 (2)
H11D0.25940.66880.02110.031*
H11E0.42880.76170.11590.031*
H11F0.23160.87140.07370.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01311 (12)0.01644 (12)0.01520 (12)0.00144 (9)0.00239 (9)0.00308 (9)
N10.0182 (4)0.0138 (4)0.0168 (4)0.0005 (3)0.0007 (3)0.0041 (3)
N30.0217 (5)0.0168 (4)0.0143 (4)0.0040 (3)0.0009 (4)0.0035 (3)
C20.0099 (4)0.0153 (4)0.0169 (4)0.0027 (3)0.0022 (3)0.0048 (4)
C110.0294 (6)0.0185 (5)0.0157 (5)0.0013 (4)0.0028 (4)0.0033 (4)
S1'0.01314 (13)0.01735 (12)0.01736 (13)0.00040 (9)0.00304 (9)0.00732 (9)
N1'0.0110 (4)0.0187 (4)0.0163 (4)0.0005 (3)0.0018 (3)0.0055 (3)
N3'0.0111 (4)0.0240 (5)0.0172 (4)0.0010 (3)0.0011 (3)0.0088 (4)
C2'0.0127 (4)0.0107 (4)0.0150 (4)0.0011 (3)0.0021 (3)0.0014 (3)
C11'0.0176 (5)0.0266 (5)0.0180 (5)0.0009 (4)0.0017 (4)0.0111 (4)
Geometric parameters (Å, º) top
S1—C21.7160 (10)N3—H030.833 (16)
N1—C21.3273 (13)C11—H11A0.9800
N1—C111.4546 (14)C11—H11B0.9800
N3—C21.3350 (13)C11—H11C0.9800
S1'—C2'1.7182 (10)N1'—H01'0.819 (16)
N1'—C2'1.3270 (13)N3'—H02'0.878 (16)
N1'—C11'1.4533 (13)N3'—H03'0.838 (16)
N3'—C2'1.3348 (13)C11'—H11D0.9800
N1—H010.795 (16)C11'—H11E0.9800
N3—H020.853 (15)C11'—H11F0.9800
C2—N1—C11125.21 (9)H11A—C11—H11B109.5
N1—C2—N3118.87 (9)N1—C11—H11C109.5
N1—C2—S1119.97 (8)H11A—C11—H11C109.5
N3—C2—S1121.14 (8)H11B—C11—H11C109.5
C2'—N1'—C11'125.04 (9)C2'—N1'—H01'117.3 (10)
N1'—C2'—N3'118.97 (9)C11'—N1'—H01'117.6 (10)
N1'—C2'—S1'120.05 (8)C2'—N3'—H02'122.0 (10)
N3'—C2'—S1'120.95 (8)C2'—N3'—H03'119.9 (10)
C2—N1—H01117.7 (11)H02'—N3'—H03'118.0 (14)
C11—N1—H01117.0 (11)N1'—C11'—H11D109.5
C2—N3—H02120.9 (10)N1'—C11'—H11E109.5
C2—N3—H03117.8 (10)H11D—C11'—H11E109.5
H02—N3—H03120.0 (14)N1'—C11'—H11F109.5
N1—C11—H11A109.5H11D—C11'—H11F109.5
N1—C11—H11B109.5H11E—C11'—H11F109.5
C11—N1—C2—N35.57 (16)C11'—N1'—C2'—N3'1.86 (15)
C11—N1—C2—S1172.71 (8)C11'—N1'—C2'—S1'176.23 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H01···S10.795 (16)2.748 (16)3.4636 (10)150.7 (14)
N3—H02···S1i0.853 (15)2.766 (15)3.5496 (11)153.6 (13)
N3—H03···S1ii0.833 (16)2.571 (16)3.3930 (10)169.6 (13)
N1—H01···S10.819 (16)2.564 (16)3.3426 (10)159.1 (13)
N3—H02···S1iii0.878 (16)2.588 (16)3.4033 (10)154.9 (13)
N3—H03···S1iv0.838 (16)2.612 (16)3.4377 (10)168.7 (13)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z; (iii) x1, y, z; (iv) x, y+2, z+1.
(fichte) top
Crystal data top
C3H8N2SDx = 1.324 Mg m3
Mr = 104.17Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 13412 reflections
a = 6.15884 (15) Åθ = 2.2–30.9°
b = 11.5953 (3) ŵ = 0.47 mm1
c = 14.6390 (4) ÅT = 100 K
V = 1045.42 (4) Å3Tablet, colourless
Z = 80.20 × 0.20 × 0.12 mm
F(000) = 448
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
1620 independent reflections
Radiation source: Enhance (Mo) X-ray Source1433 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 16.1419 pixels mm-1θmax = 30.9°, θmin = 2.8°
ω–scanh = 88
Absorption correction: multi-scan
CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11)
k = 1616
Tmin = 0.977, Tmax = 1.000l = 2020
47980 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0271P)2 + 0.4173P]
where P = (Fo2 + 2Fc2)/3
1620 reflections(Δ/σ)max = 0.004
65 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C3H8N2SV = 1045.42 (4) Å3
Mr = 104.17Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 6.15884 (15) ŵ = 0.47 mm1
b = 11.5953 (3) ÅT = 100 K
c = 14.6390 (4) Å0.20 × 0.20 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
1620 independent reflections
Absorption correction: multi-scan
CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11)
1433 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 1.000Rint = 0.041
47980 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.36 e Å3
1620 reflectionsΔρmin = 0.21 e Å3
65 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. NH H atoms were refined freely. The methyl groups were refined as idealized rigid groups allowed to rotate but not tip.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.86257 (4)0.342915 (19)0.560327 (16)0.01637 (8)
N10.50612 (13)0.42782 (7)0.64388 (5)0.01555 (16)
N30.73219 (16)0.55819 (7)0.57368 (6)0.01929 (18)
H020.843 (2)0.5724 (12)0.5403 (10)0.026 (4)*
H010.648 (2)0.6158 (15)0.5852 (11)0.033 (4)*
C20.68672 (15)0.44830 (7)0.59527 (6)0.01367 (17)
C110.43718 (17)0.31185 (8)0.66995 (7)0.01888 (19)
H11A0.54750.25590.65090.028*
H11B0.29900.29370.64000.028*
H11C0.41880.30810.73640.028*
C120.35777 (17)0.52175 (9)0.66800 (7)0.0209 (2)
H12A0.43110.57530.70960.031*
H12B0.22880.48990.69800.031*
H12C0.31420.56290.61250.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01796 (13)0.01046 (12)0.02067 (13)0.00102 (8)0.00495 (8)0.00125 (8)
N10.0166 (4)0.0137 (3)0.0164 (4)0.0008 (3)0.0026 (3)0.0003 (3)
N30.0221 (4)0.0104 (4)0.0254 (4)0.0012 (3)0.0067 (4)0.0015 (3)
C20.0168 (4)0.0119 (4)0.0123 (4)0.0001 (3)0.0012 (3)0.0001 (3)
C110.0190 (5)0.0172 (4)0.0204 (5)0.0036 (4)0.0027 (4)0.0021 (3)
C120.0207 (5)0.0209 (5)0.0211 (5)0.0060 (4)0.0042 (4)0.0004 (4)
Geometric parameters (Å, º) top
S1—C21.7111 (9)C11—H11A0.9800
N1—C21.3416 (12)C11—H11B0.9800
N1—C111.4608 (12)C11—H11C0.9800
N1—C121.4649 (12)C12—H12A0.9800
N3—C21.3423 (12)C12—H12B0.9800
N3—H020.854 (15)C12—H12C0.9800
N3—H010.861 (17)
C2—N1—C11122.85 (8)H11A—C11—H11B109.5
C2—N1—C12120.89 (8)N1—C11—H11C109.5
C11—N1—C12116.11 (8)H11A—C11—H11C109.5
N1—C2—N3117.77 (8)H11B—C11—H11C109.5
N1—C2—S1123.84 (7)N1—C12—H12A109.5
N3—C2—S1118.39 (7)N1—C12—H12B109.5
C2—N3—H02119.0 (10)H12A—C12—H12B109.5
C2—N3—H01124.4 (10)N1—C12—H12C109.5
H02—N3—H01116.2 (13)H12A—C12—H12C109.5
N1—C11—H11A109.5H12B—C12—H12C109.5
N1—C11—H11B109.5
C11—N1—C2—N3178.75 (9)C11—N1—C2—S11.84 (13)
C12—N1—C2—N33.34 (14)C12—N1—C2—S1177.25 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H02···S1i0.854 (15)2.535 (15)3.3752 (9)167.9 (13)
N3—H01···S1ii0.861 (17)2.660 (17)3.3584 (9)139.1 (13)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+3/2, y+1/2, z.
(buche) top
Crystal data top
C6H15N3OSF(000) = 384
Mr = 177.27Dx = 1.274 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.56953 (19) ÅCell parameters from 8511 reflections
b = 8.7346 (3) Åθ = 2.3–30.8°
c = 16.2322 (5) ŵ = 0.30 mm1
β = 96.964 (3)°T = 100 K
V = 924.57 (5) Å3Block, colourless
Z = 40.60 × 0.30 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
2766 independent reflections
Radiation source: Enhance (Mo) X-ray Source2481 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 16.1419 pixels mm-1θmax = 30.8°, θmin = 2.5°
ω–scanh = 99
Absorption correction: multi-scan
CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11)
k = 1212
Tmin = 0.930, Tmax = 1.000l = 2223
24602 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0279P)2 + 0.2877P]
where P = (Fo2 + 2Fc2)/3
2766 reflections(Δ/σ)max = 0.001
117 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C6H15N3OSV = 924.57 (5) Å3
Mr = 177.27Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.56953 (19) ŵ = 0.30 mm1
b = 8.7346 (3) ÅT = 100 K
c = 16.2322 (5) Å0.60 × 0.30 × 0.20 mm
β = 96.964 (3)°
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
2766 independent reflections
Absorption correction: multi-scan
CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11)
2481 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 1.000Rint = 0.023
24602 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.42 e Å3
2766 reflectionsΔρmin = 0.22 e Å3
117 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The NH hydrogen were refined freely. The methyl groups were refined as idealized rigid groups allowed to rotate but not tip. Other H atoms were included using a riding model starting from calculated positions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.59279 (3)0.25150 (2)0.516867 (12)0.01403 (6)
N10.26108 (10)0.11300 (8)0.44283 (4)0.01374 (13)
H010.3227 (18)0.0341 (14)0.4585 (7)0.022 (3)*
C20.35593 (12)0.24655 (8)0.45909 (5)0.01128 (14)
N30.26259 (11)0.37463 (8)0.43036 (4)0.01434 (13)
H020.147 (2)0.3738 (15)0.3978 (8)0.030 (3)*
H030.3197 (18)0.4598 (14)0.4437 (7)0.023 (3)*
C110.05684 (12)0.09654 (10)0.39797 (5)0.01780 (16)
H11A0.04160.15420.42660.027*
H11B0.01830.01190.39560.027*
H11C0.05610.13620.34150.027*
O10.05655 (10)0.75767 (7)0.29741 (4)0.01797 (13)
C30.08424 (13)0.66044 (10)0.26173 (5)0.01771 (16)
H3A0.20340.63860.30350.021*
H3B0.13500.71330.21430.021*
C40.01776 (14)0.51139 (10)0.23232 (5)0.01901 (17)
H4A0.13260.53210.18840.023*
H4B0.08230.44450.20880.023*
N40.09532 (11)0.43452 (8)0.30303 (5)0.01755 (15)
H040.162 (2)0.3584 (16)0.2865 (8)0.032 (3)*
C50.23971 (13)0.53543 (10)0.33980 (5)0.01836 (17)
H5A0.28810.48470.38840.022*
H5B0.36020.55660.29860.022*
C60.13237 (13)0.68363 (10)0.36638 (5)0.01742 (16)
H6A0.22940.75260.39030.021*
H6B0.01680.66230.40990.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01197 (10)0.01029 (10)0.01869 (11)0.00015 (6)0.00278 (7)0.00048 (6)
N10.0134 (3)0.0088 (3)0.0180 (3)0.0003 (2)0.0021 (2)0.0004 (2)
C20.0121 (3)0.0111 (3)0.0107 (3)0.0005 (2)0.0019 (3)0.0006 (2)
N30.0145 (3)0.0093 (3)0.0179 (3)0.0000 (2)0.0034 (2)0.0003 (2)
C110.0142 (3)0.0133 (4)0.0245 (4)0.0019 (3)0.0034 (3)0.0007 (3)
O10.0239 (3)0.0129 (3)0.0180 (3)0.0028 (2)0.0061 (2)0.0027 (2)
C30.0189 (4)0.0182 (4)0.0169 (4)0.0009 (3)0.0057 (3)0.0016 (3)
C40.0225 (4)0.0187 (4)0.0153 (4)0.0030 (3)0.0003 (3)0.0023 (3)
N40.0191 (3)0.0128 (3)0.0195 (3)0.0024 (3)0.0029 (3)0.0003 (3)
C50.0149 (4)0.0215 (4)0.0183 (4)0.0017 (3)0.0007 (3)0.0034 (3)
C60.0200 (4)0.0185 (4)0.0143 (3)0.0015 (3)0.0041 (3)0.0004 (3)
Geometric parameters (Å, º) top
S1—C21.7172 (8)C11—H11A0.9800
N1—C21.3337 (10)C11—H11B0.9800
N1—C111.4541 (10)C11—H11C0.9800
C2—N31.3326 (10)C3—H3A0.9900
O1—C31.4290 (10)C3—H3B0.9900
O1—C61.4335 (10)C4—H4A0.9900
C3—C41.5147 (12)C4—H4B0.9900
C4—N41.4729 (11)N4—H040.822 (14)
N4—C51.4732 (11)C5—H5A0.9900
C5—C61.5117 (12)C5—H5B0.9900
N1—H010.824 (12)C6—H6A0.9900
N3—H020.872 (13)C6—H6B0.9900
N3—H030.850 (13)
C2—N1—C11124.48 (7)C4—C3—H3A109.5
N3—C2—N1118.74 (7)O1—C3—H3B109.5
N3—C2—S1121.20 (6)C4—C3—H3B109.5
N1—C2—S1120.05 (6)H3A—C3—H3B108.1
C3—O1—C6110.59 (6)N4—C4—H4A109.9
O1—C3—C4110.81 (7)C3—C4—H4A109.9
N4—C4—C3109.13 (7)N4—C4—H4B109.9
C4—N4—C5110.09 (7)C3—C4—H4B109.9
N4—C5—C6109.09 (7)H4A—C4—H4B108.3
O1—C6—C5110.95 (7)C4—N4—H04109.5 (9)
C2—N1—H01118.1 (8)C5—N4—H04105.9 (9)
C11—N1—H01117.4 (8)N4—C5—H5A109.9
C2—N3—H02122.4 (9)C6—C5—H5A109.9
C2—N3—H03118.4 (8)N4—C5—H5B109.9
H02—N3—H03119.2 (12)C6—C5—H5B109.9
N1—C11—H11A109.5H5A—C5—H5B108.3
N1—C11—H11B109.5O1—C6—H6A109.4
H11A—C11—H11B109.5C5—C6—H6A109.4
N1—C11—H11C109.5O1—C6—H6B109.4
H11A—C11—H11C109.5C5—C6—H6B109.4
H11B—C11—H11C109.5H6A—C6—H6B108.0
O1—C3—H3A109.5
C11—N1—C2—N32.40 (12)C3—C4—N4—C557.82 (9)
C11—N1—C2—S1177.00 (6)C4—N4—C5—C657.74 (9)
C6—O1—C3—C459.15 (9)C3—O1—C6—C559.18 (9)
O1—C3—C4—N458.36 (9)N4—C5—C6—O158.19 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H01···S1i0.824 (12)2.576 (13)3.3665 (7)161.2 (11)
N3—H02···N40.872 (13)2.142 (13)2.9826 (10)162.0 (12)
N3—H03···S1ii0.850 (13)2.647 (13)3.4790 (7)166.5 (10)
N4—H04···O1iii0.822 (14)2.333 (14)3.0611 (10)147.9 (12)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x1/2, y1/2, z+1/2.
(kirsche) top
Crystal data top
C5H12N2OSF(000) = 320
Mr = 148.23Dx = 1.295 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.4979 (2) ÅCell parameters from 7968 reflections
b = 7.0116 (3) Åθ = 2.4–30.8°
c = 16.7097 (6) ŵ = 0.35 mm1
β = 92.982 (4)°T = 100 K
V = 760.27 (5) Å3Tablet, colourless
Z = 40.40 × 0.34 × 0.07 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
2295 independent reflections
Radiation source: Enhance (Mo) X-ray Source2020 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 16.1419 pixels mm-1θmax = 30.8°, θmin = 2.4°
ω–scanh = 99
Absorption correction: multi-scan
CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11)
k = 99
Tmin = 0.899, Tmax = 1.000l = 2324
26635 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0335P)2 + 0.3101P]
where P = (Fo2 + 2Fc2)/3
2295 reflections(Δ/σ)max = 0.001
92 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C5H12N2OSV = 760.27 (5) Å3
Mr = 148.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.4979 (2) ŵ = 0.35 mm1
b = 7.0116 (3) ÅT = 100 K
c = 16.7097 (6) Å0.40 × 0.34 × 0.07 mm
β = 92.982 (4)°
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
2295 independent reflections
Absorption correction: multi-scan
CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11)
2020 reflections with I > 2σ(I)
Tmin = 0.899, Tmax = 1.000Rint = 0.037
26635 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.37 e Å3
2295 reflectionsΔρmin = 0.34 e Å3
92 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The NH hydrogen were refined freely. The methyl groups were refined as idealized rigid groups allowed to rotate but not tip. Other H atoms were included using a riding model starting from calculated positions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.59561 (4)0.36220 (4)0.114934 (15)0.01612 (8)
N30.28298 (16)0.59360 (15)0.07887 (6)0.0190 (2)
H020.334 (3)0.600 (2)0.0319 (10)0.029 (4)*
H010.184 (3)0.665 (2)0.0864 (9)0.026 (4)*
N10.29207 (13)0.47557 (13)0.20694 (5)0.01396 (17)
C20.37683 (15)0.48453 (14)0.13565 (6)0.01304 (19)
C110.38771 (18)0.36980 (17)0.27453 (7)0.0199 (2)
H11A0.30710.25460.28400.030*
H11B0.39170.45010.32260.030*
H11C0.52840.33390.26230.030*
C120.10138 (16)0.57891 (16)0.22121 (7)0.0168 (2)
H12A0.12490.71620.21580.025*
H12B0.05890.55120.27540.025*
H12C0.00720.53840.18200.025*
O10.01188 (12)0.91701 (11)0.07707 (5)0.01708 (16)
C40.09944 (17)1.09107 (16)0.06551 (6)0.0178 (2)
H4A0.21661.09930.10570.021*
H4B0.00761.20130.07360.021*
C30.17944 (16)0.90051 (16)0.01794 (6)0.0172 (2)
H3A0.27881.00550.02480.021*
H3B0.25230.77820.02520.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01565 (13)0.01862 (14)0.01421 (13)0.00477 (9)0.00191 (9)0.00031 (9)
N30.0207 (5)0.0236 (5)0.0130 (4)0.0094 (4)0.0032 (3)0.0026 (4)
N10.0154 (4)0.0142 (4)0.0125 (4)0.0022 (3)0.0018 (3)0.0006 (3)
C20.0140 (4)0.0117 (4)0.0134 (4)0.0003 (3)0.0004 (3)0.0020 (3)
C110.0230 (5)0.0219 (5)0.0152 (5)0.0063 (4)0.0034 (4)0.0051 (4)
C120.0146 (5)0.0195 (5)0.0165 (5)0.0022 (4)0.0034 (4)0.0005 (4)
O10.0185 (4)0.0174 (4)0.0153 (4)0.0001 (3)0.0002 (3)0.0018 (3)
C40.0191 (5)0.0186 (5)0.0157 (5)0.0016 (4)0.0005 (4)0.0026 (4)
C30.0153 (5)0.0185 (5)0.0179 (5)0.0007 (4)0.0017 (4)0.0006 (4)
Geometric parameters (Å, º) top
S1—C21.7111 (10)C11—H11A0.9800
N3—C21.3405 (14)C11—H11B0.9800
N1—C21.3396 (13)C11—H11C0.9800
N1—C111.4624 (14)C12—H12A0.9800
N1—C121.4656 (13)C12—H12B0.9800
O1—C31.4364 (13)C12—H12C0.9800
O1—C41.4369 (13)C4—H4A0.9900
C4—C3i1.5143 (15)C4—H4B0.9900
C3—C4i1.5143 (15)C3—H3A0.9900
N3—H020.868 (17)C3—H3B0.9900
N3—H010.832 (17)
C2—N1—C11122.18 (9)H11B—C11—H11C109.5
C2—N1—C12120.77 (9)N1—C12—H12A109.5
C11—N1—C12117.00 (8)N1—C12—H12B109.5
N1—C2—N3117.60 (9)H12A—C12—H12B109.5
N1—C2—S1122.74 (8)N1—C12—H12C109.5
N3—C2—S1119.66 (8)H12A—C12—H12C109.5
C3—O1—C4110.17 (8)H12B—C12—H12C109.5
O1—C4—C3i110.87 (9)O1—C4—H4A109.5
O1—C3—C4i110.24 (9)C3i—C4—H4A109.5
C2—N3—H02119.3 (11)O1—C4—H4B109.5
C2—N3—H01124.4 (11)C3i—C4—H4B109.5
H02—N3—H01116.1 (15)H4A—C4—H4B108.1
N1—C11—H11A109.5O1—C3—H3A109.6
N1—C11—H11B109.5C4i—C3—H3A109.6
H11A—C11—H11B109.5O1—C3—H3B109.6
N1—C11—H11C109.5C4i—C3—H3B109.6
H11A—C11—H11C109.5H3A—C3—H3B108.1
C11—N1—C2—N3176.46 (10)C12—N1—C2—S1178.35 (8)
C12—N1—C2—N31.16 (15)C3—O1—C4—C3i57.69 (12)
C11—N1—C2—S14.04 (15)C4—O1—C3—C4i57.32 (12)
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H02···S1ii0.868 (17)2.533 (17)3.3870 (10)167.9 (14)
N3—H01···O10.832 (17)2.177 (17)2.9678 (13)158.9 (15)
Symmetry code: (ii) x+1, y+1, z.
(laerche) top
Crystal data top
C5H12N2OSZ = 2
Mr = 148.23F(000) = 160
Triclinic, P1Dx = 1.275 Mg m3
a = 6.8470 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.0982 (4) ÅCell parameters from 9890 reflections
c = 8.6412 (3) Åθ = 2.6–30.8°
α = 106.676 (5)°µ = 0.35 mm1
β = 105.448 (5)°T = 100 K
γ = 90.679 (4)°Irregular, colourless
V = 386.00 (3) Å30.40 × 0.40 × 0.30 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
2261 independent reflections
Radiation source: Enhance (Mo) X-ray Source2152 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 16.1419 pixels mm-1θmax = 30.8°, θmin = 2.6°
ω–scanh = 99
Absorption correction: multi-scan
CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11)
k = 1010
Tmin = 0.963, Tmax = 1.000l = 1212
19849 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0286P)2 + 0.1049P]
where P = (Fo2 + 2Fc2)/3
2261 reflections(Δ/σ)max = 0.001
92 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C5H12N2OSγ = 90.679 (4)°
Mr = 148.23V = 386.00 (3) Å3
Triclinic, P1Z = 2
a = 6.8470 (4) ÅMo Kα radiation
b = 7.0982 (4) ŵ = 0.35 mm1
c = 8.6412 (3) ÅT = 100 K
α = 106.676 (5)°0.40 × 0.40 × 0.30 mm
β = 105.448 (5)°
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
2261 independent reflections
Absorption correction: multi-scan
CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11)
2152 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 1.000Rint = 0.021
19849 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.060H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.41 e Å3
2261 reflectionsΔρmin = 0.19 e Å3
92 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The NH hydrogen were refined freely. The methyl groups were refined as idealized rigid groups allowed to rotate but not tip. Other H atoms were included using a riding model starting from calculated positions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.79400 (3)0.65322 (3)0.83621 (2)0.01647 (7)
N10.73593 (10)0.32910 (10)0.91781 (9)0.01514 (13)
H010.858 (2)0.3589 (18)0.9756 (15)0.023 (3)*
C110.62755 (12)0.16044 (12)0.93232 (11)0.01757 (15)
H11A0.51270.20410.97670.026*
H11B0.72010.10101.00890.026*
H11C0.57690.06250.82110.026*
C20.65055 (11)0.45281 (11)0.83380 (9)0.01311 (14)
N30.45272 (10)0.41150 (10)0.74971 (9)0.01643 (14)
H030.3923 (18)0.3048 (19)0.7456 (15)0.022 (3)*
C310.33183 (13)0.53097 (13)0.65536 (11)0.02079 (17)
H31A0.39980.66520.69340.031*
H31B0.19680.53590.67410.031*
H31C0.31770.47220.53510.031*
O10.19088 (9)0.03915 (10)0.62293 (8)0.02009 (13)
C30.17228 (13)0.05756 (15)0.44879 (11)0.02394 (18)
H3A0.15660.20250.42670.029*
H3B0.29760.02350.42210.029*
C40.00908 (13)0.00422 (13)0.66256 (11)0.01956 (16)
H4A0.02180.06670.78210.023*
H4B0.01090.14770.64630.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01465 (10)0.01487 (10)0.01981 (11)0.00181 (7)0.00210 (7)0.00777 (7)
N10.0116 (3)0.0145 (3)0.0192 (3)0.0004 (2)0.0019 (2)0.0071 (2)
C110.0169 (3)0.0148 (3)0.0221 (4)0.0006 (3)0.0046 (3)0.0082 (3)
C20.0134 (3)0.0126 (3)0.0127 (3)0.0012 (2)0.0044 (3)0.0022 (3)
N30.0129 (3)0.0150 (3)0.0199 (3)0.0007 (2)0.0009 (2)0.0064 (3)
C310.0165 (4)0.0218 (4)0.0213 (4)0.0024 (3)0.0015 (3)0.0085 (3)
O10.0137 (3)0.0267 (3)0.0164 (3)0.0035 (2)0.0013 (2)0.0042 (2)
C30.0165 (4)0.0363 (5)0.0183 (4)0.0047 (3)0.0060 (3)0.0059 (3)
C40.0182 (4)0.0252 (4)0.0160 (4)0.0010 (3)0.0051 (3)0.0073 (3)
Geometric parameters (Å, º) top
S1—C21.7110 (8)C11—H11B0.9800
N1—C21.3386 (10)C11—H11C0.9800
N1—C111.4541 (10)N3—H030.845 (13)
C2—N31.3389 (10)C31—H31A0.9800
N3—C311.4571 (11)C31—H31B0.9800
O1—C41.4283 (10)C31—H31C0.9800
O1—C31.4335 (11)C3—H3A0.9900
C3—C4i1.5095 (12)C3—H3B0.9900
C4—C3i1.5096 (12)C4—H4A0.9900
N1—H010.840 (13)C4—H4B0.9900
C11—H11A0.9800
C2—N1—C11124.91 (7)C31—N3—H03116.0 (8)
N1—C2—N3117.26 (7)N3—C31—H31A109.5
N1—C2—S1119.96 (6)N3—C31—H31B109.5
N3—C2—S1122.79 (6)H31A—C31—H31B109.5
C2—N3—C31125.38 (7)N3—C31—H31C109.5
C4—O1—C3110.26 (6)H31A—C31—H31C109.5
O1—C3—C4i110.70 (7)H31B—C31—H31C109.5
O1—C4—C3i110.34 (7)O1—C3—H3A109.5
C2—N1—H01117.3 (8)C4i—C3—H3A109.5
C11—N1—H01117.4 (8)O1—C3—H3B109.5
N1—C11—H11A109.5C4i—C3—H3B109.5
N1—C11—H11B109.5H3A—C3—H3B108.1
H11A—C11—H11B109.5O1—C4—H4A109.6
N1—C11—H11C109.5C3i—C4—H4A109.6
H11A—C11—H11C109.5O1—C4—H4B109.6
H11B—C11—H11C109.5C3i—C4—H4B109.6
C2—N3—H03118.5 (8)H4A—C4—H4B108.1
C11—N1—C2—N33.70 (11)S1—C2—N3—C312.20 (11)
C11—N1—C2—S1176.59 (6)C4—O1—C3—C4i57.62 (10)
N1—C2—N3—C31178.10 (8)C3—O1—C4—C3i57.41 (10)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H01···S1ii0.840 (13)2.520 (13)3.3295 (7)162.2 (11)
N3—H03···O10.845 (13)2.143 (13)2.9290 (9)154.4 (11)
Symmetry code: (ii) x+2, y+1, z+2.
(judo) top
Crystal data top
C5H12N2SF(000) = 288
Mr = 132.23Dx = 1.228 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 5.4621 (2) ÅCell parameters from 4399 reflections
b = 12.0353 (4) Åθ = 3.4–30.8°
c = 10.9309 (4) ŵ = 0.36 mm1
β = 95.641 (4)°T = 100 K
V = 715.10 (4) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
988 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.022
Graphite monochromatorθmax = 30.8°, θmin = 3.4°
Detector resolution: 16.1419 pixels mm-1h = 77
ω–scank = 1617
9123 measured reflectionsl = 1515
1072 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0263P)2 + 0.3639P]
where P = (Fo2 + 2Fc2)/3
1072 reflections(Δ/σ)max = 0.001
40 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C5H12N2SV = 715.10 (4) Å3
Mr = 132.23Z = 4
Monoclinic, C2/cMo Kα radiation
a = 5.4621 (2) ŵ = 0.36 mm1
b = 12.0353 (4) ÅT = 100 K
c = 10.9309 (4) Å0.20 × 0.20 × 0.20 mm
β = 95.641 (4)°
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
988 reflections with I > 2σ(I)
9123 measured reflectionsRint = 0.022
1072 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.06Δρmax = 0.31 e Å3
1072 reflectionsΔρmin = 0.15 e Å3
40 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The methyl groups were refined as idealized rigid groups allowed to rotate but not tip.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.50000.60583 (2)0.25000.02080 (10)
N10.38291 (13)0.40519 (6)0.33192 (6)0.01719 (15)
C20.50000.46519 (9)0.25000.0146 (2)
C110.19738 (16)0.45517 (8)0.40165 (8)0.02223 (18)
H11A0.27450.47990.48180.033*
H11B0.06960.40020.41380.033*
H11C0.12320.51900.35630.033*
C120.48412 (16)0.30059 (7)0.38405 (7)0.02043 (17)
H12A0.64170.28520.35170.031*
H12B0.36880.23990.36150.031*
H12C0.50940.30690.47380.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02953 (17)0.01594 (14)0.01703 (14)0.0000.00277 (11)0.000
N10.0189 (3)0.0189 (3)0.0145 (3)0.0009 (2)0.0060 (2)0.0016 (2)
C20.0146 (4)0.0180 (5)0.0112 (4)0.0000.0004 (3)0.000
C110.0194 (4)0.0313 (4)0.0171 (4)0.0018 (3)0.0073 (3)0.0012 (3)
C120.0263 (4)0.0192 (4)0.0159 (3)0.0009 (3)0.0025 (3)0.0031 (3)
Geometric parameters (Å, º) top
S1—C21.6925 (11)C11—H11B0.9800
N1—C21.3583 (9)C11—H11C0.9800
N1—C111.4566 (10)C12—H12A0.9800
N1—C121.4674 (10)C12—H12B0.9800
C2—N1i1.3583 (9)C12—H12C0.9800
C11—H11A0.9800
C2—N1—C11121.49 (7)H11A—C11—H11C109.5
C2—N1—C12121.89 (7)H11B—C11—H11C109.5
C11—N1—C12113.95 (7)N1—C12—H12A109.5
N1i—C2—N1115.76 (10)N1—C12—H12B109.5
N1i—C2—S1122.12 (5)H12A—C12—H12B109.5
N1—C11—H11A109.5N1—C12—H12C109.5
N1—C11—H11B109.5H12A—C12—H12C109.5
H11A—C11—H11B109.5H12B—C12—H12C109.5
N1—C11—H11C109.5N1—C2—S1122.12 (5)
C11—N1—C2—N1i163.00 (8)C11—N1—C2—S117.00 (8)
C12—N1—C2—N1i36.64 (6)C12—N1—C2—S1143.36 (6)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···S1ii0.982.773.7246 (9)165
Symmetry code: (ii) x1/2, y1/2, z.

Experimental details

(birke)(fichte)(buche)(kirsche)
Crystal data
Chemical formulaC2H6N2SC3H8N2SC6H15N3OSC5H12N2OS
Mr90.15104.17177.27148.23
Crystal system, space groupTriclinic, P1Orthorhombic, PbcaMonoclinic, P21/nMonoclinic, P21/c
Temperature (K)100100100100
a, b, c (Å)7.6615 (7), 7.6945 (6), 8.0283 (6)6.15884 (15), 11.5953 (3), 14.6390 (4)6.56953 (19), 8.7346 (3), 16.2322 (5)6.4979 (2), 7.0116 (3), 16.7097 (6)
α, β, γ (°)78.182 (7), 73.785 (7), 81.448 (7)90, 90, 9090, 96.964 (3), 9090, 92.982 (4), 90
V3)442.71 (6)1045.42 (4)924.57 (5)760.27 (5)
Z4844
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.540.470.300.35
Crystal size (mm)0.30 × 0.08 × 0.070.20 × 0.20 × 0.120.60 × 0.30 × 0.200.40 × 0.34 × 0.07
Data collection
DiffractometerOxford Diffraction Xcalibur, Eos
diffractometer
Oxford Diffraction Xcalibur, Eos
diffractometer
Oxford Diffraction Xcalibur, Eos
diffractometer
Oxford Diffraction Xcalibur, Eos
diffractometer
Absorption correctionMulti-scan
CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11)
Multi-scan
CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11)
Multi-scan
CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11)
Multi-scan
CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11)
Tmin, Tmax0.888, 1.0000.977, 1.0000.930, 1.0000.899, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
23416, 2543, 2283 47980, 1620, 1433 24602, 2766, 2481 26635, 2295, 2020
Rint0.0320.0410.0230.037
(sin θ/λ)max1)0.7040.7230.7210.721
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.059, 1.10 0.026, 0.063, 1.07 0.025, 0.065, 1.05 0.030, 0.075, 1.08
No. of reflections2543162027662295
No. of parameters1176511792
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.280.36, 0.210.42, 0.220.37, 0.34


(laerche)(judo)
Crystal data
Chemical formulaC5H12N2OSC5H12N2S
Mr148.23132.23
Crystal system, space groupTriclinic, P1Monoclinic, C2/c
Temperature (K)100100
a, b, c (Å)6.8470 (4), 7.0982 (4), 8.6412 (3)5.4621 (2), 12.0353 (4), 10.9309 (4)
α, β, γ (°)106.676 (5), 105.448 (5), 90.679 (4)90, 95.641 (4), 90
V3)386.00 (3)715.10 (4)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.350.36
Crystal size (mm)0.40 × 0.40 × 0.300.20 × 0.20 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur, Eos
diffractometer
Oxford Diffraction Xcalibur, Eos
diffractometer
Absorption correctionMulti-scan
CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11)
Tmin, Tmax0.963, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
19849, 2261, 2152 9123, 1072, 988
Rint0.0210.022
(sin θ/λ)max1)0.7210.720
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.060, 1.06 0.022, 0.059, 1.06
No. of reflections22611072
No. of parameters9240
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.190.31, 0.15

Computer programs: CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11), CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.35.21 (release 20-01-2012 CrysAlis171 .NET) (compiled Jan 23 2012,18:06:46), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), Bruker XP, SHELXL97.

Hydrogen-bond geometry (Å, º) for (birke) top
D—H···AD—HH···AD···AD—H···A
N1—H01···S1'0.795 (16)2.748 (16)3.4636 (10)150.7 (14)
N3—H02···S1'i0.853 (15)2.766 (15)3.5496 (11)153.6 (13)
N3—H03···S1ii0.833 (16)2.571 (16)3.3930 (10)169.6 (13)
N1'—H01'···S10.819 (16)2.564 (16)3.3426 (10)159.1 (13)
N3'—H02'···S1iii0.878 (16)2.588 (16)3.4033 (10)154.9 (13)
N3'—H03'···S1'iv0.838 (16)2.612 (16)3.4377 (10)168.7 (13)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z; (iii) x1, y, z; (iv) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) for (fichte) top
D—H···AD—HH···AD···AD—H···A
N3—H02···S1i0.854 (15)2.535 (15)3.3752 (9)167.9 (13)
N3—H01···S1ii0.861 (17)2.660 (17)3.3584 (9)139.1 (13)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+3/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) for (buche) top
D—H···AD—HH···AD···AD—H···A
N1—H01···S1i0.824 (12)2.576 (13)3.3665 (7)161.2 (11)
N3—H02···N40.872 (13)2.142 (13)2.9826 (10)162.0 (12)
N3—H03···S1ii0.850 (13)2.647 (13)3.4790 (7)166.5 (10)
N4—H04···O1iii0.822 (14)2.333 (14)3.0611 (10)147.9 (12)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (kirsche) top
D—H···AD—HH···AD···AD—H···A
N3—H02···S1i0.868 (17)2.533 (17)3.3870 (10)167.9 (14)
N3—H01···O10.832 (17)2.177 (17)2.9678 (13)158.9 (15)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) for (laerche) top
D—H···AD—HH···AD···AD—H···A
N1—H01···S1i0.840 (13)2.520 (13)3.3295 (7)162.2 (11)
N3—H03···O10.845 (13)2.143 (13)2.9290 (9)154.4 (11)
Symmetry code: (i) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) for (judo) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···S1i0.982.773.7246 (9)165.3
Symmetry code: (i) x1/2, y1/2, z.
 

Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds