Download citation
Download citation
link to html
The influences of step size and scanning speed on the shape of a single X-ray diffraction (XRD) peak are analyzed quantitatively. For this purpose, it is assumed that XRD peak shapes are a mixture of Cauchy and Gauss curves. Six equations are established for the calculation of position, maximum intensity and full width at half-maximum (FWHM) errors caused by step size and two for the FWHM errors caused by counting statistics. The ratio of step size to FWHM is proposed as the shape-perfect coefficient of the XRD peak. From these equations and the relationship between the FWHM and the integral width of a peak based on the pseudo-Voigt function or Voigt function, three basic elements of a single symmetric XRD peak (peak position, maximum intensity and FWHM) can be refined. The optimum step size and scanning time can also be set from them.
Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds