Download citation
Download citation
link to html
The crystal structures of the six dichlorobenzaldehyde isomers, four of them newly determined, are analyzed in terms of the geometry and energies of their intermolecular interactions, quantified using the semi-classical density sums (SCDS-PIXEL) method. A consistent feature in all six structures is molecular stacks propagating along a short crystallographic axis of ca 3.8 Å. The stacks have a closely comparable geometry in each isomer, but the interaction energies between stacked molecules are variable on account of the differing relative positions of the Cl substituents. In the majority of the isomers the stacking interactions are the most stabilizing in the structure. Exceptions are the 2,4- and 3,5-isomers, where more stabilizing interactions are made between stacks. In general, the most stabilizing non-stacking intermolecular interactions in the structures are those involving C—H...O contacts. Observed motifs based on Cl...Cl interactions appear to be largely imposed by the constraints of other more stabilizing intermolecular interactions. The isomeric series displays the following noteworthy features: (i) the 2,3- and 2,6-isomers are isostructural despite having different orientations of the Cl and aldehyde functionalities; (ii) the 2,5-isomer exhibits whole-molecule disorder; (iii) the 2,5- and 3,5-isomers have more than one molecule in the crystallographic asymmetric unit (Z′ > 1). These features in particular are considered on the basis of the intermolecular interaction energies.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768111035786/gp5044sup1.cif
Contains datablocks global, 1, 3, 5, 6

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768111035786/gp50441sup2.hkl
Contains datablock 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768111035786/gp50443sup3.hkl
Contains datablock 3

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768111035786/gp50445sup4.hkl
Contains datablock 5

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768111035786/gp50446sup5.hkl
Contains datablock 6

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108768111035786/gp5044sup6.pdf
Tables of intermolecular interaction energies calculated using PIXEL

txt

Text file https://doi.org/10.1107/S0108768111035786/gp5044sup7.txt
CSD CIF file

CCDC references: 849849; 849850; 849851; 849852

Computing details top

For all compounds, data collection: APEX2 v.1.0-22 (Bruker Nonius, 2004); cell refinement: SAINT v.7.06a (Bruker, 2003); data reduction: SAINT v.7.06a; program(s) used to solve structure: SHELXTL v.6.10 (Sheldrick, 2000); program(s) used to refine structure: SHELXTL v.6.10; molecular graphics: SHELXTL v.6.10; software used to prepare material for publication: SHELXTL v.6.10.

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
[Figure 10]
(1) top
Crystal data top
C7H4Cl2OF(000) = 352
Mr = 175.00Dx = 1.708 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3550 reflections
a = 3.7888 (3) Åθ = 3.0–24.8°
b = 13.7784 (15) ŵ = 0.87 mm1
c = 13.0368 (15) ÅT = 120 K
β = 90.979 (5)°Needle, colourless
V = 680.47 (12) Å30.30 × 0.05 × 0.05 mm
Z = 4
Data collection top
Bruker-Nonius X8APEX-II CCD
diffractometer
1226 independent reflections
Radiation source: fine-focus sealed tube1036 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
thin–slice ω and ϕ scansθmax = 25.3°, θmin = 4.3°
Absorption correction: multi-scan
SADABS v.2.10 (Sheldrick, 2003) Ratio of minimum to maximum apparent transmission: 0.751021
h = 44
Tmin = 0.751, Tmax = 1.000k = 1616
11531 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0365P)2 + 1.0914P]
where P = (Fo2 + 2Fc2)/3
1226 reflections(Δ/σ)max < 0.001
91 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C7H4Cl2OV = 680.47 (12) Å3
Mr = 175.00Z = 4
Monoclinic, P21/cMo Kα radiation
a = 3.7888 (3) ŵ = 0.87 mm1
b = 13.7784 (15) ÅT = 120 K
c = 13.0368 (15) Å0.30 × 0.05 × 0.05 mm
β = 90.979 (5)°
Data collection top
Bruker-Nonius X8APEX-II CCD
diffractometer
1226 independent reflections
Absorption correction: multi-scan
SADABS v.2.10 (Sheldrick, 2003) Ratio of minimum to maximum apparent transmission: 0.751021
1036 reflections with I > 2σ(I)
Tmin = 0.751, Tmax = 1.000Rint = 0.049
11531 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.13Δρmax = 0.63 e Å3
1226 reflectionsΔρmin = 0.38 e Å3
91 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl20.69778 (19)0.85196 (5)0.44125 (6)0.0198 (2)
Cl30.61767 (19)0.62727 (5)0.41170 (6)0.0195 (2)
O11.2820 (6)0.94542 (15)0.70410 (17)0.0261 (5)
C11.0117 (7)0.8087 (2)0.6253 (2)0.0156 (6)
C20.8454 (7)0.7735 (2)0.5366 (2)0.0146 (6)
C30.8030 (7)0.6735 (2)0.5238 (2)0.0152 (6)
C40.9164 (7)0.6105 (2)0.5996 (2)0.0171 (6)
H40.88150.54270.59110.021*
C51.0795 (8)0.6449 (2)0.6872 (2)0.0193 (7)
H51.15860.60080.73870.023*
C61.1285 (7)0.7437 (2)0.7003 (2)0.0175 (6)
H61.24240.76730.76080.021*
C71.0775 (8)0.9139 (2)0.6411 (2)0.0208 (7)
H70.95090.95870.59900.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl20.0238 (4)0.0155 (4)0.0200 (4)0.0005 (3)0.0032 (3)0.0045 (3)
Cl30.0218 (4)0.0172 (4)0.0195 (4)0.0008 (3)0.0034 (3)0.0029 (3)
O10.0359 (13)0.0165 (11)0.0258 (13)0.0021 (10)0.0086 (10)0.0033 (9)
C10.0142 (14)0.0136 (14)0.0191 (16)0.0004 (11)0.0025 (12)0.0009 (12)
C20.0137 (14)0.0153 (14)0.0147 (15)0.0024 (11)0.0012 (11)0.0045 (12)
C30.0138 (14)0.0150 (15)0.0169 (15)0.0018 (11)0.0001 (11)0.0024 (12)
C40.0194 (15)0.0127 (14)0.0193 (16)0.0000 (12)0.0031 (12)0.0005 (12)
C50.0191 (15)0.0172 (15)0.0216 (17)0.0010 (12)0.0002 (12)0.0050 (12)
C60.0175 (14)0.0185 (15)0.0166 (16)0.0011 (12)0.0004 (12)0.0019 (12)
C70.0227 (16)0.0169 (16)0.0229 (17)0.0007 (13)0.0020 (13)0.0006 (13)
Geometric parameters (Å, º) top
Cl2—C21.734 (3)C3—C41.378 (4)
Cl3—C31.732 (3)C4—C51.373 (4)
O1—C71.201 (4)C4—H40.950
C1—C61.392 (4)C5—C61.385 (4)
C1—C21.394 (4)C5—H50.950
C1—C71.485 (4)C6—H60.950
C2—C31.397 (4)C7—H70.950
C6—C1—C2119.5 (3)C3—C4—H4119.7
C6—C1—C7118.6 (3)C4—C5—C6120.0 (3)
C2—C1—C7121.8 (3)C4—C5—H5120.0
C1—C2—C3119.5 (3)C6—C5—H5120.0
C1—C2—Cl2120.9 (2)C5—C6—C1120.3 (3)
C3—C2—Cl2119.6 (2)C5—C6—H6119.8
C4—C3—C2120.1 (3)C1—C6—H6119.8
C4—C3—Cl3119.4 (2)O1—C7—C1123.6 (3)
C2—C3—Cl3120.5 (2)O1—C7—H7118.2
C5—C4—C3120.6 (3)C1—C7—H7118.2
C5—C4—H4119.7
C6—C1—C2—C30.9 (4)C2—C3—C4—C51.6 (4)
C7—C1—C2—C3177.4 (3)Cl3—C3—C4—C5176.9 (2)
C6—C1—C2—Cl2179.8 (2)C3—C4—C5—C60.5 (4)
C7—C1—C2—Cl21.4 (4)C4—C5—C6—C10.3 (4)
C1—C2—C3—C41.7 (4)C2—C1—C6—C50.1 (4)
Cl2—C2—C3—C4179.4 (2)C7—C1—C6—C5178.5 (3)
C1—C2—C3—Cl3176.7 (2)C6—C1—C7—O114.9 (4)
Cl2—C2—C3—Cl32.2 (3)C2—C1—C7—O1163.5 (3)
(3) top
Crystal data top
C7H4Cl2OZ = 3
Mr = 175.00F(000) = 264
Triclinic, P1Dx = 1.656 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 3.8150 (5) ÅCell parameters from 1343 reflections
b = 7.8290 (11) Åθ = 2.9–24.1°
c = 17.895 (3) ŵ = 0.84 mm1
α = 89.091 (5)°T = 120 K
β = 85.728 (5)°Needle, colourless
γ = 81.115 (5)°0.35 × 0.03 × 0.03 mm
V = 526.60 (13) Å3
Data collection top
Bruker-Nonius X8APEX-II CCD
diffractometer
1827 independent reflections
Radiation source: fine-focus sealed tube1313 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
thin–slice ω and ϕ scansθmax = 25.1°, θmin = 4.3°
Absorption correction: multi-scan
SADABS v.2.10 (Sheldrick, 2003) Ratio of minimum to maximum apparent transmission: 0.721852
h = 44
Tmin = 0.704, Tmax = 0.975k = 99
6319 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0339P)2]
where P = (Fo2 + 2Fc2)/3
1827 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C7H4Cl2Oγ = 81.115 (5)°
Mr = 175.00V = 526.60 (13) Å3
Triclinic, P1Z = 3
a = 3.8150 (5) ÅMo Kα radiation
b = 7.8290 (11) ŵ = 0.84 mm1
c = 17.895 (3) ÅT = 120 K
α = 89.091 (5)°0.35 × 0.03 × 0.03 mm
β = 85.728 (5)°
Data collection top
Bruker-Nonius X8APEX-II CCD
diffractometer
1827 independent reflections
Absorption correction: multi-scan
SADABS v.2.10 (Sheldrick, 2003) Ratio of minimum to maximum apparent transmission: 0.721852
1313 reflections with I > 2σ(I)
Tmin = 0.704, Tmax = 0.975Rint = 0.047
6319 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.04Δρmax = 0.41 e Å3
1827 reflectionsΔρmin = 0.30 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.2055 (5)1.2310 (2)0.18353 (11)0.0278 (5)
C10.0282 (7)0.9539 (3)0.18013 (16)0.0159 (7)
C20.1146 (7)0.8213 (4)0.21890 (16)0.0162 (7)
Cl20.30351 (19)0.85462 (10)0.31062 (4)0.0255 (2)
C30.1086 (7)0.6606 (3)0.18701 (17)0.0183 (7)
H30.20030.57100.21490.022*
C40.0317 (7)0.6327 (4)0.11464 (17)0.0190 (7)
H40.03470.52360.09200.023*
C50.1685 (7)0.7627 (3)0.07462 (15)0.0141 (7)
Cl50.34316 (19)0.72875 (9)0.01745 (4)0.0196 (2)
C60.1683 (7)0.9211 (4)0.10660 (16)0.0167 (7)
H60.26441.00910.07840.020*
C70.0427 (8)1.1240 (4)0.21324 (17)0.0215 (7)
H70.08271.15110.26050.026*
O1A0.0815 (13)0.9457 (5)0.5114 (3)0.0444 (13)0.50
C7A0.2594 (15)0.8383 (8)0.5478 (3)0.0272 (16)0.50
H7A0.31690.87240.59550.033*0.50
H4A0.31420.78270.54330.033*0.50
C1A0.3878 (7)0.6681 (4)0.52552 (17)0.0208 (7)
C2A0.5752 (7)0.5422 (4)0.57071 (16)0.0209 (7)
Cl2A0.6697 (2)0.59588 (10)0.66033 (4)0.0281 (2)
C3A0.6859 (7)0.3776 (4)0.54496 (17)0.0214 (7)
H3A0.81430.29430.57590.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0415 (14)0.0172 (11)0.0262 (13)0.0113 (10)0.0022 (11)0.0015 (10)
C10.0165 (16)0.0139 (16)0.0168 (17)0.0006 (13)0.0031 (14)0.0028 (13)
C20.0107 (16)0.0236 (17)0.0139 (17)0.0006 (13)0.0034 (13)0.0044 (13)
Cl20.0262 (5)0.0317 (5)0.0187 (5)0.0070 (4)0.0022 (4)0.0043 (3)
C30.0161 (17)0.0152 (16)0.0244 (19)0.0045 (13)0.0036 (14)0.0082 (14)
C40.0196 (17)0.0123 (16)0.0265 (19)0.0041 (13)0.0074 (15)0.0004 (13)
C50.0121 (16)0.0142 (15)0.0156 (17)0.0006 (12)0.0021 (13)0.0010 (13)
Cl50.0244 (4)0.0167 (4)0.0179 (4)0.0044 (3)0.0003 (3)0.0001 (3)
C60.0133 (16)0.0164 (16)0.0206 (18)0.0027 (13)0.0038 (14)0.0070 (13)
C70.0226 (18)0.0171 (17)0.0236 (19)0.0014 (14)0.0022 (15)0.0007 (14)
O1A0.056 (4)0.017 (3)0.056 (4)0.012 (3)0.018 (3)0.003 (3)
C7A0.037 (4)0.015 (4)0.029 (4)0.005 (3)0.002 (3)0.003 (3)
C1A0.0169 (17)0.0193 (17)0.0262 (19)0.0054 (14)0.0035 (15)0.0047 (14)
C2A0.0152 (16)0.0254 (18)0.0223 (18)0.0066 (14)0.0032 (14)0.0065 (14)
Cl2A0.0245 (5)0.0387 (5)0.0218 (5)0.0074 (4)0.0022 (4)0.0042 (4)
C3A0.0148 (17)0.0251 (18)0.0232 (19)0.0021 (13)0.0026 (14)0.0113 (15)
Geometric parameters (Å, º) top
O1—C71.212 (3)C6—H60.950
C1—C61.395 (4)C7—H70.950
C1—C21.397 (4)O1A—C7A1.210 (6)
C1—C71.477 (4)C7A—C1A1.400 (6)
C2—C31.386 (4)C7A—H7A0.950
C2—Cl21.750 (3)C1A—C3Ai1.377 (4)
C3—C41.372 (4)C1A—C2A1.407 (4)
C3—H30.950C1A—H4A0.950
C4—C51.381 (4)C2A—C3A1.369 (4)
C4—H40.950C2A—Cl2A1.741 (3)
C5—C61.374 (4)C3A—C1Ai1.377 (4)
C5—Cl51.739 (3)C3A—H3A0.950
C6—C1—C2117.6 (2)O1—C7—C1123.7 (3)
C6—C1—C7118.9 (2)O1—C7—H7118.2
C2—C1—C7123.5 (3)C1—C7—H7118.2
C3—C2—C1121.8 (3)O1A—C7A—C1A125.5 (6)
C3—C2—Cl2118.1 (2)O1A—C7A—H7A117.2
C1—C2—Cl2120.1 (2)C1A—C7A—H7A117.2
C4—C3—C2119.1 (2)C3Ai—C1A—C7A116.6 (4)
C4—C3—H3120.5C3Ai—C1A—C2A118.8 (3)
C2—C3—H3120.5C7A—C1A—C2A124.5 (4)
C3—C4—C5120.2 (3)C3Ai—C1A—H4A120.7
C3—C4—H4119.9C2A—C1A—H4A120.5
C5—C4—H4119.9C3A—C2A—C1A120.7 (3)
C6—C5—C4120.7 (3)C3A—C2A—Cl2A119.4 (2)
C6—C5—Cl5118.8 (2)C1A—C2A—Cl2A119.9 (2)
C4—C5—Cl5120.4 (2)C2A—C3A—C1Ai120.4 (3)
C5—C6—C1120.6 (2)C2A—C3A—H3A119.8
C5—C6—H6119.7C1Ai—C3A—H3A119.8
C1—C6—H6119.7
C6—C1—C2—C32.0 (4)C7—C1—C6—C5178.2 (3)
C7—C1—C2—C3177.0 (3)C6—C1—C7—O18.8 (4)
C6—C1—C2—Cl2178.6 (2)C2—C1—C7—O1170.2 (3)
C7—C1—C2—Cl22.3 (4)O1A—C7A—C1A—C3Ai2.4 (7)
C1—C2—C3—C42.0 (4)O1A—C7A—C1A—C2A175.8 (5)
Cl2—C2—C3—C4178.7 (2)C3Ai—C1A—C2A—C3A0.6 (5)
C2—C3—C4—C50.8 (4)C7A—C1A—C2A—C3A178.8 (3)
C3—C4—C5—C60.4 (4)C3Ai—C1A—C2A—Cl2A179.6 (2)
C3—C4—C5—Cl5179.4 (2)C7A—C1A—C2A—Cl2A1.4 (5)
C4—C5—C6—C10.3 (4)C1A—C2A—C3A—C1Ai0.6 (5)
Cl5—C5—C6—C1179.5 (2)Cl2A—C2A—C3A—C1Ai179.6 (2)
C2—C1—C6—C50.9 (4)
Symmetry code: (i) x+1, y+1, z+1.
(5) top
Crystal data top
C7H4Cl2OF(000) = 176
Mr = 175.00Dx = 1.653 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5012 reflections
a = 3.8094 (3) Åθ = 2.7–25.9°
b = 14.8887 (13) ŵ = 0.84 mm1
c = 6.2014 (5) ÅT = 120 K
β = 91.849 (4)°Plate, colourless
V = 351.54 (5) Å30.30 × 0.20 × 0.10 mm
Z = 2
Data collection top
Bruker-Nonius X8APEX-II CCD
diffractometer
1272 independent reflections
Radiation source: fine-focus sealed tube1220 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
thin–slice ω and ϕ scansθmax = 26.0°, θmin = 3.6°
Absorption correction: multi-scan
SADABS v.2.10 (Sheldrick, 2003) Ratio of minimum to maximum apparent transmission: 0.880814
h = 44
Tmin = 0.881, Tmax = 1.000k = 1718
6778 measured reflectionsl = 77
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.0295P)2 + 0.0817P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1272 reflectionsΔρmax = 0.24 e Å3
91 parametersΔρmin = 0.22 e Å3
1 restraintAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (7)
Crystal data top
C7H4Cl2OV = 351.54 (5) Å3
Mr = 175.00Z = 2
Monoclinic, P21Mo Kα radiation
a = 3.8094 (3) ŵ = 0.84 mm1
b = 14.8887 (13) ÅT = 120 K
c = 6.2014 (5) Å0.30 × 0.20 × 0.10 mm
β = 91.849 (4)°
Data collection top
Bruker-Nonius X8APEX-II CCD
diffractometer
1272 independent reflections
Absorption correction: multi-scan
SADABS v.2.10 (Sheldrick, 2003) Ratio of minimum to maximum apparent transmission: 0.880814
1220 reflections with I > 2σ(I)
Tmin = 0.881, Tmax = 1.000Rint = 0.026
6778 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.055Δρmax = 0.24 e Å3
S = 1.09Δρmin = 0.22 e Å3
1272 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
91 parametersAbsolute structure parameter: 0.03 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl30.18489 (16)0.20832 (3)0.72154 (8)0.02584 (16)
Cl40.49718 (15)0.26293 (4)0.27122 (8)0.02766 (16)
O10.1327 (4)0.53317 (11)1.0395 (2)0.0293 (4)
C10.1395 (6)0.47588 (16)0.7287 (3)0.0195 (5)
C20.1087 (6)0.38585 (15)0.7861 (4)0.0194 (5)
H20.01180.36980.92000.023*
C30.2198 (6)0.32030 (15)0.6474 (4)0.0202 (5)
C40.3601 (6)0.34418 (15)0.4501 (3)0.0205 (5)
C50.3942 (6)0.43341 (15)0.3935 (3)0.0223 (5)
H50.49260.44920.25990.027*
C60.2846 (6)0.49944 (16)0.5321 (3)0.0216 (5)
H60.30760.56090.49410.026*
C70.0160 (6)0.54677 (15)0.8730 (4)0.0252 (6)
H70.05560.60740.83280.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl30.0306 (3)0.0227 (3)0.0242 (3)0.0014 (3)0.0008 (2)0.0003 (2)
Cl40.0273 (3)0.0356 (3)0.0201 (3)0.0036 (3)0.0001 (2)0.0056 (2)
O10.0340 (11)0.0306 (8)0.0235 (9)0.0037 (8)0.0059 (7)0.0026 (7)
C10.0116 (11)0.0253 (12)0.0214 (12)0.0019 (10)0.0059 (9)0.0006 (9)
C20.0121 (12)0.0281 (12)0.0178 (10)0.0018 (10)0.0029 (8)0.0013 (9)
C30.0160 (12)0.0236 (12)0.0206 (10)0.0000 (10)0.0061 (9)0.0024 (9)
C40.0120 (12)0.0298 (11)0.0192 (10)0.0014 (10)0.0046 (8)0.0032 (10)
C50.0164 (13)0.0350 (14)0.0156 (10)0.0017 (11)0.0012 (8)0.0052 (10)
C60.0177 (13)0.0234 (11)0.0235 (11)0.0009 (10)0.0029 (9)0.0042 (9)
C70.0211 (14)0.0244 (13)0.0297 (13)0.0021 (10)0.0046 (11)0.0008 (10)
Geometric parameters (Å, º) top
Cl3—C31.736 (2)C2—H20.950
Cl4—C41.733 (2)C3—C41.397 (3)
O1—C71.210 (3)C4—C51.381 (3)
C1—C21.393 (3)C5—C61.379 (3)
C1—C61.400 (3)C5—H50.950
C1—C71.471 (3)C6—H60.950
C2—C31.376 (3)C7—H70.950
C2—C1—C6120.2 (2)C3—C4—Cl4120.98 (18)
C2—C1—C7120.2 (2)C6—C5—C4119.65 (19)
C6—C1—C7119.6 (2)C6—C5—H5120.2
C3—C2—C1119.5 (2)C4—C5—H5120.2
C3—C2—H2120.3C5—C6—C1120.0 (2)
C1—C2—H2120.3C5—C6—H6120.0
C2—C3—C4120.1 (2)C1—C6—H6120.0
C2—C3—Cl3119.19 (18)O1—C7—C1124.5 (2)
C4—C3—Cl3120.74 (17)O1—C7—H7117.7
C5—C4—C3120.6 (2)C1—C7—H7117.7
C5—C4—Cl4118.43 (16)
C6—C1—C2—C30.5 (3)C3—C4—C5—C60.8 (3)
C7—C1—C2—C3178.8 (2)Cl4—C4—C5—C6179.47 (17)
C1—C2—C3—C40.4 (3)C4—C5—C6—C10.1 (3)
C1—C2—C3—Cl3179.31 (17)C2—C1—C6—C50.7 (3)
C2—C3—C4—C51.0 (3)C7—C1—C6—C5178.6 (2)
Cl3—C3—C4—C5178.67 (18)C2—C1—C7—O14.1 (3)
C2—C3—C4—Cl4179.25 (18)C6—C1—C7—O1175.2 (2)
Cl3—C3—C4—Cl41.1 (3)
(6) top
Crystal data top
C7H4Cl2OF(000) = 704
Mr = 175.00Dx = 1.628 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1496 reflections
a = 3.7785 (5) Åθ = 3.4–20.8°
b = 31.353 (5) ŵ = 0.82 mm1
c = 12.058 (2) ÅT = 120 K
β = 91.546 (6)°Plate, colourless
V = 1428.0 (4) Å30.30 × 0.15 × 0.01 mm
Z = 8
Data collection top
Bruker-Nonius X8APEX-II CCD
diffractometer
2678 independent reflections
Radiation source: fine-focus sealed tube1731 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
thin–slice ω and ϕ scansθmax = 25.7°, θmin = 3.6°
Absorption correction: multi-scan
Ratio of minimum to maximum apparent transmission: 0.703457 SADABS v.2.10 (Sheldrick, 2003)
h = 44
Tmin = 0.698, Tmax = 0.992k = 3738
13283 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0444P)2]
where P = (Fo2 + 2Fc2)/3
2678 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C7H4Cl2OV = 1428.0 (4) Å3
Mr = 175.00Z = 8
Monoclinic, P21/nMo Kα radiation
a = 3.7785 (5) ŵ = 0.82 mm1
b = 31.353 (5) ÅT = 120 K
c = 12.058 (2) Å0.30 × 0.15 × 0.01 mm
β = 91.546 (6)°
Data collection top
Bruker-Nonius X8APEX-II CCD
diffractometer
2678 independent reflections
Absorption correction: multi-scan
Ratio of minimum to maximum apparent transmission: 0.703457 SADABS v.2.10 (Sheldrick, 2003)
1731 reflections with I > 2σ(I)
Tmin = 0.698, Tmax = 0.992Rint = 0.069
13283 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.02Δρmax = 0.38 e Å3
2678 reflectionsΔρmin = 0.35 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1658 (7)0.19259 (7)0.1451 (2)0.0285 (6)
C10.4429 (8)0.17430 (10)0.3185 (3)0.0160 (8)
C20.3804 (9)0.13052 (10)0.3110 (3)0.0190 (8)
H20.27000.11850.24650.023*
C30.4828 (9)0.10497 (10)0.3997 (3)0.0181 (8)
Cl30.3992 (3)0.05057 (3)0.39358 (7)0.0281 (3)
C40.6462 (8)0.12155 (10)0.4943 (3)0.0179 (8)
H40.71570.10350.55440.022*
C50.7057 (9)0.16505 (11)0.4991 (3)0.0170 (8)
Cl50.9051 (2)0.18681 (3)0.61796 (7)0.0230 (2)
C60.6065 (9)0.19175 (11)0.4130 (3)0.0184 (8)
H60.64890.22160.41790.022*
C70.3317 (9)0.20325 (11)0.2279 (3)0.0235 (9)
H70.39480.23250.23490.028*
O1A0.3662 (7)0.21095 (7)0.8475 (2)0.0309 (7)
C1A0.5570 (9)0.14281 (10)0.9123 (3)0.0170 (8)
C2A0.4249 (8)0.12059 (10)0.8201 (3)0.0185 (8)
H2A0.32490.13540.75800.022*
C3A0.4429 (8)0.07671 (10)0.8211 (3)0.0171 (8)
Cl3A0.2794 (2)0.04810 (3)0.70719 (7)0.0238 (2)
C4A0.5869 (8)0.05441 (10)0.9112 (3)0.0171 (8)
H4A0.59770.02410.91070.021*
C5A0.7141 (9)0.07749 (11)1.0017 (3)0.0172 (8)
Cl5A0.8886 (2)0.05036 (3)1.11618 (7)0.0224 (2)
C6A0.7031 (8)0.12161 (10)1.0033 (3)0.0178 (8)
H6A0.79400.13701.06560.021*
C7A0.5342 (9)0.19001 (11)0.9146 (3)0.0223 (9)
H7A0.65920.20470.97240.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0291 (17)0.0353 (15)0.0207 (15)0.0026 (12)0.0085 (12)0.0005 (12)
C10.013 (2)0.0199 (19)0.0152 (19)0.0012 (14)0.0012 (15)0.0001 (15)
C20.014 (2)0.025 (2)0.018 (2)0.0004 (15)0.0010 (15)0.0042 (15)
C30.011 (2)0.0193 (19)0.024 (2)0.0001 (14)0.0022 (16)0.0032 (15)
Cl30.0340 (6)0.0177 (5)0.0325 (6)0.0040 (4)0.0009 (4)0.0010 (4)
C40.013 (2)0.024 (2)0.0167 (19)0.0012 (15)0.0011 (15)0.0043 (15)
C50.012 (2)0.025 (2)0.0140 (19)0.0005 (15)0.0023 (15)0.0003 (15)
Cl50.0220 (6)0.0283 (5)0.0186 (5)0.0002 (4)0.0046 (4)0.0047 (4)
C60.016 (2)0.0185 (19)0.0210 (19)0.0010 (15)0.0032 (15)0.0026 (15)
C70.025 (3)0.023 (2)0.022 (2)0.0008 (17)0.0007 (18)0.0044 (17)
O1A0.0423 (18)0.0225 (14)0.0274 (15)0.0110 (13)0.0069 (13)0.0009 (12)
C1A0.013 (2)0.0184 (19)0.0195 (19)0.0031 (15)0.0018 (15)0.0005 (15)
C2A0.014 (2)0.028 (2)0.0144 (19)0.0004 (15)0.0025 (15)0.0010 (15)
C3A0.016 (2)0.020 (2)0.0158 (19)0.0006 (15)0.0045 (15)0.0014 (15)
Cl3A0.0242 (6)0.0279 (5)0.0190 (5)0.0017 (4)0.0040 (4)0.0036 (4)
C4A0.013 (2)0.0179 (19)0.0204 (19)0.0016 (15)0.0040 (15)0.0039 (16)
C5A0.009 (2)0.023 (2)0.019 (2)0.0003 (15)0.0014 (15)0.0031 (16)
Cl5A0.0224 (6)0.0247 (5)0.0197 (5)0.0005 (4)0.0047 (4)0.0052 (4)
C6A0.012 (2)0.025 (2)0.0164 (19)0.0038 (15)0.0025 (15)0.0003 (16)
C7A0.025 (2)0.023 (2)0.020 (2)0.0008 (17)0.0036 (17)0.0007 (17)
Geometric parameters (Å, º) top
O1—C71.211 (4)O1A—C7A1.209 (4)
C1—C61.393 (4)C1A—C6A1.385 (4)
C1—C21.395 (4)C1A—C2A1.394 (4)
C1—C71.473 (4)C1A—C7A1.483 (4)
C2—C31.383 (4)C2A—C3A1.378 (4)
C2—H20.950C2A—H2A0.950
C3—C41.384 (4)C3A—C4A1.391 (4)
C3—Cl31.736 (3)C3A—Cl3A1.739 (3)
C4—C51.383 (4)C4A—C5A1.385 (4)
C4—H40.950C4A—H4A0.950
C5—C61.378 (4)C5A—C6A1.384 (4)
C5—Cl51.741 (3)C5A—Cl5A1.736 (3)
C6—H60.950C6A—H6A0.950
C7—H70.950C7A—H7A0.950
C6—C1—C2120.7 (3)C6A—C1A—C2A121.3 (3)
C6—C1—C7118.4 (3)C6A—C1A—C7A119.1 (3)
C2—C1—C7120.9 (3)C2A—C1A—C7A119.6 (3)
C3—C2—C1118.4 (3)C3A—C2A—C1A118.4 (3)
C3—C2—H2120.8C3A—C2A—H2A120.8
C1—C2—H2120.8C1A—C2A—H2A120.8
C2—C3—C4122.0 (3)C2A—C3A—C4A121.8 (3)
C2—C3—Cl3119.3 (3)C2A—C3A—Cl3A119.5 (3)
C4—C3—Cl3118.7 (3)C4A—C3A—Cl3A118.7 (3)
C5—C4—C3118.2 (3)C5A—C4A—C3A118.3 (3)
C5—C4—H4120.9C5A—C4A—H4A120.9
C3—C4—H4120.9C3A—C4A—H4A120.9
C6—C5—C4121.8 (3)C6A—C5A—C4A121.6 (3)
C6—C5—Cl5119.0 (3)C6A—C5A—Cl5A119.3 (3)
C4—C5—Cl5119.2 (3)C4A—C5A—Cl5A119.1 (3)
C5—C6—C1118.9 (3)C5A—C6A—C1A118.7 (3)
C5—C6—H6120.6C5A—C6A—H6A120.6
C1—C6—H6120.6C1A—C6A—H6A120.6
O1—C7—C1124.9 (3)O1A—C7A—C1A124.0 (3)
O1—C7—H7117.6O1A—C7A—H7A118.0
C1—C7—H7117.6C1A—C7A—H7A118.0
C6—C1—C2—C30.3 (5)C6A—C1A—C2A—C3A0.1 (5)
C7—C1—C2—C3178.5 (3)C7A—C1A—C2A—C3A178.7 (3)
C1—C2—C3—C40.4 (5)C1A—C2A—C3A—C4A0.2 (5)
C1—C2—C3—Cl3178.6 (2)C1A—C2A—C3A—Cl3A179.9 (2)
C2—C3—C4—C50.2 (5)C2A—C3A—C4A—C5A0.1 (5)
Cl3—C3—C4—C5178.8 (2)Cl3A—C3A—C4A—C5A179.6 (3)
C3—C4—C5—C60.1 (5)C3A—C4A—C5A—C6A0.6 (5)
C3—C4—C5—Cl5179.1 (2)C3A—C4A—C5A—Cl5A179.0 (2)
C4—C5—C6—C10.2 (5)C4A—C5A—C6A—C1A0.8 (5)
Cl5—C5—C6—C1179.2 (3)Cl5A—C5A—C6A—C1A178.8 (2)
C2—C1—C6—C50.0 (5)C2A—C1A—C6A—C5A0.4 (5)
C7—C1—C6—C5178.8 (3)C7A—C1A—C6A—C5A178.2 (3)
C6—C1—C7—O1174.6 (3)C6A—C1A—C7A—O1A168.6 (3)
C2—C1—C7—O14.2 (6)C2A—C1A—C7A—O1A10.0 (5)

Experimental details

(1)(3)(5)(6)
Crystal data
Chemical formulaC7H4Cl2OC7H4Cl2OC7H4Cl2OC7H4Cl2O
Mr175.00175.00175.00175.00
Crystal system, space groupMonoclinic, P21/cTriclinic, P1Monoclinic, P21Monoclinic, P21/n
Temperature (K)120120120120
a, b, c (Å)3.7888 (3), 13.7784 (15), 13.0368 (15)3.8150 (5), 7.8290 (11), 17.895 (3)3.8094 (3), 14.8887 (13), 6.2014 (5)3.7785 (5), 31.353 (5), 12.058 (2)
α, β, γ (°)90, 90.979 (5), 9089.091 (5), 85.728 (5), 81.115 (5)90, 91.849 (4), 9090, 91.546 (6), 90
V3)680.47 (12)526.60 (13)351.54 (5)1428.0 (4)
Z4328
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.870.840.840.82
Crystal size (mm)0.30 × 0.05 × 0.050.35 × 0.03 × 0.030.30 × 0.20 × 0.100.30 × 0.15 × 0.01
Data collection
DiffractometerBruker-Nonius X8APEX-II CCD
diffractometer
Bruker-Nonius X8APEX-II CCD
diffractometer
Bruker-Nonius X8APEX-II CCD
diffractometer
Bruker-Nonius X8APEX-II CCD
diffractometer
Absorption correctionMulti-scan
SADABS v.2.10 (Sheldrick, 2003) Ratio of minimum to maximum apparent transmission: 0.751021
Multi-scan
SADABS v.2.10 (Sheldrick, 2003) Ratio of minimum to maximum apparent transmission: 0.721852
Multi-scan
SADABS v.2.10 (Sheldrick, 2003) Ratio of minimum to maximum apparent transmission: 0.880814
Multi-scan
Ratio of minimum to maximum apparent transmission: 0.703457 SADABS v.2.10 (Sheldrick, 2003)
Tmin, Tmax0.751, 1.0000.704, 0.9750.881, 1.0000.698, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
11531, 1226, 1036 6319, 1827, 1313 6778, 1272, 1220 13283, 2678, 1731
Rint0.0490.0470.0260.069
(sin θ/λ)max1)0.6020.5970.6160.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.093, 1.13 0.037, 0.081, 1.04 0.024, 0.055, 1.09 0.046, 0.098, 1.02
No. of reflections1226182712722678
No. of parameters9114591181
No. of restraints0010
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.380.41, 0.300.24, 0.220.38, 0.35
Absolute structure??Flack H D (1983), Acta Cryst. A39, 876-881?
Absolute structure parameter??0.03 (7)?

Computer programs: APEX2 v.1.0-22 (Bruker Nonius, 2004), SAINT v.7.06a (Bruker, 2003), SAINT v.7.06a, SHELXTL v.6.10 (Sheldrick, 2000), SHELXTL v.6.10.

 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds