research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of hexa­kis­(di­methyl­formamide-κO)manganese(II) deca­kis­(di­methyl­formamide)-1κ5O,2κ5O-[μ-octa­deca­tungstodiphosphato(V)-κO:κO′]dimanganate(II) di­methyl­formamide disolvate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Physico-Chimie des Materiaux, Faculty of Sciences, University of Monastir, Avenue de l'environnement, 5019 Monastir, Tunisia, and bUniversity of Sousse, High School of Sciences and Technology, Rue Lamine Abassi, 4011 Hammam Sousse, Tunisia
*Correspondence e-mail: fatma.dhif@gmail.com

Edited by M. Gdaniec, Adam Mickiewicz University, Poland (Received 14 April 2016; accepted 12 May 2016; online 20 May 2016)

The crystal structure of the title compound, [Mn(C3H7NO)6][{Mn(C3H7NO)5}2(μ-P2W18O62)]·2C3H7NO, reveals that the Wells–Dawson-type polyanion [P2W18O62]6−, through terminal O atoms from the belts, bridges two MnII octa­hedral complexes. In the complex anion [{Mn(dmf)5}2(μ-P2W18O62)]2−, located around a twofold rotation axis, the MnII ions are coordinated by five O atoms from di­methyl­formamide (dmf) ligands and to a terminal O atom from the [P2W18O62]6− polyanion. Another MnII ion, located on an inversion centre, is coordinated by six O atoms from the dmf ligands and forms the [Mn(dmf)6]2+ cation. The crystal components are connected through numerous weak C—H⋯O hydrogen bonds to construct a three-dimensional network.

1. Chemical context

Over the past few decades, polyoxidometalates (POMs) have been considered to be inter­esting building blocks for the construction of organic–inorganic hybrid materials because of their nanosize, abundant topologies, controllable shapes and high negative charges (Dolbecq et al., 2010[Dolbecq, A., Dumas, E., Mayer, C. R. & Mialane, P. (2010). Chem. Rev. 110, 6009-6048.]). As a result of their unique redox, catalytic, photochemical and magnetic properties, organic–inorganic hybrid POM–based materials have captured considerable attention and are applied widely in many fields such as material science, catalysis and medicine (Niu et al., 2004[Niu, J. Y., Guo, D. J., Wang, J. P. & Zhao, J. W. (2004). Cryst. Growth Des. 4, 241-247.]; Ben Khelifa et al., 2015[Ben Khelifa, A., Belkhiria, M. S., Huang, G., Freslon, S., Guillou, O. & Bernot, K. (2015). Dalton Trans. 44, 16458-16464.]). Herein, we report the synthesis, crystal structure and supra­molecular architecture of the title compound, (1).

[Scheme 1]

2. Structural commentary

The asymmetric unit of (1) consists of one half of the dinuclear complex anion [{Mn(dmf)5}2{μ2-(α-P2W18O62)}]2−, one half of the complex cation [Mn(dmf)6]2+ and one dmf solvent mol­ecule. The [{Mn(dmf)5}2{μ2-(α-P2W18O62)}]2− anion, with the Wells–Dawson-type polyanion [P2W18O62]6− acting as a bridging ligand between the two MnII atoms, is located about a twofold symmetry axis (Fig. 1[link]). The Mn1 ion within this anion is coordinated by five dmf mol­ecules through O atoms and by a terminal O atom from the belt of the Wells–Dawson-type polyanion. The coordination sphere of the Mn1 ion features a trigonal distortion with three shorter [2.137 (6), 2.143 (6) and 2.153 (6) Å] and three longer [2.163 (5), 2.173 (6) and 2.205 (5) Å] Mn1—O bonds. Another MnII atom in this structure, Mn2, is located on an inversion centre and is octa­hedrally coordinated by six dmf mol­ecules with the formation of the complex cation [Mn(dmf)6]2+ shown in Fig. 2[link]. The Mn2 octa­hedron is characterized by a rhombic distortion with the following bond length values: 2.214 (9), 2.175 (7) and 2.134 (7) Å. The O—Mn—O bond angles in the complex ions Mn1 and Mn2 vary from 82.9 (2) to 100.0 (2)° and from 84.2 (3) to 90.6 (3)°, respectively, and from 169.7 (2) to 174.5 (3)° for bond angles with O atoms in trans positions in the Mn1 complex. These bond length and angle values show that the octa­hedral coordination geometry of the MnII ions is distorted and these values are in good agreement with literature data (Niu et al., 2004[Niu, J. Y., Guo, D. J., Wang, J. P. & Zhao, J. W. (2004). Cryst. Growth Des. 4, 241-247.]).

[Figure 1]
Figure 1
The mol­ecular structure of the anion [{Mn(DMF)5}2(μ-P2W18O62)]2− in (1). Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code (i) −x + 1, y, −z + [1\over2].]
[Figure 2]
Figure 2
The mol­ecular structure of the [Mn(DMF)6]2+ cation complex. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) −x + [1\over2]y − [1\over2], −z.]

The two central P atoms of the POM are tetra­hedrally coordinated by four bridging O atoms. The corresponding P1—O bond lengths vary from 1.528 (5) to 1.577 (5) Å (mean value 1.545 Å) and the O—P1—O bond angles are in the range 106.5 (2) to 112.7 (2)°. The W—O distances vary over a wide range: 1.700 (5)–2.384 (4) Å and the bond angles O—W—O are in the range 71.6 (2) to 103.8 (2)°. These bond lengths and angles are consistent with those given in the literature for the α-isomer of the Wells–Dawson-type polyanion (Dhifallah et al., 2016[Dhifallah, F., Belkhiria, M. S., Leclerc, N. & Cadot, E. (2016). Inorg. Chim. Acta, 441, 15-19.]).

3. Supra­molecular features

The crystal packing of the title compound is illustrated in Fig. 3[link]. In addition to the electrostatic inter­actions between the ions, the structure is stabilized by numerous weak C—H⋯O hydrogen bonds (Table 1[link]) that organize all the structure components into a three-dimensional framework.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O34 0.93 2.58 3.122 (10) 118
C2—H2C⋯O29i 0.96 2.61 3.500 (12) 154
C4—H4⋯O21 0.93 2.53 3.431 (11) 163
C4—H4⋯O31 0.93 2.52 3.108 (10) 121
C8—H8A⋯O2ii 0.96 2.55 3.488 (14) 167
C8—H8B⋯O10iii 0.96 2.57 3.307 (14) 134
C9—H9A⋯O1ii 0.96 2.60 3.366 (12) 137
C9—H9B⋯O35 0.96 2.42 3.289 (12) 151
C12—H12A⋯O23 0.96 2.48 3.439 (9) 176
C12—H12C⋯O11 0.96 2.48 3.086 (10) 121
C13—H13⋯O19iii 0.93 2.53 3.287 (9) 139
C14—H14B⋯O30i 0.96 2.56 3.379 (11) 144
C16—H16⋯O10 0.93 2.62 3.473 (11) 153
C17—H17C⋯O10 0.96 2.63 3.513 (12) 154
C19—H19⋯O40iv 0.93 2.43 3.331 (19) 164
C21—H21B⋯O11ii 0.96 2.59 3.478 (14) 154
C21—H21C⋯O33 0.96 2.50 3.375 (14) 151
C24—H24C⋯O26v 0.96 2.43 3.369 (14) 164
C25—H25⋯O12vi 0.93 2.56 3.358 (19) 144
C26—H26C⋯O1vii 0.96 2.55 3.453 (17) 156
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iv) [-x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z]; (v) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (vi) -x+1, -y, -z; (vii) x, y-1, z.
[Figure 3]
Figure 3
Polyhedral representation of the crystal structure of (1), viewed along the b axis.

4. Synthesis and crystallization

The title compound was prepared at room temperature by dissolving successively the potassium salt K6[α-P2W18O62]·11H2O (0.606g, 0.125 mmol), synthesized by a literature method (Mbomekalle et al., 2004[Mbomekalle, I. M., Lu, Y. W., Keita, B. & Nadjo, L. (2004). Inorg. Chem. Commun. 7, 86-90.]) and manganese(II) chloride (MnCl2·4H2O; 0.099 g, 0.5 mmol) in dmf (25 mL) under stirring. The clear solution obtained was allowed to stand for at least one night until it took a stable color indicating that the kinetics of the reaction were complete. Yellow crystals of (1) suitable for X-ray diffraction analysis were obtained by diffusion of ethanol into the dmf solution.

5. FT–IR Spectroscopy

The IR spectrum of (1) (Fig. 4[link]) exhibits characteristic bands of metal–oxygen stretching and deformation modes of the POM, in the region 1100–400 cm−1. The vibration bands, attributed to ν(P—Oa), ν(W—Ot), ν(W—Oe) and ν(W—Oc), appear respectively at 1090, 959, 911 and 782 cm−1 (Jin et al., 2007[Jin, H., Qi, Y., Xiao, D., Wang, X., Chang, S. & Wang, E. (2007). J. Mol. Struct. 837, 23-29.]; Dong et al., 2008[Dong, B., Peng, J., Chen, Y., Zhang, P., Tian, A. & Chen, J. (2008). J. Mol. Struct. 875, 75-79.]; Cao et al., 2009[Cao, X., He, L., Lin, B., Chen, Z. & Liu, P. (2009). Inorg. Chim. Acta, 362, 2505-2509.]). The region 1700–1110 cm−1 corresponds to DMF mol­ecule vibrations and bands observed at 1645, 1498, 1435, 1418, 1378, 1251 and 1109 cm−1 are respectively attributed to ν(CO), δas(CH3), δ(CH), δs(CH3), νas(C′N) and r(CH3) (Durgaprasad et al., 1971[Durgaprasad, G., Sathyanarayana, D. N. & Patel, C. C. (1971). Bull. Chem. Soc. Jpn, 44, 316-322.]).

[Figure 4]
Figure 4
The FT–IR spectrum of (1).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were refined using a riding model with C—H = 0.93–0.96 Å and Uiso(H) = 1.5Ueq(C) or 1.2Ueq(C). Restraints (DELU and SIMU) in SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) were used in order to maintain a reasonable geometry and atomic displacement parameters for one DMF mol­ecule.

Table 2
Experimental details

Crystal data
Chemical formula [Mn(C3H7NO)6][Mn2(P2W18O62)(C3H7NO)10]·2C3H7NO
Mr 5843.78
Crystal system, space group Monoclinic, C2/c
Temperature (K) 203
a, b, c (Å) 26.9702 (5), 14.3845 (2), 34.1762 (7)
β (°) 111.896 (2)
V3) 12302.3 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 17.18
Crystal size (mm) 0.24 × 0.18 × 0.07
 
Data collection
Diffractometer Agilent SuperNova Dual Source diffractometer with an Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.133, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 110388, 14565, 12616
Rint 0.076
(sin θ/λ)max−1) 0.658
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.072, 1.12
No. of reflections 14565
No. of parameters 804
No. of restraints 7
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.07, −2.08
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1997[Brandenburg, K. (1997). DIAMOND. University of Bonn, Germany.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1997); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Hexakis(dimethylformamide-κO)manganese(II) decakis(dimethylformamide)-1κ5O,2κ5O-[µ-octadecatungstodiphosphato(V)-κO:κO']dimanganate(II) dimethylformamide disolvate top
Crystal data top
[Mn(C3H7NO)6][Mn2(P2W18O62)(C3H7NO)10]·2C3H7NOF(000) = 10612
Mr = 5843.78Dx = 3.155 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 26.9702 (5) ÅCell parameters from 36494 reflections
b = 14.3845 (2) Åθ = 3.6–29.1°
c = 34.1762 (7) ŵ = 17.18 mm1
β = 111.896 (2)°T = 203 K
V = 12302.3 (4) Å3Cuboid, yellow
Z = 40.24 × 0.18 × 0.07 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
14565 independent reflections
Radiation source: SuperNova (Mo) X-ray Source12616 reflections with I > 2σ(I)
Detector resolution: 5.3048 pixels mm-1Rint = 0.076
CCD plate, AtlasS2 scansθmax = 27.9°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 3535
Tmin = 0.133, Tmax = 1.000k = 1818
110388 measured reflectionsl = 4444
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0162P)2 + 165.2372P]
where P = (Fo2 + 2Fc2)/3
14565 reflections(Δ/σ)max = 0.002
804 parametersΔρmax = 2.07 e Å3
7 restraintsΔρmin = 2.08 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W10.37578 (2)0.25005 (2)0.09160 (2)0.01620 (6)
W20.50414 (2)0.24682 (2)0.09871 (2)0.01727 (7)
W30.43807 (2)0.04441 (2)0.09488 (2)0.01678 (7)
W40.40732 (2)0.02952 (2)0.18763 (2)0.01452 (6)
W50.34442 (2)0.17355 (2)0.18329 (2)0.01371 (6)
W60.41338 (2)0.39654 (2)0.18805 (2)0.01413 (6)
W70.54022 (2)0.39688 (2)0.19367 (2)0.01493 (6)
W80.61092 (2)0.17568 (2)0.19893 (2)0.01534 (6)
W90.54669 (2)0.02755 (2)0.19409 (2)0.01516 (6)
P10.47540 (6)0.18140 (11)0.18750 (5)0.0083 (3)
Mn20.25000.25000.00000.0409 (5)
Mn10.19102 (4)0.22616 (8)0.14462 (3)0.0211 (2)
O10.43086 (19)0.2875 (3)0.07249 (14)0.0173 (10)
O20.48124 (18)0.1261 (3)0.07564 (14)0.0163 (10)
O30.38000 (18)0.1277 (3)0.06966 (14)0.0185 (11)
O40.39411 (18)0.3486 (3)0.13100 (14)0.0146 (10)
O50.51474 (18)0.3470 (3)0.13758 (14)0.0169 (10)
O60.56452 (19)0.1928 (3)0.14063 (15)0.0182 (10)
O70.50353 (19)0.0014 (3)0.13637 (15)0.0189 (11)
O80.40523 (18)0.0009 (3)0.13129 (14)0.0164 (10)
O90.34566 (18)0.1923 (3)0.12803 (14)0.0163 (10)
O100.4228 (2)0.0405 (3)0.05695 (15)0.0238 (11)
O110.3207 (2)0.2898 (3)0.05154 (15)0.0235 (11)
O120.5302 (2)0.2890 (4)0.06374 (16)0.0247 (12)
O130.45612 (18)0.1809 (3)0.13790 (14)0.0147 (10)
O140.43198 (18)0.1303 (3)0.19850 (13)0.0130 (9)
O150.52899 (17)0.1298 (3)0.20425 (14)0.0135 (10)
O160.48044 (17)0.2830 (3)0.20144 (13)0.0132 (9)
O170.47296 (19)0.4582 (3)0.18215 (14)0.0189 (11)
O180.59021 (19)0.2974 (3)0.20752 (15)0.0184 (10)
O190.60400 (18)0.0442 (3)0.18997 (15)0.0163 (10)
O200.48063 (18)0.0510 (3)0.20113 (14)0.0154 (10)
O210.34336 (17)0.0432 (3)0.17492 (14)0.0155 (10)
O220.37225 (18)0.2954 (3)0.19530 (14)0.0149 (10)
O230.36766 (19)0.4849 (3)0.17599 (15)0.0195 (11)
O240.44329 (19)0.4122 (3)0.24722 (14)0.0180 (10)
O250.5769 (2)0.4870 (3)0.18580 (15)0.0227 (11)
O260.6705 (2)0.1949 (3)0.19370 (15)0.0233 (11)
O270.5661 (2)0.1362 (3)0.18549 (16)0.0248 (12)
O280.58041 (19)0.0248 (3)0.25425 (15)0.0194 (11)
O290.3805 (2)0.1384 (3)0.17621 (16)0.0237 (11)
O300.36338 (18)0.1547 (3)0.24209 (15)0.0171 (10)
O310.27687 (18)0.1915 (3)0.17009 (15)0.0196 (11)
O320.1799 (2)0.1920 (4)0.20183 (17)0.0331 (13)
C10.1360 (3)0.1824 (5)0.2056 (3)0.0267 (17)
H10.10540.17770.18130.032*
N10.1307 (3)0.1788 (4)0.2425 (2)0.0292 (15)
C20.1757 (4)0.1879 (8)0.2817 (3)0.051 (3)
H2A0.20800.19130.27610.077*
H2B0.17730.13490.29920.077*
H2C0.17190.24340.29590.077*
C30.0781 (4)0.1705 (6)0.2448 (3)0.039 (2)
H3A0.05160.16540.21680.059*
H3B0.07100.22450.25840.059*
H3C0.07700.11610.26070.059*
O330.1758 (3)0.0825 (4)0.12398 (19)0.0391 (15)
C40.2072 (4)0.0196 (6)0.1289 (3)0.042 (2)
H40.24300.03580.13680.051*
N20.1956 (3)0.0703 (5)0.1241 (2)0.043 (2)
C50.2378 (4)0.1366 (7)0.1287 (4)0.061 (3)
H5A0.27120.10430.13580.091*
H5B0.23000.16970.10270.091*
H5C0.24030.17980.15080.091*
C60.1425 (5)0.1066 (9)0.1137 (5)0.083 (4)
H6A0.12020.05980.11870.124*
H6B0.14380.15990.13090.124*
H6C0.12820.12440.08450.124*
O340.1075 (2)0.2531 (5)0.1134 (2)0.0490 (18)
C70.0757 (4)0.3129 (8)0.0919 (3)0.047 (3)
H70.06260.35600.10600.057*
N30.0595 (3)0.3190 (6)0.0512 (2)0.046 (2)
C80.0175 (6)0.3811 (11)0.0260 (4)0.102 (6)
H8A0.01220.37400.00320.153*
H8B0.01500.36650.03000.153*
H8C0.02760.44420.03450.153*
C90.0798 (5)0.2567 (9)0.0271 (3)0.070 (4)
H9A0.06340.27150.00240.105*
H9B0.11790.26400.03610.105*
H9C0.07170.19360.03160.105*
O350.2046 (2)0.2857 (4)0.09136 (17)0.0309 (13)
C100.2390 (3)0.3475 (5)0.0961 (2)0.0229 (16)
H100.26830.34920.12140.027*
N40.2362 (3)0.4106 (4)0.0672 (2)0.0265 (15)
C110.1928 (4)0.4060 (7)0.0266 (3)0.047 (3)
H11A0.19720.35220.01160.071*
H11B0.19300.46090.01070.071*
H11C0.15950.40180.03050.071*
C120.2799 (3)0.4762 (5)0.0728 (3)0.0312 (19)
H12A0.30310.47820.10200.047*
H12B0.26550.53700.06390.047*
H12C0.29990.45640.05620.047*
O360.2124 (3)0.3636 (4)0.1703 (2)0.0421 (16)
C130.2043 (3)0.4050 (6)0.1989 (3)0.036 (2)
H130.16890.41320.19600.043*
N50.2409 (3)0.4385 (5)0.2327 (2)0.0294 (15)
C140.2278 (4)0.4882 (8)0.2646 (3)0.056 (3)
H14A0.26020.50710.28700.084*
H14B0.20690.54210.25220.084*
H14C0.20780.44830.27580.084*
C150.2964 (4)0.4234 (11)0.2408 (4)0.092 (5)
H15A0.31230.38850.26630.138*
H15B0.31420.48230.24360.138*
H15C0.29990.38950.21770.138*
O370.3191 (3)0.2804 (5)0.0546 (2)0.058 (2)
C160.3642 (4)0.2458 (7)0.0716 (3)0.045 (2)
H160.37280.19560.05810.054*
N60.4007 (3)0.2743 (5)0.1069 (2)0.0357 (17)
C170.4532 (4)0.2344 (7)0.1243 (3)0.053 (3)
H17A0.47940.28180.12720.080*
H17B0.45890.20820.15150.080*
H17C0.45650.18650.10580.080*
C180.3876 (5)0.3450 (8)0.1311 (4)0.070 (4)
H18A0.35000.35770.11900.106*
H18B0.39700.32400.15960.106*
H18C0.40710.40070.13090.106*
O380.2501 (3)0.1093 (5)0.0233 (2)0.058 (2)
C190.2095 (5)0.0671 (8)0.0183 (3)0.054 (3)
H190.17710.09710.00450.065*
N70.2083 (4)0.0211 (5)0.0315 (2)0.044 (2)
C200.2519 (6)0.0778 (11)0.0525 (5)0.104 (6)
H20A0.28400.04130.06170.156*
H20B0.24740.10560.07650.156*
H20C0.25430.12570.03370.156*
C210.1563 (6)0.0636 (9)0.0208 (4)0.079 (4)
H21A0.12900.01820.00790.119*
H21B0.15260.11400.00160.119*
H21C0.15270.08680.04600.119*
O390.2057 (3)0.2996 (5)0.0390 (3)0.067 (2)
C220.1679 (6)0.3436 (8)0.0404 (4)0.069 (3)
H220.13870.35120.01530.083*
N80.1648 (5)0.3803 (7)0.0733 (3)0.067 (3)
C230.1136 (8)0.4306 (18)0.0683 (8)0.184 (11)
H23A0.11600.45510.09510.276*
H23B0.08420.38790.05810.276*
H23C0.10810.48060.04850.276*
C240.2036 (7)0.3869 (10)0.1143 (4)0.096 (5)
H24A0.23670.36130.11480.144*
H24B0.20870.45100.12270.144*
H24C0.19180.35290.13340.144*
O400.4111 (6)0.3352 (9)0.0133 (4)0.136 (5)
C250.4542 (6)0.3711 (11)0.0229 (6)0.109 (6)
H250.47470.35310.00760.131*
N90.4758 (5)0.4331 (10)0.0530 (5)0.111 (5)
C260.4464 (9)0.4739 (11)0.0759 (5)0.125 (7)
H26A0.41500.43760.07170.188*
H26B0.46840.47540.10540.188*
H26C0.43620.53610.06600.188*
C270.5270 (9)0.4643 (16)0.0653 (11)0.27 (2)
H27A0.53040.52170.08040.410*
H27B0.55080.41890.08330.410*
H27C0.53590.47430.04090.410*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.01490 (14)0.02190 (14)0.01007 (13)0.00222 (11)0.00265 (11)0.00061 (10)
W20.01742 (15)0.02454 (15)0.01067 (13)0.00453 (12)0.00617 (11)0.00034 (11)
W30.02004 (15)0.01751 (13)0.01187 (14)0.00120 (11)0.00488 (11)0.00361 (10)
W40.01286 (14)0.01258 (13)0.01811 (14)0.00222 (10)0.00579 (11)0.00138 (10)
W50.00908 (13)0.01626 (13)0.01540 (14)0.00011 (10)0.00411 (11)0.00085 (10)
W60.01424 (14)0.01239 (13)0.01491 (14)0.00162 (10)0.00446 (11)0.00112 (10)
W70.01552 (14)0.01431 (13)0.01575 (14)0.00319 (11)0.00675 (11)0.00008 (10)
W80.01178 (14)0.02008 (14)0.01606 (14)0.00088 (11)0.00738 (11)0.00110 (10)
W90.01322 (14)0.01455 (13)0.01807 (15)0.00186 (10)0.00625 (11)0.00268 (10)
P10.0058 (8)0.0100 (7)0.0089 (8)0.0000 (6)0.0025 (6)0.0000 (6)
Mn20.0532 (13)0.0319 (10)0.0293 (10)0.0081 (9)0.0059 (9)0.0001 (8)
Mn10.0162 (6)0.0282 (6)0.0178 (6)0.0026 (5)0.0052 (4)0.0002 (4)
O10.018 (3)0.024 (2)0.008 (2)0.002 (2)0.0035 (19)0.0029 (19)
O20.018 (3)0.018 (2)0.016 (2)0.002 (2)0.009 (2)0.0013 (19)
O30.012 (2)0.025 (3)0.012 (2)0.002 (2)0.0043 (19)0.0049 (19)
O40.015 (2)0.016 (2)0.012 (2)0.0017 (19)0.0049 (19)0.0009 (18)
O50.016 (2)0.022 (2)0.013 (2)0.002 (2)0.006 (2)0.0003 (19)
O60.018 (3)0.022 (2)0.015 (2)0.001 (2)0.007 (2)0.0022 (19)
O70.019 (3)0.020 (2)0.017 (3)0.003 (2)0.007 (2)0.0027 (19)
O80.014 (2)0.020 (2)0.014 (2)0.0013 (19)0.0036 (19)0.0015 (19)
O90.015 (2)0.020 (2)0.013 (2)0.0005 (19)0.0044 (19)0.0004 (19)
O100.029 (3)0.023 (3)0.019 (3)0.003 (2)0.010 (2)0.009 (2)
O110.019 (3)0.029 (3)0.018 (3)0.003 (2)0.002 (2)0.001 (2)
O120.019 (3)0.036 (3)0.022 (3)0.006 (2)0.011 (2)0.002 (2)
O130.015 (2)0.018 (2)0.012 (2)0.0001 (19)0.0053 (19)0.0004 (18)
O140.017 (2)0.012 (2)0.010 (2)0.0009 (18)0.0064 (19)0.0024 (17)
O150.013 (2)0.013 (2)0.013 (2)0.0034 (18)0.0029 (19)0.0026 (18)
O160.014 (2)0.018 (2)0.008 (2)0.0017 (19)0.0044 (18)0.0029 (18)
O170.024 (3)0.016 (2)0.015 (2)0.001 (2)0.005 (2)0.0035 (19)
O180.020 (3)0.021 (2)0.016 (2)0.002 (2)0.009 (2)0.0021 (19)
O190.009 (2)0.020 (2)0.022 (3)0.0038 (19)0.008 (2)0.0028 (19)
O200.013 (2)0.016 (2)0.018 (2)0.0002 (19)0.0061 (19)0.0010 (19)
O210.009 (2)0.015 (2)0.021 (3)0.0022 (18)0.0035 (19)0.0048 (19)
O220.013 (2)0.017 (2)0.012 (2)0.0032 (19)0.0019 (19)0.0007 (18)
O230.021 (3)0.019 (2)0.016 (3)0.004 (2)0.005 (2)0.0037 (19)
O240.019 (3)0.016 (2)0.018 (3)0.001 (2)0.007 (2)0.0009 (19)
O250.026 (3)0.022 (3)0.023 (3)0.008 (2)0.012 (2)0.001 (2)
O260.021 (3)0.032 (3)0.019 (3)0.002 (2)0.009 (2)0.002 (2)
O270.028 (3)0.022 (3)0.022 (3)0.007 (2)0.006 (2)0.006 (2)
O280.017 (3)0.022 (3)0.019 (3)0.001 (2)0.006 (2)0.002 (2)
O290.029 (3)0.017 (2)0.025 (3)0.007 (2)0.011 (2)0.005 (2)
O300.013 (2)0.022 (2)0.019 (3)0.0005 (19)0.009 (2)0.0016 (19)
O310.011 (2)0.025 (3)0.022 (3)0.001 (2)0.004 (2)0.001 (2)
O320.028 (3)0.052 (4)0.021 (3)0.006 (3)0.012 (2)0.007 (3)
C10.032 (5)0.023 (4)0.025 (4)0.001 (3)0.011 (4)0.001 (3)
N10.037 (4)0.029 (4)0.022 (4)0.002 (3)0.012 (3)0.002 (3)
C20.043 (6)0.090 (8)0.023 (5)0.001 (5)0.014 (4)0.008 (5)
C30.044 (6)0.043 (5)0.042 (6)0.004 (4)0.028 (5)0.001 (4)
O330.045 (4)0.032 (3)0.036 (4)0.003 (3)0.010 (3)0.004 (3)
C40.043 (6)0.042 (5)0.033 (5)0.008 (5)0.004 (4)0.000 (4)
N20.055 (5)0.029 (4)0.031 (4)0.010 (4)0.001 (4)0.000 (3)
C50.057 (7)0.048 (6)0.068 (8)0.006 (5)0.013 (6)0.008 (6)
C60.062 (8)0.079 (9)0.103 (11)0.028 (7)0.025 (8)0.020 (8)
O340.021 (3)0.084 (5)0.040 (4)0.005 (3)0.010 (3)0.027 (4)
C70.037 (6)0.074 (7)0.040 (6)0.013 (5)0.023 (5)0.005 (5)
N30.028 (4)0.075 (6)0.032 (4)0.019 (4)0.008 (3)0.008 (4)
C80.100 (11)0.145 (14)0.060 (9)0.082 (11)0.029 (8)0.041 (9)
C90.053 (7)0.101 (10)0.047 (7)0.004 (7)0.008 (6)0.040 (7)
O350.031 (3)0.038 (3)0.023 (3)0.006 (3)0.010 (2)0.004 (2)
C100.024 (4)0.031 (4)0.011 (4)0.002 (3)0.004 (3)0.002 (3)
N40.030 (4)0.029 (3)0.020 (3)0.006 (3)0.008 (3)0.003 (3)
C110.043 (6)0.065 (7)0.025 (5)0.010 (5)0.002 (4)0.013 (4)
C120.026 (4)0.028 (4)0.036 (5)0.000 (3)0.008 (4)0.005 (4)
O360.056 (4)0.037 (3)0.044 (4)0.001 (3)0.030 (3)0.015 (3)
C130.027 (5)0.039 (5)0.038 (5)0.007 (4)0.008 (4)0.011 (4)
N50.022 (4)0.033 (4)0.033 (4)0.009 (3)0.010 (3)0.004 (3)
C140.051 (7)0.079 (8)0.036 (6)0.020 (6)0.012 (5)0.015 (5)
C150.028 (6)0.140 (13)0.097 (11)0.004 (7)0.012 (6)0.046 (10)
O370.056 (5)0.059 (5)0.040 (4)0.004 (4)0.002 (4)0.003 (3)
C160.053 (7)0.039 (5)0.044 (6)0.003 (5)0.020 (5)0.003 (4)
N60.043 (5)0.029 (4)0.030 (4)0.008 (3)0.009 (3)0.004 (3)
C170.038 (6)0.049 (6)0.065 (7)0.008 (5)0.012 (5)0.003 (5)
C180.073 (8)0.065 (7)0.060 (8)0.021 (6)0.010 (6)0.031 (6)
O380.076 (6)0.047 (4)0.051 (5)0.008 (4)0.024 (4)0.003 (3)
C190.077 (8)0.053 (7)0.038 (6)0.006 (6)0.029 (6)0.002 (5)
N70.072 (6)0.032 (4)0.036 (5)0.000 (4)0.030 (4)0.004 (3)
C200.112 (12)0.141 (13)0.099 (11)0.079 (11)0.086 (10)0.065 (10)
C210.099 (11)0.088 (10)0.052 (8)0.020 (8)0.031 (7)0.012 (7)
O390.077 (6)0.051 (5)0.086 (6)0.010 (4)0.045 (5)0.021 (4)
C220.081 (9)0.061 (7)0.071 (8)0.021 (6)0.035 (7)0.017 (6)
N80.092 (8)0.076 (7)0.053 (6)0.032 (6)0.049 (6)0.018 (5)
C230.098 (15)0.28 (3)0.22 (3)0.007 (18)0.110 (17)0.01 (2)
C240.162 (16)0.078 (9)0.054 (9)0.028 (10)0.048 (10)0.009 (7)
O400.129 (11)0.134 (10)0.145 (11)0.037 (9)0.051 (9)0.054 (9)
C250.046 (8)0.098 (11)0.190 (19)0.031 (8)0.051 (10)0.063 (12)
N90.083 (10)0.097 (10)0.136 (13)0.024 (8)0.021 (9)0.022 (9)
C260.22 (2)0.088 (11)0.069 (10)0.044 (13)0.060 (12)0.050 (9)
C270.096 (17)0.14 (2)0.55 (6)0.046 (15)0.08 (3)0.14 (3)
Geometric parameters (Å, º) top
W1—O111.700 (5)C4—H40.9300
W1—O41.890 (4)N2—C61.439 (13)
W1—O11.910 (5)N2—C51.448 (13)
W1—O91.912 (5)C5—H5A0.9600
W1—O31.933 (5)C5—H5B0.9600
W1—O132.373 (4)C5—H5C0.9600
W2—O121.708 (5)C6—H6A0.9600
W2—O61.889 (5)C6—H6B0.9600
W2—O51.908 (5)C6—H6C0.9600
W2—O21.912 (4)O34—C71.243 (11)
W2—O11.932 (5)C7—N31.296 (12)
W2—O132.380 (5)C7—H70.9300
W3—O101.715 (5)N3—C81.447 (13)
W3—O81.883 (5)N3—C91.458 (13)
W3—O31.904 (5)C8—H8A0.9600
W3—O71.909 (5)C8—H8B0.9600
W3—O21.934 (5)C8—H8C0.9600
W3—O132.392 (4)C9—H9A0.9600
W4—O291.707 (5)C9—H9B0.9600
W4—O201.881 (4)C9—H9C0.9600
W4—O28i1.889 (5)O35—C101.252 (9)
W4—O211.924 (4)C10—N41.321 (9)
W4—O81.955 (5)C10—H100.9300
W4—O142.384 (4)N4—C111.445 (10)
W5—O311.725 (5)N4—C121.467 (10)
W5—O221.890 (4)C11—H11A0.9600
W5—O211.895 (4)C11—H11B0.9600
W5—O301.899 (5)C11—H11C0.9600
W5—O91.920 (5)C12—H12A0.9600
W5—O142.306 (4)C12—H12B0.9600
W6—O231.711 (5)C12—H12C0.9600
W6—O241.891 (5)O36—C131.230 (10)
W6—O221.901 (5)C13—N51.301 (10)
W6—O171.911 (5)C13—H130.9300
W6—O41.947 (4)N5—C151.434 (12)
W6—O162.352 (4)N5—C141.453 (11)
W7—O251.711 (5)C14—H14A0.9600
W7—O181.901 (5)C14—H14B0.9600
W7—O24i1.912 (5)C14—H14C0.9600
W7—O51.918 (5)C15—H15A0.9600
W7—O171.921 (5)C15—H15B0.9600
W7—O162.381 (4)C15—H15C0.9600
W8—O261.704 (5)O37—C161.241 (11)
W8—O181.894 (5)C16—N61.306 (11)
W8—O30i1.895 (5)C16—H160.9300
W8—O191.913 (5)N6—C181.435 (11)
W8—O61.933 (5)N6—C171.436 (11)
W8—O152.377 (4)C17—H17A0.9600
W9—O271.709 (5)C17—H17B0.9600
W9—O191.907 (5)C17—H17C0.9600
W9—O281.913 (5)C18—H18A0.9600
W9—O201.915 (4)C18—H18B0.9600
W9—O71.925 (5)C18—H18C0.9600
W9—O152.365 (4)O38—C191.208 (13)
P1—O161.528 (5)C19—N71.350 (12)
P1—O151.533 (5)C19—H190.9300
P1—O141.543 (5)N7—C201.389 (14)
P1—O131.577 (5)N7—C211.448 (15)
Mn2—O37ii2.133 (7)C20—H20A0.9600
Mn2—O372.134 (7)C20—H20B0.9600
Mn2—O38ii2.175 (7)C20—H20C0.9600
Mn2—O382.175 (7)C21—H21A0.9600
Mn2—O39ii2.214 (9)C21—H21B0.9600
Mn2—O392.214 (9)C21—H21C0.9600
Mn1—O342.137 (6)O39—C221.216 (14)
Mn1—O322.143 (6)C22—N81.272 (14)
Mn1—O362.153 (6)C22—H220.9300
Mn1—O352.163 (5)N8—C241.404 (16)
Mn1—O332.173 (6)N8—C231.51 (2)
Mn1—O312.205 (5)C23—H23A0.9600
O24—W7i1.912 (5)C23—H23B0.9600
O28—W4i1.889 (5)C23—H23C0.9600
O30—W8i1.895 (5)C24—H24A0.9600
O32—C11.245 (9)C24—H24B0.9600
C1—N11.322 (10)C24—H24C0.9600
C1—H10.9300O40—C251.201 (16)
N1—C21.439 (11)C25—N91.320 (19)
N1—C31.454 (11)C25—H250.9300
C2—H2A0.9600N9—C271.36 (2)
C2—H2B0.9600N9—C261.43 (2)
C2—H2C0.9600C26—H26A0.9600
C3—H3A0.9600C26—H26B0.9600
C3—H3B0.9600C26—H26C0.9600
C3—H3C0.9600C27—H27A0.9600
O33—C41.207 (11)C27—H27B0.9600
C4—N21.325 (11)C27—H27C0.9600
O11—W1—O4103.8 (2)W5—O14—W491.28 (16)
O11—W1—O1100.8 (2)P1—O15—W9128.5 (2)
O4—W1—O190.1 (2)P1—O15—W8127.6 (2)
O11—W1—O9102.4 (2)W9—O15—W890.60 (16)
O4—W1—O985.64 (19)P1—O16—W6129.1 (3)
O1—W1—O9156.78 (19)P1—O16—W7127.5 (3)
O11—W1—O398.9 (2)W6—O16—W790.25 (15)
O4—W1—O3157.21 (18)W6—O17—W7122.1 (2)
O1—W1—O387.6 (2)W8—O18—W7151.7 (3)
O9—W1—O387.6 (2)W9—O19—W8123.8 (2)
O11—W1—O13169.8 (2)W4—O20—W9151.9 (3)
O4—W1—O1384.73 (17)W5—O21—W4122.8 (2)
O1—W1—O1373.32 (17)W5—O22—W6152.2 (3)
O9—W1—O1383.55 (18)W6—O24—W7i162.7 (3)
O3—W1—O1372.89 (16)W4i—O28—W9162.9 (3)
O12—W2—O6102.3 (2)W8i—O30—W5161.8 (3)
O12—W2—O5103.0 (2)W5—O31—Mn1171.1 (3)
O6—W2—O585.4 (2)C1—O32—Mn1125.6 (5)
O12—W2—O2100.9 (2)O32—C1—N1123.3 (8)
O6—W2—O289.63 (19)O32—C1—H1118.4
O5—W2—O2156.2 (2)N1—C1—H1118.4
O12—W2—O1100.6 (2)C1—N1—C2122.0 (8)
O6—W2—O1157.0 (2)C1—N1—C3120.6 (7)
O5—W2—O187.5 (2)C2—N1—C3117.3 (7)
O2—W2—O188.1 (2)N1—C2—H2A109.5
O12—W2—O13171.0 (2)N1—C2—H2B109.5
O6—W2—O1384.57 (18)H2A—C2—H2B109.5
O5—W2—O1383.16 (18)N1—C2—H2C109.5
O2—W2—O1373.16 (17)H2A—C2—H2C109.5
O1—W2—O1372.82 (17)H2B—C2—H2C109.5
O10—W3—O8102.9 (2)N1—C3—H3A109.5
O10—W3—O3100.4 (2)N1—C3—H3B109.5
O8—W3—O389.9 (2)H3A—C3—H3B109.5
O10—W3—O7103.0 (2)N1—C3—H3C109.5
O8—W3—O786.2 (2)H3A—C3—H3C109.5
O3—W3—O7156.52 (19)H3B—C3—H3C109.5
O10—W3—O2100.4 (2)C4—O33—Mn1129.1 (6)
O8—W3—O2156.61 (19)O33—C4—N2126.4 (9)
O3—W3—O287.8 (2)O33—C4—H4116.8
O7—W3—O286.7 (2)N2—C4—H4116.8
O10—W3—O13170.2 (2)C4—N2—C6123.5 (10)
O8—W3—O1384.54 (18)C4—N2—C5119.3 (9)
O3—W3—O1372.92 (17)C6—N2—C5117.2 (9)
O7—W3—O1383.66 (17)N2—C5—H5A109.5
O2—W3—O1372.54 (17)N2—C5—H5B109.5
O29—W4—O20102.8 (2)H5A—C5—H5B109.5
O29—W4—O28i99.6 (2)N2—C5—H5C109.5
O20—W4—O28i89.5 (2)H5A—C5—H5C109.5
O29—W4—O21100.4 (2)H5B—C5—H5C109.5
O20—W4—O21156.48 (19)N2—C6—H6A109.5
O28i—W4—O2190.5 (2)N2—C6—H6B109.5
O29—W4—O897.2 (2)H6A—C6—H6B109.5
O20—W4—O885.41 (19)N2—C6—H6C109.5
O28i—W4—O8163.13 (19)H6A—C6—H6C109.5
O21—W4—O887.81 (19)H6B—C6—H6C109.5
O29—W4—O14171.8 (2)C7—O34—Mn1142.0 (7)
O20—W4—O1485.05 (17)O34—C7—N3124.3 (10)
O28i—W4—O1482.65 (18)O34—C7—H7117.9
O21—W4—O1471.64 (17)N3—C7—H7117.9
O8—W4—O1480.89 (17)C7—N3—C8123.8 (9)
O31—W5—O22102.3 (2)C7—N3—C9121.3 (9)
O31—W5—O2198.8 (2)C8—N3—C9114.7 (9)
O22—W5—O21158.81 (19)N3—C8—H8A109.5
O31—W5—O3098.0 (2)N3—C8—H8B109.5
O22—W5—O3088.52 (19)H8A—C8—H8B109.5
O21—W5—O3090.1 (2)N3—C8—H8C109.5
O31—W5—O997.2 (2)H8A—C8—H8C109.5
O22—W5—O986.14 (19)H8B—C8—H8C109.5
O21—W5—O989.71 (19)N3—C9—H9A109.5
O30—W5—O9164.60 (19)N3—C9—H9B109.5
O31—W5—O14172.79 (19)H9A—C9—H9B109.5
O22—W5—O1484.89 (17)N3—C9—H9C109.5
O21—W5—O1473.96 (17)H9A—C9—H9C109.5
O30—W5—O1482.76 (17)H9B—C9—H9C109.5
O9—W5—O1482.39 (17)C10—O35—Mn1121.5 (5)
O23—W6—O2498.7 (2)O35—C10—N4123.9 (7)
O23—W6—O22101.4 (2)O35—C10—H10118.1
O24—W6—O2289.35 (19)N4—C10—H10118.1
O23—W6—O17100.9 (2)C10—N4—C11119.2 (7)
O24—W6—O1791.0 (2)C10—N4—C12121.6 (6)
O22—W6—O17157.46 (19)C11—N4—C12118.5 (7)
O23—W6—O497.0 (2)N4—C11—H11A109.5
O24—W6—O4164.03 (19)N4—C11—H11B109.5
O22—W6—O484.77 (19)H11A—C11—H11B109.5
O17—W6—O488.8 (2)N4—C11—H11C109.5
O23—W6—O16174.7 (2)H11A—C11—H11C109.5
O24—W6—O1683.35 (18)H11B—C11—H11C109.5
O22—W6—O1683.51 (17)N4—C12—H12A109.5
O17—W6—O1674.15 (17)N4—C12—H12B109.5
O4—W6—O1681.25 (17)H12A—C12—H12B109.5
O25—W7—O18102.2 (2)N4—C12—H12C109.5
O25—W7—O24i99.1 (2)H12A—C12—H12C109.5
O18—W7—O24i87.7 (2)H12B—C12—H12C109.5
O25—W7—O598.0 (2)C13—O36—Mn1132.0 (6)
O18—W7—O585.6 (2)O36—C13—N5125.7 (8)
O24i—W7—O5162.62 (19)O36—C13—H13117.1
O25—W7—O17100.2 (2)N5—C13—H13117.1
O18—W7—O17157.6 (2)C13—N5—C15120.4 (8)
O24i—W7—O1789.6 (2)C13—N5—C14122.2 (8)
O5—W7—O1790.5 (2)C15—N5—C14117.3 (8)
O25—W7—O16173.4 (2)N5—C14—H14A109.5
O18—W7—O1684.35 (18)N5—C14—H14B109.5
O24i—W7—O1682.06 (18)H14A—C14—H14B109.5
O5—W7—O1681.33 (17)N5—C14—H14C109.5
O17—W7—O1673.26 (17)H14A—C14—H14C109.5
O26—W8—O18102.1 (2)H14B—C14—H14C109.5
O26—W8—O30i98.8 (2)N5—C15—H15A109.5
O18—W8—O30i89.7 (2)N5—C15—H15B109.5
O26—W8—O19100.6 (2)H15A—C15—H15B109.5
O18—W8—O19157.2 (2)N5—C15—H15C109.5
O30i—W8—O1989.3 (2)H15A—C15—H15C109.5
O26—W8—O698.3 (2)H15B—C15—H15C109.5
O18—W8—O685.8 (2)C16—O37—Mn2135.4 (7)
O30i—W8—O6162.9 (2)O37—C16—N6125.2 (9)
O19—W8—O688.49 (19)O37—C16—H16117.4
O26—W8—O15173.1 (2)N6—C16—H16117.4
O18—W8—O1584.77 (18)C16—N6—C18119.5 (8)
O30i—W8—O1581.74 (17)C16—N6—C17122.9 (8)
O19—W8—O1572.53 (17)C18—N6—C17117.5 (8)
O6—W8—O1581.44 (18)N6—C17—H17A109.5
O27—W9—O19100.0 (2)N6—C17—H17B109.5
O27—W9—O2898.7 (2)H17A—C17—H17B109.5
O19—W9—O2889.7 (2)N6—C17—H17C109.5
O27—W9—O20102.7 (2)H17A—C17—H17C109.5
O19—W9—O20157.30 (19)H17B—C17—H17C109.5
O28—W9—O2087.7 (2)N6—C18—H18A109.5
O27—W9—O797.4 (2)N6—C18—H18B109.5
O19—W9—O790.2 (2)H18A—C18—H18B109.5
O28—W9—O7163.7 (2)N6—C18—H18C109.5
O20—W9—O786.1 (2)H18A—C18—H18C109.5
O27—W9—O15172.9 (2)H18B—C18—H18C109.5
O19—W9—O1572.92 (17)C19—O38—Mn2122.6 (8)
O28—W9—O1582.15 (18)O38—C19—N7123.8 (11)
O20—W9—O1584.38 (17)O38—C19—H19118.1
O7—W9—O1582.27 (17)N7—C19—H19118.1
O16—P1—O15112.7 (2)C19—N7—C20127.1 (11)
O16—P1—O14111.5 (2)C19—N7—C21116.9 (10)
O15—P1—O14111.9 (3)C20—N7—C21115.8 (11)
O16—P1—O13107.1 (2)N7—C20—H20A109.5
O15—P1—O13106.6 (3)N7—C20—H20B109.5
O14—P1—O13106.5 (2)H20A—C20—H20B109.5
O37ii—Mn2—O37180.0N7—C20—H20C109.5
O37ii—Mn2—O38ii89.4 (3)H20A—C20—H20C109.5
O37—Mn2—O38ii90.6 (3)H20B—C20—H20C109.5
O37ii—Mn2—O3890.6 (3)N7—C21—H21A109.5
O37—Mn2—O3889.4 (3)N7—C21—H21B109.5
O38ii—Mn2—O38180.0H21A—C21—H21B109.5
O37ii—Mn2—O39ii84.2 (3)N7—C21—H21C109.5
O37—Mn2—O39ii95.8 (3)H21A—C21—H21C109.5
O38ii—Mn2—O39ii90.4 (3)H21B—C21—H21C109.5
O38—Mn2—O39ii89.6 (3)C22—O39—Mn2147.2 (9)
O37ii—Mn2—O3995.8 (3)O39—C22—N8125.7 (14)
O37—Mn2—O3984.2 (3)O39—C22—H22117.2
O38ii—Mn2—O3989.6 (3)N8—C22—H22117.2
O38—Mn2—O3990.4 (3)C22—N8—C24129.8 (14)
O39ii—Mn2—O39180.0C22—N8—C23117.1 (14)
O34—Mn1—O3291.0 (2)C24—N8—C23112.9 (13)
O34—Mn1—O3696.2 (3)N8—C23—H23A109.5
O32—Mn1—O3686.9 (2)N8—C23—H23B109.5
O34—Mn1—O3589.2 (2)H23A—C23—H23B109.5
O32—Mn1—O35169.7 (2)N8—C23—H23C109.5
O36—Mn1—O3582.9 (2)H23A—C23—H23C109.5
O34—Mn1—O3388.5 (3)H23B—C23—H23C109.5
O32—Mn1—O3390.2 (2)N8—C24—H24A109.5
O36—Mn1—O33174.5 (3)N8—C24—H24B109.5
O35—Mn1—O33100.0 (2)H24A—C24—H24B109.5
O34—Mn1—O31173.6 (2)N8—C24—H24C109.5
O32—Mn1—O3194.1 (2)H24A—C24—H24C109.5
O36—Mn1—O3188.0 (2)H24B—C24—H24C109.5
O35—Mn1—O3186.5 (2)O40—C25—N9127.3 (17)
O33—Mn1—O3187.5 (2)O40—C25—H25116.4
W1—O1—W2123.2 (2)N9—C25—H25116.4
W2—O2—W3123.7 (2)C25—N9—C27124.5 (19)
W3—O3—W1123.7 (2)C25—N9—C26121.9 (14)
W1—O4—W6151.7 (3)C27—N9—C26113.6 (18)
W2—O5—W7152.0 (3)N9—C26—H26A109.5
W2—O6—W8151.4 (3)N9—C26—H26B109.5
W3—O7—W9150.4 (3)H26A—C26—H26B109.5
W3—O8—W4151.3 (3)N9—C26—H26C109.5
W1—O9—W5150.3 (3)H26A—C26—H26C109.5
P1—O13—W1124.6 (3)H26B—C26—H26C109.5
P1—O13—W2124.9 (2)N9—C27—H27A109.5
W1—O13—W290.64 (15)N9—C27—H27B109.5
P1—O13—W3125.1 (2)H27A—C27—H27B109.5
W1—O13—W390.47 (15)N9—C27—H27C109.5
W2—O13—W390.57 (16)H27A—C27—H27C109.5
P1—O14—W5128.5 (2)H27B—C27—H27C109.5
P1—O14—W4127.9 (2)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O340.932.583.122 (10)118
C2—H2C···O29iii0.962.613.500 (12)154
C4—H4···O210.932.533.431 (11)163
C4—H4···O310.932.523.108 (10)121
C8—H8A···O2iv0.962.553.488 (14)167
C8—H8B···O10v0.962.573.307 (14)134
C9—H9A···O1iv0.962.603.366 (12)137
C9—H9B···O350.962.423.289 (12)151
C12—H12A···O230.962.483.439 (9)176
C12—H12C···O110.962.483.086 (10)121
C13—H13···O19v0.932.533.287 (9)139
C14—H14B···O30iii0.962.563.379 (11)144
C16—H16···O100.932.623.473 (11)153
C17—H17C···O100.962.633.513 (12)154
C19—H19···O40ii0.932.433.331 (19)164
C21—H21B···O11iv0.962.593.478 (14)154
C21—H21C···O330.962.503.375 (14)151
C24—H24C···O26vi0.962.433.369 (14)164
C25—H25···O12vii0.932.563.358 (19)144
C26—H26C···O1viii0.962.553.453 (17)156
Symmetry codes: (ii) x+1/2, y1/2, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z; (v) x1/2, y+1/2, z; (vi) x1/2, y1/2, z; (vii) x+1, y, z; (viii) x, y1, z.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Ministry of Higher Education and Scientific Research of Tunisia and acknowledge Dr Michel Giorgi, from the University of Aix-Marseille, for the data collection.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBen Khelifa, A., Belkhiria, M. S., Huang, G., Freslon, S., Guillou, O. & Bernot, K. (2015). Dalton Trans. 44, 16458–16464.  PubMed Google Scholar
First citationBrandenburg, K. (1997). DIAMOND. University of Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCao, X., He, L., Lin, B., Chen, Z. & Liu, P. (2009). Inorg. Chim. Acta, 362, 2505–2509.  CSD CrossRef CAS Google Scholar
First citationDhifallah, F., Belkhiria, M. S., Leclerc, N. & Cadot, E. (2016). Inorg. Chim. Acta, 441, 15–19.  Web of Science CrossRef CAS Google Scholar
First citationDolbecq, A., Dumas, E., Mayer, C. R. & Mialane, P. (2010). Chem. Rev. 110, 6009–6048.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDong, B., Peng, J., Chen, Y., Zhang, P., Tian, A. & Chen, J. (2008). J. Mol. Struct. 875, 75–79.  CSD CrossRef CAS Google Scholar
First citationDurgaprasad, G., Sathyanarayana, D. N. & Patel, C. C. (1971). Bull. Chem. Soc. Jpn, 44, 316–322.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJin, H., Qi, Y., Xiao, D., Wang, X., Chang, S. & Wang, E. (2007). J. Mol. Struct. 837, 23–29.  CSD CrossRef CAS Google Scholar
First citationMbomekalle, I. M., Lu, Y. W., Keita, B. & Nadjo, L. (2004). Inorg. Chem. Commun. 7, 86–90.  CrossRef CAS Google Scholar
First citationNiu, J. Y., Guo, D. J., Wang, J. P. & Zhao, J. W. (2004). Cryst. Growth Des. 4, 241–247.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds