metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages m399-m400

Crystal structure of poly[μ6-adipato-di­aquadi-μ2-oxalato-didysprosium(III)]

aSchool of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
*Correspondence e-mail: jxlzfeng@163.com

Edited by M. Gdaniec, Adam Mickiewicz University, Poland (Received 5 November 2014; accepted 8 November 2014; online 15 November 2014)

In the title coordination polymer, [Dy2(C6H8O4)(C2O4)2(H2O)2]n, the asymmetric unit consists of one Dy3+ cation, one half of an adipate anion, two halves of oxalate anions and one coordinating water mol­ecule. The adipate and oxalate ions are located on centres of inversion. The Dy3+ cation has a distorted tricapped trigonal–prismatic geometry and is coordinated by nine O atoms, four belonging to three adipate anions, four to two oxalate anions and one from an aqua ligand. The cations are bridged by adipate ligands, generating a two-dimensional network parallel to (010). This network is further extended into three dimensions by coordination of the rigid oxalate ligands and is further consolidated by O—H⋯O hydrogen bonds. A part of the adipate anion is disordered over two positions in a 0.75:0.25 ratio.

1. Related literature

For the isotypic structures of La, Sm and Gd complexes, see: Dan et al. (2005[Dan, M., Cottereau, G. & Rao, C. N. R. (2005). Solid State Sci. 7, 437-443.]); Li & Wang (2010[Li, Z.-F. & Wang, C.-X. (2010). Acta Cryst. E66, m1263.]); Li (2011[Li, Z.-F. (2011). Z. Kristallogr. New Cryst. Struct. 226, 215-216.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Dy2(C6H8O4)(C2O4)2(H2O)2]

  • Mr = 681.20

  • Triclinic, [P \overline 1]

  • a = 6.772 (2) Å

  • b = 6.929 (2) Å

  • c = 8.949 (3) Å

  • α = 104.916 (5)°

  • β = 108.069 (4)°

  • γ = 104.306 (4)°

  • V = 360.5 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 10.37 mm−1

  • T = 295 K

  • 0.21 × 0.09 × 0.07 mm

2.2. Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.245, Tmax = 0.531

  • 1813 measured reflections

  • 1234 independent reflections

  • 1179 reflections with I > 2σ(I)

  • Rint = 0.014

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.057

  • S = 1.05

  • 1234 reflections

  • 122 parameters

  • H-atom parameters constrained

  • Δρmax = 1.41 e Å−3

  • Δρmin = −1.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O3i 0.85 1.96 2.787 (4) 166
O7—H7B⋯O6ii 0.85 2.10 2.883 (5) 153
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Structural commentary top

The title compound is isostructural with [M2(C6H8O4)(C2O4)2(H2O)2] [M = La, Sm, Gd] (Dan et al., 2005; Li & Wang, 2010; Li, 2011). the asymmetric unit consists of one Dy3+ cation, a half of adipate anion, two half of oxalate anions and one aqua ligand (Fig. 1). The Dy atom is each coordinated by nine oxygen atoms, in which four oxygen atoms are from three adipate anions, four from two oxalate anions and one from a water molecule, to form a DyO9 polyhedron of a distorted tricapped trigonal-prismatic geometry. In the title complex, the adipate anions are located on a centre of symmetry and atom C3 is positionally disordered (C3A and C3B sites; occupancies 0.75/0.25). The adipate ligands act in a η23-η23-chelating-bridging o­cta­dentate coordination modes and link the DyO9 polyhedra into layers parallel to (010), in which the adjacent Dy···Dy distances are 4.20 (2) Å and 4.223 (9) Å, respectively. In the title complex, two symmetry independent oxalate ions are also located on centres of inversion and act as double bidentate (tetra­dentate) ligands in a zigzag chain along [001]. Through the oxalate and adipate ligands bridging inter­actions, the Dy atoms build up three-dimensional framework. The aqua ligand provides hydrogen-bond donors form hydrogen bonds with oxalate atoms O3 and O6.

The structure of the title complex is similar to that of other lanthanide (gadolinium, samarium and lanthanum) coordination polymers with adipate and oxalate ligands, and the mean Dy—O distance in the title complex of 2.438 Å is shorter than that of Ga—O (2.463 Å), Sm—O (2.482 Å) and La—O (2.566 Å).

Synthesis and crystallization top

A mixture of DyCl3·6H2O(1.00 mmol, 0.38 g), oxalic acid (0.50 mmol, 0.05 g), adipic acid (0.50 mmol, 0.07 g), NaOH (2.00 mmol, 0.08 g) and H2O (10.0 ml) was heated in a 23 ml stainless steel reactor with a Teflon liner at 443 K for 48 h. A small amount of colorless plate-like crystals were filtered and washed with water and acetone. Yield 5% based on Dy.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. Atom C3 of the adipate anion is positionally disordered (C3A and C3B) and these atoms were refined with occupancies of 0.75/0.25. The C-bound H atoms were included in calculated positions and treated as riding atoms: C–H = 0.97 Å and Uiso(H) = 1.2Ueq(C)]. The water H-atoms were located in difference Fourier maps and were refined with distance restraints: O—H distance of 0.85 Å and Uiso(H) = 1.5Ueq(O). The highest density peak and deepest hole are located at 0.95 Å and 0.87 Å from the Dy atom, respectively.

Related literature top

For the isotypic structures of La, Sm and Gd complexes, see: Dan et al. (2005); Li & Wang (20101); Li (2011).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
Fig.1.The fragment of the structure of the title compounds, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Symmetry code: (i) -x, 1 - y, 1 - z; (ii) 1 - x, 1 - y, 1 - z; (iii) -x, - y, 1- z; (iv) - x, - y, -z; (v) 1 - x, 1 - y, 2 - z.
Poly[µ6-adipato-diaquadi-µ2-oxalato-didysprosium(III)] top
Crystal data top
[Dy2(C6H8O4)(C2O4)2(H2O)2]Z = 1
Mr = 681.20F(000) = 316
Triclinic, P1Dx = 3.138 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 6.772 (2) ÅCell parameters from 198 reflections
b = 6.929 (2) Åθ = 4.6–28.3°
c = 8.949 (3) ŵ = 10.37 mm1
α = 104.916 (5)°T = 295 K
β = 108.069 (4)°Plate, colorless
γ = 104.306 (4)°0.21 × 0.09 × 0.07 mm
V = 360.5 (2) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1234 independent reflections
Radiation source: fine-focus sealed tube1179 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ϕ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 87
Tmin = 0.245, Tmax = 0.531k = 68
1813 measured reflectionsl = 107
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0422P)2 + 0.1716P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1234 reflectionsΔρmax = 1.41 e Å3
122 parametersΔρmin = 1.45 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0039 (11)
Crystal data top
[Dy2(C6H8O4)(C2O4)2(H2O)2]γ = 104.306 (4)°
Mr = 681.20V = 360.5 (2) Å3
Triclinic, P1Z = 1
a = 6.772 (2) ÅMo Kα radiation
b = 6.929 (2) ŵ = 10.37 mm1
c = 8.949 (3) ÅT = 295 K
α = 104.916 (5)°0.21 × 0.09 × 0.07 mm
β = 108.069 (4)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1234 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1179 reflections with I > 2σ(I)
Tmin = 0.245, Tmax = 0.531Rint = 0.014
1813 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 1.05Δρmax = 1.41 e Å3
1234 reflectionsΔρmin = 1.45 e Å3
122 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Dy0.15576 (3)0.34496 (3)0.36280 (2)0.01182 (14)
O10.1519 (6)0.5222 (6)0.6470 (4)0.0145 (7)
O20.4801 (6)0.5972 (6)0.6395 (4)0.0162 (8)
O30.2699 (6)0.1546 (6)0.5391 (4)0.0154 (8)
O40.1535 (6)0.0812 (6)0.6512 (5)0.0181 (8)
O50.0072 (6)0.2564 (6)0.0712 (4)0.0172 (8)
O60.1314 (7)0.0203 (6)0.1913 (5)0.0201 (8)
O70.2677 (6)0.6848 (6)0.3381 (5)0.0206 (8)
H7A0.40600.75390.37860.031*
H7B0.18630.74720.29310.031*
C10.3632 (9)0.6131 (8)0.7234 (6)0.0135 (11)
C20.4635 (9)0.7252 (9)0.9114 (7)0.0178 (12)
H2A0.39600.82980.94030.021*
H2B0.62110.80160.94790.021*
C3A0.4334 (12)0.5740 (12)1.0066 (9)0.0162 (14)0.75
H3A10.27700.48770.96240.019*0.75
H3A20.47880.65771.12450.019*0.75
C3B0.576 (4)0.593 (4)1.005 (3)0.0162 (14)0.25
H3B10.67700.55360.95640.019*0.25
H3B20.66400.68241.12270.019*0.25
C40.1215 (8)0.0215 (7)0.5549 (6)0.0127 (10)
C50.0395 (8)0.0806 (8)0.0350 (7)0.0150 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Dy0.01277 (19)0.01272 (18)0.01252 (19)0.00465 (11)0.00650 (12)0.00663 (11)
O10.0132 (17)0.0169 (18)0.0168 (18)0.0054 (14)0.0085 (15)0.0081 (14)
O20.0179 (19)0.0165 (19)0.0181 (19)0.0061 (15)0.0117 (16)0.0070 (14)
O30.0135 (18)0.0175 (19)0.0164 (18)0.0052 (15)0.0049 (15)0.0093 (15)
O40.0134 (18)0.022 (2)0.0213 (19)0.0068 (15)0.0054 (15)0.0131 (16)
O50.0220 (19)0.0161 (19)0.0167 (19)0.0095 (15)0.0092 (16)0.0062 (15)
O60.027 (2)0.022 (2)0.014 (2)0.0111 (17)0.0083 (17)0.0095 (16)
O70.0178 (19)0.020 (2)0.031 (2)0.0080 (16)0.0105 (17)0.0177 (17)
C10.021 (3)0.008 (2)0.015 (3)0.009 (2)0.007 (2)0.0074 (19)
C20.017 (3)0.019 (3)0.019 (3)0.006 (2)0.009 (2)0.007 (2)
C3A0.017 (3)0.029 (4)0.013 (3)0.013 (3)0.010 (3)0.012 (3)
C3B0.017 (3)0.029 (4)0.013 (3)0.013 (3)0.010 (3)0.012 (3)
C40.018 (3)0.008 (2)0.015 (2)0.0022 (19)0.011 (2)0.0058 (19)
C50.012 (2)0.019 (3)0.019 (3)0.007 (2)0.009 (2)0.009 (2)
Geometric parameters (Å, º) top
Dy—O52.336 (4)O7—H7A0.8468
Dy—O4i2.360 (4)O7—H7B0.8496
Dy—O32.376 (4)C1—C21.501 (7)
Dy—O72.379 (4)C2—C3A1.525 (9)
Dy—O2ii2.406 (3)C2—C3B1.57 (2)
Dy—O1iii2.464 (4)C2—H2A0.9700
Dy—O6iv2.535 (4)C2—H2B0.9700
Dy—O12.535 (3)C3A—C3Av1.529 (14)
Dy—O22.552 (4)C3A—H3A10.9700
O1—C11.279 (7)C3A—H3A20.9700
O2—C11.255 (6)C3B—C3Bv1.40 (4)
O3—C41.256 (6)C3B—H3B10.9700
O4—C41.253 (6)C3B—H3B20.9700
O5—C51.256 (6)C4—C4i1.538 (10)
O6—C51.245 (7)C5—C5iv1.540 (11)
O6—Dyiv2.535 (4)
O5—Dy—O4i90.45 (13)C1—O1—Dy95.2 (3)
O5—Dy—O3134.27 (12)Dyiii—O1—Dy115.28 (14)
O4i—Dy—O368.93 (12)C1—O2—Dyii148.4 (3)
O5—Dy—O778.20 (13)C1—O2—Dy95.1 (3)
O4i—Dy—O7142.35 (13)Dyii—O2—Dy115.66 (13)
O3—Dy—O7141.46 (12)C4—O3—Dy117.8 (3)
O5—Dy—O2ii91.79 (12)C4—O4—Dyi118.7 (3)
O4i—Dy—O2ii142.20 (13)C5—O5—Dy123.8 (3)
O3—Dy—O2ii82.95 (12)C5—O6—Dyiv117.5 (3)
O7—Dy—O2ii74.65 (13)Dy—O7—H7A116.9
O5—Dy—O1iii82.15 (12)Dy—O7—H7B128.4
O4i—Dy—O1iii69.07 (12)H7A—O7—H7B114.8
O3—Dy—O1iii122.91 (11)O2—C1—O1118.8 (5)
O7—Dy—O1iii73.84 (12)O2—C1—C2122.2 (5)
O2ii—Dy—O1iii148.49 (12)O1—C1—C2119.0 (4)
O5—Dy—O6iv65.84 (12)O2—C1—Dy59.8 (3)
O4i—Dy—O6iv70.76 (13)O1—C1—Dy59.1 (2)
O3—Dy—O6iv68.84 (12)C2—C1—Dy173.1 (4)
O7—Dy—O6iv132.07 (13)C1—C2—C3A113.3 (5)
O2ii—Dy—O6iv75.88 (12)C1—C2—C3B111.8 (9)
O1iii—Dy—O6iv127.55 (12)C1—C2—H2A108.9
O5—Dy—O1146.78 (12)C3A—C2—H2A108.9
O4i—Dy—O180.36 (12)C3B—C2—H2A134.9
O3—Dy—O171.64 (12)C1—C2—H2B108.9
O7—Dy—O189.76 (13)C3A—C2—H2B108.9
O2ii—Dy—O1114.93 (11)C3B—C2—H2B76.5
O1iii—Dy—O164.72 (14)H2A—C2—H2B107.7
O6iv—Dy—O1137.19 (12)C2—C3A—C3Av113.2 (7)
O5—Dy—O2146.25 (12)C2—C3A—H3A1108.9
O4i—Dy—O2123.15 (12)C3Av—C3A—H3A1108.9
O3—Dy—O269.30 (12)C2—C3A—H3A2108.9
O7—Dy—O272.79 (13)C3Av—C3A—H3A2108.9
O2ii—Dy—O264.34 (13)H3A1—C3A—H3A2107.8
O1iii—Dy—O2105.43 (11)C3Bv—C3B—C2113 (2)
O6iv—Dy—O2124.52 (12)C3Bv—C3B—H3B1108.9
O1—Dy—O250.76 (11)C2—C3B—H3B1108.9
O5—Dy—C1158.48 (13)C3Bv—C3B—H3B2108.9
O4i—Dy—C1101.76 (14)C2—C3B—H3B2108.9
O3—Dy—C167.18 (13)H3B1—C3B—H3B2107.7
O7—Dy—C181.38 (14)O4—C4—O3125.9 (5)
O2ii—Dy—C189.29 (13)O4—C4—C4i116.9 (5)
O1iii—Dy—C185.74 (13)O3—C4—C4i117.2 (5)
O6iv—Dy—C1134.90 (13)O6—C5—O5127.2 (5)
O1—Dy—C125.66 (13)O6—C5—C5iv116.0 (6)
O2—Dy—C125.14 (13)O5—C5—C5iv116.8 (6)
C1—O1—Dyiii132.5 (3)
O5—Dy—O1—C1138.0 (3)O1iii—Dy—O5—C5135.5 (4)
O4i—Dy—O1—C1146.2 (3)O6iv—Dy—O5—C51.9 (4)
O3—Dy—O1—C175.4 (3)O1—Dy—O5—C5139.6 (4)
O7—Dy—O1—C170.3 (3)O2—Dy—O5—C5118.4 (4)
O2ii—Dy—O1—C12.6 (3)C1—Dy—O5—C5168.2 (4)
O1iii—Dy—O1—C1142.5 (4)Dyii—O2—C1—O1171.1 (4)
O6iv—Dy—O1—C198.7 (3)Dy—O2—C1—O14.5 (5)
O2—Dy—O1—C12.5 (3)Dyii—O2—C1—C25.7 (9)
O5—Dy—O1—Dyiii4.5 (3)Dy—O2—C1—C2172.3 (4)
O4i—Dy—O1—Dyiii71.31 (15)Dyii—O2—C1—Dy166.6 (6)
O3—Dy—O1—Dyiii142.17 (17)Dyiii—O1—C1—O2127.1 (4)
O7—Dy—O1—Dyiii72.19 (15)Dy—O1—C1—O24.5 (5)
O2ii—Dy—O1—Dyiii145.10 (14)Dyiii—O1—C1—C256.0 (6)
O1iii—Dy—O1—Dyiii0.0Dy—O1—C1—C2172.3 (4)
O6iv—Dy—O1—Dyiii118.82 (18)Dyiii—O1—C1—Dy131.7 (4)
O2—Dy—O1—Dyiii139.9 (2)O5—Dy—C1—O286.1 (5)
C1—Dy—O1—Dyiii142.5 (4)O4i—Dy—C1—O2150.6 (3)
O5—Dy—O2—C1138.8 (3)O3—Dy—C1—O289.7 (3)
O4i—Dy—O2—C135.1 (3)O7—Dy—C1—O267.6 (3)
O3—Dy—O2—C180.2 (3)O2ii—Dy—C1—O27.0 (3)
O7—Dy—O2—C1106.9 (3)O1iii—Dy—C1—O2141.9 (3)
O2ii—Dy—O2—C1172.2 (4)O6iv—Dy—C1—O276.1 (3)
O1iii—Dy—O2—C139.7 (3)O1—Dy—C1—O2175.4 (5)
O6iv—Dy—O2—C1123.4 (3)O5—Dy—C1—O189.3 (5)
O1—Dy—O2—C12.6 (3)O4i—Dy—C1—O134.1 (3)
O5—Dy—O2—Dyii49.0 (3)O3—Dy—C1—O195.0 (3)
O4i—Dy—O2—Dyii137.16 (15)O7—Dy—C1—O1107.8 (3)
O3—Dy—O2—Dyii92.06 (16)O2ii—Dy—C1—O1177.6 (3)
O7—Dy—O2—Dyii80.87 (16)O1iii—Dy—C1—O133.5 (3)
O2ii—Dy—O2—Dyii0.001 (1)O6iv—Dy—C1—O1108.5 (3)
O1iii—Dy—O2—Dyii148.06 (15)O2—Dy—C1—O1175.4 (5)
O6iv—Dy—O2—Dyii48.8 (2)O2—C1—C2—C3A110.4 (6)
O1—Dy—O2—Dyii174.8 (2)O1—C1—C2—C3A66.3 (7)
C1—Dy—O2—Dyii172.2 (4)O2—C1—C2—C3B71.7 (11)
O5—Dy—O3—C474.6 (4)O1—C1—C2—C3B105.1 (10)
O4i—Dy—O3—C45.9 (3)C1—C2—C3A—C3Av68.2 (9)
O7—Dy—O3—C4145.5 (3)C3B—C2—C3A—C3Av27.2 (14)
O2ii—Dy—O3—C4160.2 (3)C1—C2—C3B—C3Bv70 (2)
O1iii—Dy—O3—C439.2 (4)C3A—C2—C3B—C3Bv29.9 (15)
O6iv—Dy—O3—C482.6 (3)Dyi—O4—C4—O3174.4 (4)
O1—Dy—O3—C480.6 (3)Dyi—O4—C4—C4i4.9 (7)
O2—Dy—O3—C4134.6 (4)Dy—O3—C4—O4175.0 (4)
C1—Dy—O3—C4107.6 (4)Dy—O3—C4—C4i5.8 (7)
O4i—Dy—O5—C566.7 (4)Dyiv—O6—C5—O5178.5 (4)
O3—Dy—O5—C56.3 (5)Dyiv—O6—C5—C5iv2.6 (7)
O7—Dy—O5—C5149.5 (4)Dy—O5—C5—O6177.5 (4)
O2ii—Dy—O5—C575.6 (4)Dy—O5—C5—C5iv1.4 (7)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1; (iv) x, y, z; (v) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O3ii0.851.962.787 (4)166
O7—H7B···O6vi0.852.102.883 (5)153
Symmetry codes: (ii) x+1, y+1, z+1; (vi) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O3i0.851.962.787 (4)166
O7—H7B···O6ii0.852.102.883 (5)153
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51372104), the Natural Science Foundation of Jiangxi Province (2010GQC0064), the Science and Technology Support Fundation of Jiangxi Province (2012BBE500038, 20141BBE50019) and the Jiangxi University of Science and Technology Foundation (3304000027).

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDan, M., Cottereau, G. & Rao, C. N. R. (2005). Solid State Sci. 7, 437–443.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Z.-F. (2011). Z. Kristallogr. New Cryst. Struct. 226, 215–216.  CAS Google Scholar
First citationLi, Z.-F. & Wang, C.-X. (2010). Acta Cryst. E66, m1263.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages m399-m400
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds