organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,5-Di­methyl-2-phenyl-4-[phenyl(pyri­din-2-ylamino)methyl]-1H-pyrazol-3(2H)-one

aDepartment of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, Tamilnadu, India, bDepartment of Physics, Bishop Heber College (Autonomous), Tiruchirappalli 620 017, Tamilnadu, India, and cDepartment of Physics, National Institute of Technology, Tiruchirappalli 620 015, Tamilnadu, India
*Correspondence e-mail: xrdfrank@yahoo.co.in

(Received 22 August 2012; accepted 15 October 2012; online 20 October 2012)

In the title compound, C23H22N4O, the pyrazole ring makes dihedral angles of 45.57 (11)° with the attached phenyl ring, and 83.98 (10) and 67.85 (10) °, respectively, with the other phenyl ring and the pyridyl ring. The pyridyl ring makes a dihedral angle of 80.15 (10)° with the adjacent phenyl ring. In the crystal, N—H⋯O hydrogen bonds supplemented by weak C—H⋯O hydrogen bonds link the mol­ecules into chains which run parallel to the a-axis direction.

Related literature

For the origin of the material studied, see: Vijayan (1971[Vijayan, M. (1971). Curr. Sci. 40, 262-264.]); Singh & Vijayan (1973[Singh, T. P. & Vijayan, M. (1973). Acta Cryst. B29, 714-720.]). For related structures, see: Singh & Vijayan (1974[Singh, T. P. & Vijayan, M. (1974). Acta Cryst. B30, 557-562.], 1976[Singh, T. P. & Vijayan, M. (1976). Acta Cryst. B32, 2432-2437.]); Tordjman et al. (1991[Tordjman, I., Durif, A. & Masse, R. (1991). Acta Cryst. C47, 351-353.]); Yadav et al. (2003[Yadav, P. N., Demertzis, M. A., Kovala-Demertzi, D., Skoulika, S. & West, D. X. (2003). Inorg. Chim. Acta, 349, 30-36.]); Li & Zhang (2004[Li, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, o2199-o2200.]); Wen (2005[Wen, P. (2005). Acta Cryst. E61, o2918-o2920.]); Sun et al. (2007[Sun, Y.-F., Li, J.-K., Zheng, Z.-B. & Wu, R.-T. (2007). Acta Cryst. E63, o2522-o2523.]).

[Scheme 1]

Experimental

Crystal data
  • C23H22N4O

  • Mr = 370.45

  • Orthorhombic, P 21 21 21

  • a = 5.701 (5) Å

  • b = 12.485 (5) Å

  • c = 26.736 (5) Å

  • V = 1903.0 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 273 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.976, Tmax = 0.984

  • 14432 measured reflections

  • 2959 independent reflections

  • 2337 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.095

  • S = 1.01

  • 2959 reflections

  • 259 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1i 0.85 (3) 2.16 (3) 2.982 (3) 161 (2)
C18—H18⋯O1i 0.93 2.58 3.335 (3) 138
C23—H23C⋯O1ii 0.96 2.59 3.512 (3) 162
Symmetry codes: (i) x-1, y, z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PLATON (Spek, 2009)[Spek, A. L. (2009). Acta Cryst. D65, 148-155.].

Supporting information


Comment top

Antipyrine (2,3-dimethyl-1-phenylpyrazol-5-one) is one of the best known pyrazole derivatives used as pain-relieving medicine. It is the first pyrazole derivative to be introduced as an analgesic and antipyretic drug. Antipyrine and its derivatives have been long known for their wide spectrum of biological activities. Their roles in biological processes have become a topic of study in recent years. Though rarely used alone, nowadays, on account of its toxicity, antipyrine forms part of some combination products used as pain-relieving medicines. Many of its derivatives like amidopyrine and metamizol are well known and widely used analgesics. Therefore a detailed knowledge of the structure and the possible modes of interaction of antipyrine are important in elucidating the molecular mechanism of the action of pain-relieving medicines. The crystal structure of antipyrine, its derivatives and some of its metallic complexes have already been reported (see related literature). Presently, the crystal structure of 2-amino pyridino benzyl antipyrine {1,2-dihydro-2,3-dimethyl-1-phenyl-4-(phenyl (pyridin-2-yl amino) methyl)pyrazol-5-one} has been elucidated. The conformational features and the hydrogen bonding analysis have been analysed in order to have a further insight in to their chemical and pharmaceutical aspects. The chemical scheme of 2-amino pyridino benzyl antipyrine is shown.

An ORTEP-3 (Farrugia, 1997) diagram of the asymmetric unit of 2-amino pyridino benzyl antipyrine (APBA) is shown in Figure 1. In APBA, the antipyrine, benzene and pyridyl amine molecules are bridged by C10 which is the asymmetric sp3 carbon in the structure. Bond lengths and angles are comparable with those of the related structures reported. Four flat fragments are present in the structure elucidated. The dihedral angles between these flat rings A (C1—C6), B (N1, N2, C7—C9), C (C11—C16) and D (C17—C21, N4) are A/B= 45.57 (11)°, A/C= 54.96 (10)°, A/D= 82.10 (11)°, B/C= 83.98 (10)°, B/D= 67.85 (10)° and C/D= 80.15 (10)°. These values show that the pyrazole (B), benzene (C) and pyridyl (D) rings are almost perpendicular to each other. The crystal packing of the compound APBA is stabilized by N3–H3A···O1 and C18—H18···O1 hydrogen bonds which link the molecules into one-dimensional chains which run parallel to the a-axis, Table 1, Figure 2. In addition there is a short contact C23–H23C···O1.

Related literature top

For the origin of the material studied, see: Vijayan (1971); Singh & Vijayan (1973). For related structures, see: Singh & Vijayan (1974, 1976); Tordjman et al. (1991); Yadav et al. (2003); Li & Zhang (2004); Wen (2005); Sun et al. (2007).

Experimental top

5.31 mmol of 2-aminopyridine and 5.31 mmol of benzaldehyde were dissolved in ethanol solution. To this mixture 5.31 mmol of antipyrine was added and stirred well. The contents were refluxed at a temperature of 333 K for 12 h. The product obtained by Mannich base condensation was filtered, dried and then washed with distilled water. It is then dried in the air oven at 323 K. By slow evaporation technique, using ethanol, orange colour block shaped crystals of title compound suitable for X-ray diffraction analysis were obtained from the product.

Refinement top

For APBA, which crystallizes in the space group P212121, the Friedel equivalents were merged in the absence of significant anomalous scattering effects prior to the final refinement cycles and the absolute structure was assigned arbitrarily. The 002 reflection was omitted because it was obscured by the beamstop. The H atom attached to N3 was refined isotropically. H atoms attached to C atoms were included in calculated positions and treated as riding atoms, with C—H=0.93 to 0.96Å, and with Uiso(H)=1.5Ueq(C) for those attached to methyl H atoms and Uiso(H)=1.2Ueq(C) for the remaining H atoms. The positions of the methyl hydrogens and that attached to N3 were checked on a final difference map.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of APBA, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure of APBA, showing the hydrogen bonding patterns. For the sake of clarity, only H atoms involved in hydrogen bonding are shown. Dashed lines represent hydrogen bonds.
1,5-Dimethyl-2-phenyl-4-[phenyl(pyridin-2-ylamino)methyl]-1H- pyrazol-3(2H)-one top
Crystal data top
C23H22N4OF(000) = 784
Mr = 370.45Dx = 1.293 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3758 reflections
a = 5.701 (5) Åθ = 2.2–25.4°
b = 12.485 (5) ŵ = 0.08 mm1
c = 26.736 (5) ÅT = 273 K
V = 1903.0 (19) Å3Block, orange
Z = 40.3 × 0.2 × 0.2 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2337 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω and ϕ scanθmax = 29.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 47
Tmin = 0.976, Tmax = 0.984k = 1717
14432 measured reflectionsl = 3634
2959 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0435P)2 + 0.2362P]
where P = (Fo2 + 2Fc2)/3
2959 reflections(Δ/σ)max < 0.001
259 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C23H22N4OV = 1903.0 (19) Å3
Mr = 370.45Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.701 (5) ŵ = 0.08 mm1
b = 12.485 (5) ÅT = 273 K
c = 26.736 (5) Å0.3 × 0.2 × 0.2 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2959 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2337 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.984Rint = 0.036
14432 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.18 e Å3
2959 reflectionsΔρmin = 0.19 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3555 (2)0.08528 (11)0.70108 (5)0.0391 (3)
N10.2298 (3)0.21846 (12)0.75511 (6)0.0315 (4)
N20.0380 (3)0.28913 (12)0.75618 (6)0.0335 (4)
N30.2190 (3)0.08348 (13)0.63621 (6)0.0352 (4)
N40.0868 (3)0.01040 (13)0.56735 (6)0.0396 (4)
C10.1607 (4)0.17086 (18)0.84215 (8)0.0405 (5)
H10.01480.20410.84090.049*
C20.2324 (5)0.11982 (18)0.88527 (9)0.0508 (6)
H20.13480.11910.91310.061*
C30.4462 (5)0.0702 (2)0.88728 (9)0.0551 (7)
H30.4920.03420.91610.066*
C40.5923 (5)0.07368 (19)0.84676 (9)0.0505 (6)
H40.73830.04070.84840.061*
C50.5254 (4)0.12577 (16)0.80329 (9)0.0409 (5)
H50.62660.12930.77610.049*
C60.3058 (4)0.17246 (15)0.80100 (7)0.0325 (4)
C70.2224 (3)0.16029 (14)0.71041 (7)0.0290 (4)
C80.0321 (3)0.20467 (14)0.68212 (7)0.0280 (4)
C90.0668 (4)0.28329 (14)0.71018 (7)0.0313 (4)
C100.0332 (3)0.16209 (15)0.63147 (7)0.0298 (4)
H100.10450.12320.61920.036*
C110.0829 (3)0.25022 (15)0.59317 (7)0.0282 (4)
C120.2876 (4)0.25263 (16)0.56545 (7)0.0331 (4)
H120.40440.20230.57150.04*
C130.3200 (4)0.32958 (17)0.52860 (8)0.0390 (5)
H130.4580.33030.510.047*
C140.1491 (4)0.40456 (17)0.51947 (8)0.0410 (5)
H140.17030.45590.49470.049*
C150.0535 (4)0.40313 (17)0.54730 (8)0.0420 (5)
H150.16910.45410.54140.05*
C160.0869 (4)0.32708 (16)0.58385 (7)0.0355 (4)
H160.22470.32730.60250.043*
C170.2525 (4)0.00363 (14)0.60187 (7)0.0319 (4)
C180.4543 (4)0.06045 (16)0.60472 (8)0.0400 (5)
H180.56740.04820.62910.048*
C190.4802 (5)0.14120 (17)0.57079 (9)0.0497 (6)
H190.61120.18550.5720.06*
C200.3093 (5)0.15665 (18)0.53444 (9)0.0527 (7)
H200.32390.21070.51070.063*
C210.1212 (5)0.09074 (17)0.53461 (8)0.0473 (6)
H210.0070.10170.51030.057*
C220.2613 (4)0.35812 (17)0.69792 (9)0.0460 (6)
H22A0.19750.42630.68840.069*
H22B0.360.3670.72670.069*
H22C0.35180.32940.67080.069*
C230.0838 (5)0.39199 (16)0.78084 (9)0.0508 (6)
H23A0.19810.43140.7620.076*
H23B0.14240.37940.8140.076*
H23C0.05910.43250.78270.076*
H3A0.332 (5)0.0995 (19)0.6557 (9)0.049 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0394 (8)0.0403 (8)0.0375 (8)0.0110 (7)0.0007 (7)0.0041 (6)
N10.0361 (9)0.0307 (8)0.0278 (9)0.0034 (7)0.0035 (7)0.0019 (6)
N20.0436 (9)0.0287 (8)0.0283 (9)0.0074 (7)0.0037 (7)0.0045 (6)
N30.0436 (10)0.0328 (8)0.0292 (9)0.0055 (8)0.0075 (8)0.0056 (7)
N40.0508 (11)0.0353 (9)0.0327 (9)0.0003 (9)0.0028 (9)0.0044 (7)
C10.0454 (12)0.0427 (11)0.0335 (12)0.0056 (10)0.0035 (10)0.0010 (9)
C20.0648 (16)0.0552 (14)0.0323 (12)0.0131 (14)0.0021 (12)0.0063 (10)
C30.0689 (17)0.0550 (14)0.0414 (14)0.0137 (14)0.0234 (13)0.0140 (11)
C40.0433 (13)0.0489 (14)0.0594 (16)0.0064 (11)0.0209 (12)0.0106 (11)
C50.0359 (11)0.0433 (12)0.0434 (13)0.0057 (9)0.0056 (10)0.0067 (9)
C60.0388 (11)0.0305 (9)0.0283 (10)0.0070 (8)0.0088 (9)0.0000 (7)
C70.0328 (10)0.0284 (9)0.0257 (10)0.0024 (8)0.0024 (8)0.0005 (7)
C80.0337 (10)0.0271 (9)0.0232 (9)0.0015 (8)0.0000 (7)0.0007 (7)
C90.0390 (10)0.0279 (9)0.0269 (10)0.0009 (8)0.0015 (8)0.0018 (7)
C100.0334 (9)0.0310 (9)0.0248 (9)0.0008 (8)0.0008 (8)0.0026 (7)
C110.0338 (9)0.0309 (9)0.0200 (9)0.0000 (8)0.0012 (8)0.0035 (7)
C120.0328 (10)0.0361 (9)0.0305 (11)0.0005 (9)0.0017 (8)0.0032 (8)
C130.0420 (12)0.0446 (11)0.0304 (11)0.0070 (10)0.0078 (9)0.0045 (9)
C140.0567 (14)0.0375 (11)0.0288 (11)0.0090 (11)0.0039 (10)0.0052 (8)
C150.0476 (13)0.0390 (11)0.0396 (12)0.0055 (11)0.0071 (10)0.0057 (9)
C160.0335 (10)0.0400 (11)0.0330 (11)0.0036 (9)0.0023 (8)0.0006 (8)
C170.0415 (10)0.0263 (9)0.0278 (10)0.0024 (8)0.0037 (8)0.0026 (7)
C180.0429 (12)0.0348 (10)0.0423 (13)0.0010 (9)0.0038 (10)0.0007 (8)
C190.0548 (14)0.0384 (12)0.0558 (15)0.0077 (11)0.0115 (13)0.0040 (10)
C200.0776 (18)0.0353 (11)0.0452 (14)0.0009 (13)0.0092 (13)0.0140 (10)
C210.0679 (16)0.0385 (11)0.0354 (12)0.0068 (12)0.0022 (11)0.0090 (9)
C220.0517 (13)0.0461 (12)0.0403 (13)0.0179 (11)0.0038 (11)0.0047 (9)
C230.0748 (17)0.0324 (11)0.0452 (13)0.0050 (12)0.0110 (13)0.0129 (9)
Geometric parameters (Å, º) top
O1—C71.231 (2)C10—H100.98
N1—C71.399 (2)C11—C121.383 (3)
N1—N21.405 (2)C11—C161.386 (3)
N1—C61.422 (2)C12—C131.389 (3)
N2—C91.369 (2)C12—H120.93
N2—C231.467 (2)C13—C141.373 (3)
N3—C171.369 (2)C13—H130.93
N3—C101.450 (3)C14—C151.374 (3)
N3—H3A0.85 (3)C14—H140.93
N4—C171.332 (3)C15—C161.376 (3)
N4—C211.346 (3)C15—H150.93
C1—C61.377 (3)C16—H160.93
C1—C21.379 (3)C17—C181.403 (3)
C1—H10.93C18—C191.364 (3)
C2—C31.368 (4)C18—H180.93
C2—H20.93C19—C201.390 (4)
C3—C41.367 (4)C19—H190.93
C3—H30.93C20—C211.352 (4)
C4—C51.385 (3)C20—H200.93
C4—H40.93C21—H210.93
C5—C61.382 (3)C22—H22A0.96
C5—H50.93C22—H22B0.96
C7—C81.434 (3)C22—H22C0.96
C8—C91.358 (3)C23—H23A0.96
C8—C101.502 (3)C23—H23B0.96
C9—C221.486 (3)C23—H23C0.96
C10—C111.530 (3)
C7—N1—N2108.65 (15)C12—C11—C10122.07 (17)
C7—N1—C6122.45 (15)C16—C11—C10119.27 (17)
N2—N1—C6118.22 (16)C11—C12—C13120.52 (19)
C9—N2—N1106.73 (15)C11—C12—H12119.7
C9—N2—C23121.87 (16)C13—C12—H12119.7
N1—N2—C23114.84 (18)C14—C13—C12120.2 (2)
C17—N3—C10122.43 (17)C14—C13—H13119.9
C17—N3—H3A118.4 (17)C12—C13—H13119.9
C10—N3—H3A116.5 (17)C13—C14—C15119.4 (2)
C17—N4—C21116.5 (2)C13—C14—H14120.3
C6—C1—C2119.8 (2)C15—C14—H14120.3
C6—C1—H1120.1C14—C15—C16120.7 (2)
C2—C1—H1120.1C14—C15—H15119.7
C3—C2—C1120.4 (2)C16—C15—H15119.7
C3—C2—H2119.8C15—C16—C11120.6 (2)
C1—C2—H2119.8C15—C16—H16119.7
C4—C3—C2119.8 (2)C11—C16—H16119.7
C4—C3—H3120.1N4—C17—N3117.50 (19)
C2—C3—H3120.1N4—C17—C18122.95 (18)
C3—C4—C5120.8 (2)N3—C17—C18119.54 (19)
C3—C4—H4119.6C19—C18—C17118.3 (2)
C5—C4—H4119.6C19—C18—H18120.9
C6—C5—C4119.0 (2)C17—C18—H18120.9
C6—C5—H5120.5C18—C19—C20119.4 (2)
C4—C5—H5120.5C18—C19—H19120.3
C1—C6—C5120.20 (19)C20—C19—H19120.3
C1—C6—N1120.80 (19)C21—C20—C19118.0 (2)
C5—C6—N1118.96 (19)C21—C20—H20121
O1—C7—N1123.31 (17)C19—C20—H20121
O1—C7—C8130.83 (18)N4—C21—C20124.9 (2)
N1—C7—C8105.83 (16)N4—C21—H21117.6
C9—C8—C7107.59 (17)C20—C21—H21117.6
C9—C8—C10130.63 (19)C9—C22—H22A109.5
C7—C8—C10121.76 (17)C9—C22—H22B109.5
C8—C9—N2110.70 (17)H22A—C22—H22B109.5
C8—C9—C22129.95 (19)C9—C22—H22C109.5
N2—C9—C22119.35 (17)H22A—C22—H22C109.5
N3—C10—C8109.99 (15)H22B—C22—H22C109.5
N3—C10—C11114.21 (16)N2—C23—H23A109.5
C8—C10—C11113.27 (15)N2—C23—H23B109.5
N3—C10—H10106.2H23A—C23—H23B109.5
C8—C10—H10106.2N2—C23—H23C109.5
C11—C10—H10106.2H23A—C23—H23C109.5
C12—C11—C16118.57 (18)H23B—C23—H23C109.5
C7—N1—N2—C97.28 (19)N1—N2—C9—C22173.48 (17)
C6—N1—N2—C9152.75 (17)C23—N2—C9—C2238.8 (3)
C7—N1—N2—C23145.59 (17)C17—N3—C10—C8154.18 (18)
C6—N1—N2—C2368.9 (2)C17—N3—C10—C1177.2 (2)
C6—C1—C2—C30.4 (3)C9—C8—C10—N383.2 (2)
C1—C2—C3—C41.7 (4)C7—C8—C10—N394.7 (2)
C2—C3—C4—C50.8 (4)C9—C8—C10—C1146.0 (3)
C3—C4—C5—C61.4 (3)C7—C8—C10—C11136.16 (18)
C2—C1—C6—C51.8 (3)N3—C10—C11—C120.6 (2)
C2—C1—C6—N1175.87 (19)C8—C10—C11—C12127.61 (19)
C4—C5—C6—C12.7 (3)N3—C10—C11—C16177.14 (17)
C4—C5—C6—N1175.04 (19)C8—C10—C11—C1655.9 (2)
C7—N1—C6—C1121.8 (2)C16—C11—C12—C130.9 (3)
N2—N1—C6—C118.7 (3)C10—C11—C12—C13175.58 (18)
C7—N1—C6—C555.9 (3)C11—C12—C13—C140.3 (3)
N2—N1—C6—C5163.60 (16)C12—C13—C14—C150.4 (3)
N2—N1—C7—O1173.02 (17)C13—C14—C15—C160.4 (3)
C6—N1—C7—O129.3 (3)C14—C15—C16—C110.2 (3)
N2—N1—C7—C85.19 (19)C12—C11—C16—C150.9 (3)
C6—N1—C7—C8148.89 (17)C10—C11—C16—C15175.72 (18)
O1—C7—C8—C9176.9 (2)C21—N4—C17—N3178.70 (18)
N1—C7—C8—C91.2 (2)C21—N4—C17—C180.2 (3)
O1—C7—C8—C101.4 (3)C10—N3—C17—N410.0 (3)
N1—C7—C8—C10179.44 (16)C10—N3—C17—C18171.04 (18)
C7—C8—C9—N23.4 (2)N4—C17—C18—C190.6 (3)
C10—C8—C9—N2174.63 (18)N3—C17—C18—C19178.4 (2)
C7—C8—C9—C22176.7 (2)C17—C18—C19—C200.8 (3)
C10—C8—C9—C225.2 (4)C18—C19—C20—C210.7 (4)
N1—N2—C9—C86.6 (2)C17—N4—C21—C200.1 (3)
C23—N2—C9—C8141.4 (2)C19—C20—C21—N40.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.85 (3)2.16 (3)2.982 (3)161 (2)
C18—H18···O1i0.932.583.335 (3)138
C23—H23C···O1ii0.962.593.512 (3)162
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC23H22N4O
Mr370.45
Crystal system, space groupOrthorhombic, P212121
Temperature (K)273
a, b, c (Å)5.701 (5), 12.485 (5), 26.736 (5)
V3)1903.0 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.976, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
14432, 2959, 2337
Rint0.036
(sin θ/λ)max1)0.694
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.095, 1.01
No. of reflections2959
No. of parameters259
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.19

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.85 (3)2.16 (3)2.982 (3)161 (2)
C18—H18···O1i0.932.583.335 (3)138
C23—H23C···O1ii0.962.593.512 (3)162
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z+3/2.
 

Acknowledgements

The authors thank the SAIF at IITM Chennai, sponsored by DST India, for providing analytical facilities.

References

First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLi, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, o2199–o2200.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, T. P. & Vijayan, M. (1973). Acta Cryst. B29, 714–720.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSingh, T. P. & Vijayan, M. (1974). Acta Cryst. B30, 557–562.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSingh, T. P. & Vijayan, M. (1976). Acta Cryst. B32, 2432–2437.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-F., Li, J.-K., Zheng, Z.-B. & Wu, R.-T. (2007). Acta Cryst. E63, o2522–o2523.  CSD CrossRef IUCr Journals Google Scholar
First citationTordjman, I., Durif, A. & Masse, R. (1991). Acta Cryst. C47, 351–353.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationVijayan, M. (1971). Curr. Sci. 40, 262–264.  CAS Google Scholar
First citationWen, P. (2005). Acta Cryst. E61, o2918–o2920.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYadav, P. N., Demertzis, M. A., Kovala-Demertzi, D., Skoulika, S. & West, D. X. (2003). Inorg. Chim. Acta, 349, 30–36.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds