metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tri­aqua­nickel(II)]-μ-5-carb­­oxy­benzene-1,3-di­carboxyl­ato-κ2O1:O3]

aCollege of Chemistry and Chemical Engineering, Liaocheng University, 252059 Liaocheng, Shandong, People's Republic of China, and bGuodian Liaocheng Power Co. Ltd, 252033 Liaocheng, Shandong, People's Republic of China
*Correspondence e-mail: y_xingjun01@163.com

(Received 15 August 2011; accepted 29 August 2011; online 14 September 2011)

In the title compound, [Ni(C9H4O6)(H2O)3]n, the NiII ion has a distorted NiO5 square-pyramidal geometry, the maximum deviation from the least-squares plane formed by the basal atoms being 0.9351 (13) Å. The basal plane is formed by two O atoms from carboxyl­ate residues of the 5-carb­oxy­benzene-1,3-dicarboxyl­ate ligand and by two O atoms from water mol­ecules. The O atom of the third water mol­ecule is axially positioned, 1.7890 (19) Å perpendicular to the basal plane. The 5-carb­oxy­benzene-1,3-dicarboxyl­ate ligand bridges the metal atoms, forming a polymeric chain along the b axis. O—H⋯O hydrogen bonds between the water mol­ecules and carboxyl­ate groups stabilize the crystal structure.

Related literature

For the applications and stuctures of related metal complexes of 1,3,5-benzene­tricarb­oxy­lic acid, see: Xia et al. (2004[Xia, S. Q., Hu, S. M., Dai, J. C., Wu, X. T., Fu, Z. Y., Zhang, J. J. & Du, W. X. (2004). Polyhedron, 23, 1003-1009.]); Modec & Brencic (2005[Modec, B. & Brencic, J. V. (2005). Eur. J. Inorg. Chem. 21, 4325-4334.]); Wei & Han (2005[Wei, W.-Y. & Han, J.-Y. (2005). Acta Cryst. E61, m1792-m1793.]); Han & Wei (2005[Han, J.-Y. & Wei, W.-Y. (2005). Acta Cryst. E61, m2242-m2243.]); Wang et al. (2005[Wang, X.-L., Liu, F.-C., Li, J.-R. & Ng, S. W. (2005). Acta Cryst. E61, m123-m125.]); Che et al. (2008[Che, G. B., Liu, C. B., Liu, B., Wang, Q. W. & Xu, Z. L. (2008). CrystEngComm, 10, 184-191.]); He et al. (2008[He, H. Y., Dai, F. N., Xie, A. P., Tong, X. & Sun, D. F. (2008). CrystEngComm, 10, 1429-1435.]); Li et al. (2008[Li, W., Li, M. X., Yang, J. J., Shao, M. & Liu, H. J. (2008). J. Coord. Chem. 61, 2715-2724.]); Gao et al. (2009[Gao, C. Y., Liu, S. X., Xie, L. H., Sun, C. Y., Cao, J. F., Ren, Y. H., Feng, D. & Su, Z. M. (2009). CrystEngComm, 11, 177-182.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C9H4O6)(H2O)3]

  • Mr = 320.88

  • Monoclinic, P 21 /c

  • a = 6.838 (2) Å

  • b = 18.809 (5) Å

  • c = 10.705 (3) Å

  • β = 126.901 (14)°

  • V = 1101.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.81 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.613, Tmax = 0.714

  • 7973 measured reflections

  • 1938 independent reflections

  • 1864 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.102

  • S = 1.01

  • 1938 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O1 1.9292 (14)
Ni1—O2W 1.9781 (17)
Ni1—O1W 1.9884 (18)
Ni1—O3W 2.2536 (16)
O6—Ni1i 1.9129 (15)
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2ii 0.82 1.81 2.568 (2) 152
O1W—H1W⋯O3iii 0.85 2.21 2.869 (3) 134
O1W—H2W⋯O5iv 0.85 1.94 2.680 (2) 145
O2W—H4W⋯O5v 0.85 1.89 2.715 (2) 165
O3W—H5W⋯O4vi 0.85 2.03 2.778 (2) 147
O3W—H6W⋯O2vii 0.85 2.49 3.068 (3) 126
O2W—H3W⋯O1viii 0.85 2.34 3.123 (2) 154
Symmetry codes: (ii) x+1, y, z+1; (iii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) -x, -y+1, -z+1; (v) -x+1, -y+1, -z+1; (vi) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (viii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, the construction of metal complexes based on 1,3,5-benzenetricarboxylic acid ligand has been investigated owing to their potential applications in many fields (Xia et al., 2004; Modec & Brencic, 2005; Wei & Han, 2005; Han & Wei, 2005; Wang et al., 2005; Che et al., 2008; He et al., 2008; Li et al., 2008; Gao et al., 2009). In order to search for new metal complex based on 1,3,5-benzenetricarboxylic acid ligand, the title complex, (I) was synthesized and its crystal determined (Fig. 1). The bond lengths and angles are normal (Allen et al., 1987). In the crystal structure, the HBTC ligands bridge the Ni atoms, forming a chain along the b axis (Fig. 2). O—H···O hydrogen bonds between the water molecules and carboxylate groups stabilize the structure.

Related literature top

For the applications and stuctures of related metal complexes of 1,3,5-benzenetricarboxylic acid, see: Xia et al. (2004); Modec & Brencic (2005); Wei & Han (2005); Han & Wei (2005); Wang et al. (2005); Che et al. (2008); He et al. (2008); Li et al. (2008); Gao et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of NiNO3.6H2O (0.10 mmol), 1,3,5-benzenetricarboxylic acid (H3BTC, 0.10 mmol), Et3N (0.1 ml), EtOH (2 ml) and H2O (2 ml) was sealed in a 10 ml Tefon-lined stainless-steel reactor and then heated to 393 K for 48 h under autogenous pressure. The mixture was slowly cooled to room temperature. Green block crystals suitable for X-ray diffraction analysis were collected by filtration..

Refinement top

H atoms attached to C atoms were placed in calculated positions (C—H = 0.93 Å) and refined as riding atoms and with Uiso(H) = 1.2 Ueq(C, N),respectively. The carboxy and water H atoms were located in a difference map and refined with O—H bond length from 0.82 to 0.85 Å and Uiso(H) = 1.5 Ueq(O).

Structure description top

In recent years, the construction of metal complexes based on 1,3,5-benzenetricarboxylic acid ligand has been investigated owing to their potential applications in many fields (Xia et al., 2004; Modec & Brencic, 2005; Wei & Han, 2005; Han & Wei, 2005; Wang et al., 2005; Che et al., 2008; He et al., 2008; Li et al., 2008; Gao et al., 2009). In order to search for new metal complex based on 1,3,5-benzenetricarboxylic acid ligand, the title complex, (I) was synthesized and its crystal determined (Fig. 1). The bond lengths and angles are normal (Allen et al., 1987). In the crystal structure, the HBTC ligands bridge the Ni atoms, forming a chain along the b axis (Fig. 2). O—H···O hydrogen bonds between the water molecules and carboxylate groups stabilize the structure.

For the applications and stuctures of related metal complexes of 1,3,5-benzenetricarboxylic acid, see: Xia et al. (2004); Modec & Brencic (2005); Wei & Han (2005); Han & Wei (2005); Wang et al. (2005); Che et al. (2008); He et al. (2008); Li et al. (2008); Gao et al. (2009). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level [symmetry codes: (A) -x, 1/2 + y, 1/2 - z]
[Figure 2] Fig. 2. View of the chain structure in the title compound.
catena-Poly[[triaquanickel(II)]-µ-5-carboxybenzene-1,3-dicarboxylato- κ2O1:O3] top
Crystal data top
[Ni(C9H4O6)(H2O)3]F(000) = 656
Mr = 320.88Dx = 1.936 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6807 reflections
a = 6.838 (2) Åθ = 2.6–27.8°
b = 18.809 (5) ŵ = 1.81 mm1
c = 10.705 (3) ÅT = 296 K
β = 126.901 (14)°Block, green
V = 1101.0 (5) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1938 independent reflections
Radiation source: fine-focus sealed tube1864 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 88
Tmin = 0.613, Tmax = 0.714k = 2221
7973 measured reflectionsl = 1012
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0942P)2 + 0.090P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.002
1938 reflectionsΔρmax = 0.32 e Å3
173 parametersΔρmin = 0.38 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.036 (3)
Crystal data top
[Ni(C9H4O6)(H2O)3]V = 1101.0 (5) Å3
Mr = 320.88Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.838 (2) ŵ = 1.81 mm1
b = 18.809 (5) ÅT = 296 K
c = 10.705 (3) Å0.30 × 0.25 × 0.20 mm
β = 126.901 (14)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1938 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1864 reflections with I > 2σ(I)
Tmin = 0.613, Tmax = 0.714Rint = 0.021
7973 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.01Δρmax = 0.32 e Å3
1938 reflectionsΔρmin = 0.38 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1199 (3)0.63000 (10)0.3748 (2)0.0228 (4)
C20.2227 (3)0.56454 (10)0.4747 (2)0.0203 (4)
C30.3935 (3)0.57173 (10)0.6364 (2)0.0213 (4)
H30.44310.61680.68060.026*
C40.4892 (3)0.51227 (11)0.7312 (2)0.0220 (4)
C50.4154 (3)0.44487 (11)0.6640 (2)0.0231 (4)
H50.48050.40470.72730.028*
C60.2465 (3)0.43711 (10)0.5040 (2)0.0196 (4)
C70.1480 (3)0.49745 (10)0.4085 (2)0.0209 (4)
H70.03270.49250.30100.025*
C80.6645 (4)0.51904 (11)0.9031 (2)0.0281 (5)
C90.1625 (3)0.36441 (10)0.4346 (2)0.0214 (4)
Ni10.11091 (4)0.773616 (12)0.32089 (3)0.01894 (19)
O10.2116 (3)0.68864 (7)0.44634 (16)0.0274 (4)
O20.0451 (3)0.62603 (8)0.23299 (18)0.0408 (4)
O30.7481 (3)0.58432 (8)0.95119 (18)0.0371 (4)
H3A0.83910.58531.04700.056*
O40.7292 (4)0.47053 (9)0.99436 (19)0.0532 (6)
O50.2577 (3)0.31100 (8)0.51934 (18)0.0314 (4)
O60.0066 (3)0.36214 (7)0.28913 (17)0.0304 (4)
O1W0.1375 (4)0.78863 (9)0.3587 (2)0.0448 (5)
H1W0.08230.82660.41230.067*
H2W0.10970.75630.42300.067*
O2W0.3070 (3)0.74742 (11)0.2478 (2)0.0430 (4)
H4W0.43880.72410.30760.065*
H3W0.32680.77120.18860.065*
O3W0.4158 (3)0.82950 (8)0.53994 (18)0.0394 (4)
H5W0.43120.87440.54320.059*
H6W0.55070.81320.56470.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0263 (9)0.0193 (10)0.0166 (9)0.0008 (7)0.0096 (7)0.0008 (8)
C20.0241 (9)0.0153 (10)0.0193 (9)0.0015 (7)0.0119 (8)0.0002 (7)
C30.0246 (9)0.0140 (10)0.0209 (9)0.0032 (7)0.0113 (8)0.0021 (8)
C40.0240 (10)0.0193 (9)0.0181 (10)0.0005 (8)0.0103 (8)0.0008 (8)
C50.0285 (9)0.0155 (10)0.0227 (10)0.0014 (7)0.0141 (8)0.0032 (7)
C60.0238 (9)0.0163 (10)0.0192 (9)0.0016 (7)0.0132 (8)0.0018 (7)
C70.0239 (9)0.0194 (10)0.0181 (9)0.0020 (8)0.0119 (8)0.0025 (8)
C80.0316 (10)0.0233 (11)0.0215 (10)0.0010 (8)0.0117 (9)0.0021 (8)
C90.0246 (9)0.0170 (10)0.0243 (10)0.0003 (7)0.0157 (8)0.0014 (8)
Ni10.0249 (2)0.0112 (3)0.0160 (3)0.00245 (7)0.00978 (19)0.00329 (7)
O10.0346 (8)0.0141 (7)0.0212 (7)0.0010 (5)0.0102 (6)0.0009 (6)
O20.0520 (10)0.0239 (9)0.0193 (8)0.0012 (7)0.0070 (7)0.0010 (7)
O30.0508 (10)0.0231 (8)0.0189 (8)0.0080 (7)0.0111 (7)0.0034 (6)
O40.0761 (13)0.0245 (9)0.0189 (8)0.0031 (8)0.0072 (8)0.0062 (7)
O50.0348 (8)0.0179 (8)0.0331 (8)0.0015 (6)0.0159 (7)0.0024 (6)
O60.0358 (8)0.0196 (7)0.0222 (7)0.0037 (6)0.0102 (6)0.0057 (6)
O1W0.0583 (11)0.0283 (8)0.0682 (13)0.0123 (9)0.0489 (11)0.0156 (9)
O2W0.0453 (10)0.0524 (11)0.0384 (9)0.0201 (9)0.0289 (9)0.0161 (9)
O3W0.0399 (8)0.0279 (9)0.0331 (8)0.0027 (7)0.0126 (7)0.0066 (7)
Geometric parameters (Å, º) top
C1—O21.236 (3)C9—O51.244 (2)
C1—O11.273 (2)C9—O61.266 (3)
C1—C21.500 (3)Ni1—O6i1.9129 (15)
C2—C71.386 (3)Ni1—O11.9292 (14)
C2—C31.397 (3)Ni1—O2W1.9781 (17)
C3—C41.383 (3)Ni1—O1W1.9884 (18)
C3—H30.9300Ni1—O3W2.2536 (16)
C4—C51.394 (3)O3—H3A0.8200
C4—C81.480 (3)O6—Ni1ii1.9129 (15)
C5—C61.383 (3)O1W—H1W0.8501
C5—H50.9300O1W—H2W0.8500
C6—C71.400 (3)O2W—H4W0.8501
C6—C91.496 (3)O2W—H3W0.8500
C7—H70.9300O3W—H5W0.8501
C8—O41.210 (3)O3W—H6W0.8500
C8—O31.321 (3)
O2—C1—O1123.25 (18)O5—C9—C6119.96 (17)
O2—C1—C2121.17 (17)O6—C9—C6115.87 (16)
O1—C1—C2115.58 (16)O6i—Ni1—O1174.25 (7)
C7—C2—C3119.92 (18)O6i—Ni1—O2W93.67 (7)
C7—C2—C1120.79 (17)O1—Ni1—O2W91.48 (7)
C3—C2—C1119.28 (17)O6i—Ni1—O1W87.32 (7)
C4—C3—C2120.44 (18)O1—Ni1—O1W88.13 (7)
C4—C3—H3119.8O2W—Ni1—O1W168.69 (8)
C2—C3—H3119.8O6i—Ni1—O3W90.27 (6)
C3—C4—C5119.43 (18)O1—Ni1—O3W86.65 (6)
C3—C4—C8121.08 (18)O2W—Ni1—O3W96.01 (8)
C5—C4—C8119.48 (17)O1W—Ni1—O3W95.25 (8)
C6—C5—C4120.64 (18)C1—O1—Ni1117.27 (12)
C6—C5—H5119.7C8—O3—H3A109.5
C4—C5—H5119.7C9—O6—Ni1ii120.96 (13)
C5—C6—C7119.76 (18)Ni1—O1W—H1W99.8
C5—C6—C9119.82 (18)Ni1—O1W—H2W105.1
C7—C6—C9120.37 (16)H1W—O1W—H2W105.1
C2—C7—C6119.80 (17)Ni1—O2W—H4W119.7
C2—C7—H7120.1Ni1—O2W—H3W127.8
C6—C7—H7120.1H4W—O2W—H3W105.1
O4—C8—O3121.55 (19)Ni1—O3W—H5W121.4
O4—C8—C4124.72 (19)Ni1—O3W—H6W108.0
O3—C8—C4113.73 (18)H5W—O3W—H6W105.1
O5—C9—O6124.16 (18)
O2—C1—C2—C74.9 (3)C3—C4—C8—O4169.1 (2)
O1—C1—C2—C7176.04 (17)C5—C4—C8—O49.6 (3)
O2—C1—C2—C3174.3 (2)C3—C4—C8—O310.9 (3)
O1—C1—C2—C34.8 (3)C5—C4—C8—O3170.43 (19)
C7—C2—C3—C40.2 (3)C5—C6—C9—O55.2 (3)
C1—C2—C3—C4179.35 (17)C7—C6—C9—O5177.22 (18)
C2—C3—C4—C50.6 (3)C5—C6—C9—O6174.46 (18)
C2—C3—C4—C8178.15 (18)C7—C6—C9—O63.1 (3)
C3—C4—C5—C60.6 (3)O2—C1—O1—Ni17.3 (3)
C8—C4—C5—C6178.15 (19)C2—C1—O1—Ni1173.69 (13)
C4—C5—C6—C70.1 (3)O2W—Ni1—O1—C172.99 (16)
C4—C5—C6—C9177.68 (17)O1W—Ni1—O1—C195.70 (16)
C3—C2—C7—C60.8 (3)O3W—Ni1—O1—C1168.93 (15)
C1—C2—C7—C6179.97 (17)O5—C9—O6—Ni1ii6.8 (3)
C5—C6—C7—C20.8 (3)C6—C9—O6—Ni1ii173.52 (12)
C9—C6—C7—C2178.38 (17)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2iii0.821.812.568 (2)152
O1W—H1W···O3iv0.852.212.869 (3)134
O1W—H2W···O5v0.851.942.680 (2)145
O2W—H4W···O5vi0.851.892.715 (2)165
O3W—H5W···O4vii0.852.032.778 (2)147
O3W—H6W···O2viii0.852.493.068 (3)126
O2W—H3W···O1ix0.852.343.123 (2)154
Symmetry codes: (iii) x+1, y, z+1; (iv) x1, y+3/2, z1/2; (v) x, y+1, z+1; (vi) x+1, y+1, z+1; (vii) x+1, y+1/2, z+3/2; (viii) x+1, y+3/2, z+1/2; (ix) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ni(C9H4O6)(H2O)3]
Mr320.88
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)6.838 (2), 18.809 (5), 10.705 (3)
β (°) 126.901 (14)
V3)1101.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.81
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.613, 0.714
No. of measured, independent and
observed [I > 2σ(I)] reflections
7973, 1938, 1864
Rint0.021
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.102, 1.01
No. of reflections1938
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.38

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—O11.9292 (14)Ni1—O3W2.2536 (16)
Ni1—O2W1.9781 (17)O6—Ni1i1.9129 (15)
Ni1—O1W1.9884 (18)
Symmetry code: (i) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2ii0.821.812.568 (2)152.3
O1W—H1W···O3iii0.852.212.869 (3)133.9
O1W—H2W···O5iv0.851.942.680 (2)145.0
O2W—H4W···O5v0.851.892.715 (2)164.7
O3W—H5W···O4vi0.852.032.778 (2)147.2
O3W—H6W···O2vii0.852.493.068 (3)125.8
O2W—H3W···O1viii0.852.343.123 (2)154.0
Symmetry codes: (ii) x+1, y, z+1; (iii) x1, y+3/2, z1/2; (iv) x, y+1, z+1; (v) x+1, y+1, z+1; (vi) x+1, y+1/2, z+3/2; (vii) x+1, y+3/2, z+1/2; (viii) x, y+3/2, z1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChe, G. B., Liu, C. B., Liu, B., Wang, Q. W. & Xu, Z. L. (2008). CrystEngComm, 10, 184–191.  Web of Science CSD CrossRef CAS Google Scholar
First citationGao, C. Y., Liu, S. X., Xie, L. H., Sun, C. Y., Cao, J. F., Ren, Y. H., Feng, D. & Su, Z. M. (2009). CrystEngComm, 11, 177–182.  Web of Science CSD CrossRef CAS Google Scholar
First citationHan, J.-Y. & Wei, W.-Y. (2005). Acta Cryst. E61, m2242–m2243.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, H. Y., Dai, F. N., Xie, A. P., Tong, X. & Sun, D. F. (2008). CrystEngComm, 10, 1429–1435.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, W., Li, M. X., Yang, J. J., Shao, M. & Liu, H. J. (2008). J. Coord. Chem. 61, 2715–2724.  Web of Science CSD CrossRef CAS Google Scholar
First citationModec, B. & Brencic, J. V. (2005). Eur. J. Inorg. Chem. 21, 4325–4334.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-L., Liu, F.-C., Li, J.-R. & Ng, S. W. (2005). Acta Cryst. E61, m123–m125.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, W.-Y. & Han, J.-Y. (2005). Acta Cryst. E61, m1792–m1793.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXia, S. Q., Hu, S. M., Dai, J. C., Wu, X. T., Fu, Z. Y., Zhang, J. J. & Du, W. X. (2004). Polyhedron, 23, 1003–1009.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds