research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages 170-173

Crystal structure of 1,8-di­benzoyl-2,7-di­phen­­oxy­naphthalene

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology (TUAT), Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

Edited by M. Gdaniec, Adam Mickiewicz University, Poland (Received 29 August 2014; accepted 2 September 2014; online 6 September 2014)

In the title compound, C36H24O4, the benzene rings of the benzoyl and phen­oxy groups make dihedral angles of 75.01 (4), 75.78 (4), 83.17 (5) and 80.84 (5)° with the naphthalene ring system. In the crystal, two types of C—H⋯π inter­actions between the benzene rings of the benzoyl groups and the naphthalene unit, and two kinds of ππ inter­actions between the benzene rings, with centroid–centroid distances of 3.879 (1) and 3.696 (1) Å, are observed.

1. Chemical context

Peri-substituted naphthalenes have received much attention as characteristic-structured aromatic-ring-core compounds for a variety of functional materials (Mei et al., 2006[Mei, X. F., Martin, R. M. & Wolf, C. (2006). J. Org. Chem. 71, 2854-2861.]; Shinamura et al., 2010[Shinamura, S., Miyazaki, E. & Takiyama, K. (2010). J. Org. Chem. 75, 1228-1234.]; Jiang et al., 2010[Jiang, Y. L., Gao, X. N., Zhou, G. N., Patel, A. & Javer, A. (2010). J. Org. Chem. 75, 324-333.]; Shao et al., 2014[Shao, P., Jia, N., Zhang, S. & Bai, M. (2014). Chem. Commun. 50, 5648-5651.]). For example, rylene derivatives are fluoro­phores well known for their exceptional photochemical stability and high fluorescence quantum yields (Würthner et al., 2004[Würthner, F. (2004). Chem. Commun. pp. 1564-1579.]; Jiao et al., 2009[Jiao, C. J., Huang, K. W., Luo, J., Zhang, K., Chi, C. Y. & Wu, J. S. (2009). Org. Lett. 11, 4508-4511.]), and employed in solar cells (Shibano et al., 2009[Shibano, Y., Imahori, H. & Adachi, C. (2009). J. Phys. Chem. C, 113, 15454-15466.]), laser dyes (Gvishi et al., 1993[Gvishi, R., Reisfeld, R. & Burshtein, Z. (1993). Chem. Phys. Lett. 213, 338-344.]), organic light-emitting field-effect trans­is­tors (Seo et al., 2013[Seo, H.-S., Kim, D. K., Oh, J. D., Shin, E. S. & Choi, J. H. (2013). J. Phys. Chem. C, 117, 4764-4770.]) and optical switches (Oneil et al., 1992[Oneil, M. P., Niemczyk, M. P., Svec, W. A., Gosztola, D., Gaines, G. L. & Wasielewski, M. R. (1992). Science, 257, 63-65.]). However, planar aromatic structures containing peri-substituted naphthalenes are prone to inter­molecular aggregation that often leads to serious problems including fluorescence quenching (Wang & Yu, 2010[Wang, B. & Yu, C. (2010). Angew. Chem. Int. Ed. 49, 1485-1488.]). Therefore, development of peri-substituted naphthalene derivatives with aromatic substituents twisted relative to the naphthalene ring system, to inhibit mol­ecular aggregation, has been desired.

[Scheme 1]

The authors have found that peri-aroyl­naphthalene compounds are afforded smoothly via electrophilic aromatic aroylation of a naphthalene derivative in the presence of a suitable acidic mediator (Okamoto & Yonezawa, 2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]; Okamoto et al., 2011[Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.]). In peri-aroyl­naphthalene compounds, as a result of steric hindrance, the aroyl groups have to be arranged nearly perpendicular relative to the naphthalene core. Bearing this in mind, we have initiated a crystallographic study of peri-aroyl­naphthalene compounds in a search for correlation between the mol­ecular structure, the crystal packing and the non-bonding inter­actions (Okamoto et al., 2014[Okamoto, A., Yoshiwaka, S., Mohri, S., Hijikata, D. & Yonezawa, N. (2014). Eur. Chem. Bull. 3, 829-834.]). Herein, the crystal structure of 1,8-dibenzoyl-2,7-di­phen­oxy­naphtahlene, (I)[link], is reported and its structural features are discussed through comparison with the homologues, 1,8-bis­(4-fluoro­benzo­yl)-2,7-di­phen­oxy­naphthalene (Hijikata et al., 2012[Hijikata, D., Sasagawa, K., Yoshiwaka, S., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o3246.]) and 1,8-dibenzoyl-2,7-di­meth­oxy­naphthalene (Nakaema et al., 2008[Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.]).

2. Structural commentary

The mol­ecular structure of (I)[link] is displayed in Fig. 1[link]. The benzene rings of the four substituents are arranged almost perpendicular relative to the naphthalene ring system. Furthermore, the two carbonyl groups attached at the 1- and 8-positions of the naphthalene ring are in the anti orientation. The benzene rings of the benzoyl groups make dihedral angles of 75.01 (4) and 75.78 (4)° with the naphthalene core. These dihedral angles are slightly smaller than those between the benzene rings of the phen­oxy groups at the 2- and 7-positions and the naphthalene ring [83.17 (5) and 80.84 (5)°]. The mol­ecular structure only slightly deviates from C2 symmetry and the mol­ecules exhibit axial chirality either with two S,S or two R,R stereogenic centers.

[Figure 1]
Figure 1
The mol­ecular structure of title mol­ecule, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, R,R and S,S-isomers are alternately arranged along the c axis, forming a single column with the mol­ecules linked by two types of C—H⋯π inter­actions involving the benzene ring of the benzoyl groups and the naphthalene unit (Table 1[link] and Fig. 2[link]). In addition, ππ stacking inter­actions are formed between mol­ecules in adjacent columns (Fig. 3[link]). These inter­actions are observed between the benzene rings of the phen­oxy groups [Cg4 is the centroid of the C18–C23 ring and Cg6 is the centroid of the C31–C36 ring; Cg4Cg6(x + 1, −y + [{1\over 2}], z + [{1\over 2}]) = 3.879 (1) Å] and the benzene rings of the benzoyl groups [Cg3 is the centroid of the C12–C17 ring; Cg3⋯Cg3(−x + 1, −y, −z + 1) = 3.696 (1) Å].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C4/C10/C9 and C5–C10 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯Cg1i 0.95 2.50 3.4192 (12) 163
C27—H27⋯Cg2ii 0.95 2.51 3.4002 (12) 155
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Two types of C—H⋯π inter­actions between the benzene ring of the benzoyl groups and the naphthalene rings, forming a single column structure (see Table 1[link] for details).
[Figure 3]
Figure 3
ππ inter­actions between the benzene rings of the benzoyl groups (green dashed line) and between the benzene rings of the phen­oxy groups (blue dashed lines).

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, last update May 2014; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) showed 39 structures of 1,8-diaroyl­naphthalenes and 1,8-dialkanoyl­naphthalenes and 30 structures of 1,8-diaroyl-2,7-di­alk­oxy­naphthalenes and 1,8-diaroyl-2,7-di­aryl­oxynaphthalenes. The title compound, (I)[link], is closely related to 1,8-bis­(4-fluoro­benzo­yl)-2,7-di­phen­oxy­naphthalene, (II) (Hijikata et al., 2012[Hijikata, D., Sasagawa, K., Yoshiwaka, S., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o3246.]), and 1,8-dibenzoyl-2,7-di­meth­oxy­naphthalene, (III) (Nakaema et al., 2008[Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.]). Like in the title compound, in homologue (II), the four benzene rings are non-coplanarly oriented relative to the naphthalene core. The dihedral angles formed by the benzene rings of the benzoyl groups are very similar to the title compound (I)[link] [72.07 (4) and 73.24 (4)°], whereas those of the benzene rings of the phen­oxy groups differ and are both smaller than in the title compound [62.49 (5) and 77.96 (5)°]. Homologue (III) is apparently different as the mol­ecule is located on a crystallographic twofold rotation axis passing through the two central C atoms of the naphthalene unit. The dihedral angle between the benzene ring of the benzoyl group and the naphthalene ring system is 80.25 (6)°. In homologues (II) and (III), the mol­ecules are linked by (sp2)C—H⋯O=C hydrogen bonds, forming a column structure [H⋯O = 2.40 Å for homologue (II) and 2.60 Å for homologue (III)]. In homologue (II), C—H⋯π inter­actions between the benzene ring of the benzoyl group and the benzene ring of the phen­oxy group (2.80 Å) are observed. In homologue (III), ππ inter­actions between the benzene rings of the benzoyl groups are formed [centroid–centroid and inter­planar distances of 3.6383 (10) and 3.294 Å, respectively]. On the other hand, the title structure forms no C—H⋯O=C inter­actions shorter than 2.70 Å. In (I)[link], C—H⋯π and ππ stacking inter­actions evidently predominate.

5. Synthesis and crystallization

1,8-Dibenzoyl-2,7-di­hydroxy­naphthalene (0.2 mmol, 74 mg), benzenboronic acid (0.8 mmol, 97 mg), Cu(OAc)2 (0.4 mmol, 73 mg), activated 4 Å mol­ecular sieves (0.2 g), pyridine (1.6 mmol, 126 mg) and methyl­ene chloride (0.8 ml) were placed in a 10 ml flask. The reaction mixture was stirred at room temperature for 48 h and then diluted with CHCl3 (10 ml). The solution was successively washed with saturated aqueous NH4Cl, 2M aqueous HCl and brine. The organic layers thus obtained were dried over anhydrous MgSO4. After removal of solvent under reduced pressure, the crude product was purified by column chromatography (silica gel, hexa­ne–AcOEt, 2:1 v/v; isolated yield 68%). The isolated product was crystallized from ethanol to give single crystals.

1H NMR (300 MHz, CDCl3): δ 6.82 (4H, d, J = 8.4 Hz), 7.03 (2H, t, J = 7.2 Hz), 7.08 (2H, d, J = 9.3 Hz), 7.22 (4H, t, J = 7.5 Hz), 7.33 (4H, t, J = 7.8 Hz), 7.46 (2H, t, J = 6.9 Hz), 7.80 (4H, d, J = 7.5 Hz), 7.89 (2H, d, J = 9.0 Hz); 13C NMR (75 MHz, CDCl3): δ 117.333, 119.169, 123.863, 125.374, 127.984, 128.070, 129.361, 129.714, 131.980, 133.022, 138.501, 153.884, 156.121, 179.239, 196.142; IR (KBr): ν 1655, 1614, 1592, 1504 cm−1; HRMS (m/z): [M+H]+ calculated for C30H25O4, 521.1753; found, 521.1768; m.p. 423.6–424.4 K.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were located in a difference Fourier map and were subsequently refined as riding on their carriers, with C—H = 0.95 Å (aromatic) and Uiso(H) = 1.2 Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C36H24O4
Mr 520.55
Crystal system, space group Monoclinic, P21/c
Temperature (K) 193
a, b, c (Å) 12.7734 (2), 16.4106 (3), 12.9012 (2)
β (°) 95.939 (1)
V3) 2689.81 (9)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.66
Crystal size (mm) 0.50 × 0.35 × 0.10
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.732, 0.937
No. of measured, independent and observed [I > 2σ(I)] reflections 49716, 4924, 4506
Rint 0.041
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.097, 1.04
No. of reflections 4924
No. of parameters 362
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.19
Computer programs: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]), CrystalStructure (Rigaku, 2007[Rigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]), SIR2004 (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.]).

Supporting information


Chemical context top

Peri-substituted naphthalenes have received much attention as characteristic-structured aromatic-ring-core compounds for a variety of functional materials (Mei et al., 2006; Shinamura et al., 2010; Jiang et al., 2010; Shao et al., 2014). For example, rylene derivatives are fluoro­phores well known for their exceptional photochemical stability and high fluorescence quantum yields (Würthner et al., 2004; Jiao et al., 2009), and employed in solar cells (Shibano et al., 2009), laser dyes (Gvishi et al., 1993), organic light-emitting field-effect transistors (Seo et al., 2013) and optical switches (Oneil et al., 1992). However, planar aromatic structures containing peri-substituted naphthalenes are prone to inter­molecular aggregation that often leads to serious problems including fluorescence quenching (Wang & Yu, 2010). Therefore, development of peri-substituted naphthalene derivatives with aromatic substituents twisted relative to the naphthalene ring system, to inhibit molecular aggregation, has been desired. The authors have found that peri-aroyl­naphthalene compounds are afforded smoothly via electrophilic aromatic aroylation of a naphthalene derivative in the presence of suitable acidic mediator (Okamoto & Yonezawa, 2009; Okamoto et al., 2011). In peri-aroyl­naphthalene compounds, as a result of steric hindrance, the aroyl groups have to be arranged nearly perpendicular relative to the naphthalene core. Bearing this in mind, we have initiated crystallographic study of peri-aroyl­naphthalene compounds in a search for correlation between the molecular structure, the crystal packing and the non-bonding inter­actions (Okamoto et al., 2014). Herein, the crystal structure of 1,8-di­benzoyl-2,7-di­phen­oxy­naphtahlene, (I), is reported and its structural features are discussed through comparison with the homologues, 1,8-bis­(4-fluoro­benzoyl)-2,7-di­phen­oxy­naphthalene (Hijikata et al., 2012) and 1,8-di­benzoyl-2,7-di­meth­oxy­naphthalene (Nakaema et al., 2008).

Structural commentary top

The molecular structure of (I) is displayed in Fig. 1. The benzene rings of the four substituents are arranged almost perpendicular relative to the naphthalene ring system. Furthermore, the two carbonyl groups attached at the 1- and 8-positions of the naphthalene ring are in the anti orientation. The benzene rings of the benzoyl groups make dihedral angles of 75.01 (4) and 75.78 (4)° with the naphthalene core. These dihedral angles are slightly smaller than those between the benzene rings of the phen­oxy groups at the 2- and 7-positions and the naphthalene ring [83.17 (5) and 80.84 (5)°]. The molecular structure only slightly deviates from C2 symmetry and the molecules exhibit axial chirality either with two S,S or two R,R stereogenic centers.

Supra­molecular features top

In the crystal, R,R and S,S-isomers are alternately arranged along the c axis, forming a single column with the molecules linked by two types of C—H···π inter­actions involving the benzene ring of the benzoyl groups and the naphthalene unit (Table 1 and Fig. 2). In addition, ππ stacking inter­actions are formed between molecules in adjacent columns. These inter­actions are observed between the benzene rings of the phen­oxy groups [Cg4 is the centroid of the C18–C23 ring and Cg6 is the centroid of the C31–C36 ring; Cg4···Cg6(x + 1, -y + 1/2, z + 1/2) = 3.879 (1) Å] and the benzene rings of the benzoyl groups [Cg3 is the centroid of the C12–C17 ring; Cg3···Cg3(-x + 1, -y, -z + 1) = 3.696 (1) Å].

Database survey top

A search of the Cambridge Structural Database (Version 5.35, last update May 2014; Allen, 2002) showed 39 structures of 1,8-diaroyl­naphthalenes and 1,8-dialkanoyl­naphthalenes and 30 structures of 1,8-diaroyl-2,7-di­alk­oxy­naphthalenes and 1,8-diaroyl-2,7-di­aryl­oxynaphthalenes. The title compound, (I), is closely related to 1,8-bis­(4-fluoro­benzoyl)-2,7-di­phen­oxy­naphthalene, (II) (Hijikata et al., 2012), and 1,8-di­benzoyl-2,7-di­meth­oxy­naphthalene, (III) (Nakaema et al., 2008). Like in the title compound, in homologue (II), the four benzene rings are non-coplanarly oriented relative to the naphthalene core. The dihedral angles formed by the benzene rings of the benzoyl groups are very similar to the title compound (I) [72.07 (4) and 73.24 (4)°], whereas those of the benzene rings of the phen­oxy groups differ and are both smaller than in the title compound [62.49 (5) and 77.96 (5)°]. Homologue (III) is apparently different as the molecule is located on a crystallographic twofold rotation axis passing through the two central C atoms of the naphthalene unit. The dihedral angle between the benzene ring of the benzoyl group and the naphthalene ring system is 80.25 (6)°. In homologues (II) and (III), the molecules are linked by Car—H···OC hydrogen bonds, forming a column structure [H···O = 2.40 Å for homologue (II) and 2.60 Å for homologue (III)]. In homologue (II), C—H···π inter­actions between the benzene ring of the benzoyl group and the benzene ring of the phen­oxy group (2.80 Å) are observed. In homologue (III), ππ inter­actions between the benzene rings of the benzoyl groups are formed [centroid–centroid and inter­planar distances of 3.6383 (10) and 3.294 Å, respectively]. In the title structure, no C—H···OC inter­actions shorter than 2.70 Å were observed. In (I), C—H···π and ππ stacking inter­actions evidently predominate.

Synthesis and crystallization top

1,8-Di­benzoyl-2,7-di­hydroxy­naphthalene (0.2 mmol, 74 mg), benzenboronic acid (0.8 mmol, 97 mg), Cu(OAc)2 (0.4 mmol, 73 mg), activated 4 Å molecular sieves (0.2 g), pyridine (1.6 mmol, 126 mg) and methyl­ene chloride (0.8 ml) were placed in a 10 ml flask. The reaction mixture was stirred at room temperature for 48 h and then diluted with CHCl3 (10 ml). The solution was successively washed with saturated aqueous NH4Cl, 2M aqueous HCl and brine. The organic layers thus obtained were dried over anhydrous MgSO4. After removal of solvent under reduced pressure, the crude product was purified by column chromatography (silica gel, hexane–AcOEt, 2:1 v/v; isolated yield 68%). The isolated product was crystallized from ethanol to give single crystals.

1H NMR (300 MHz, CDCl3): δ 6.82 (4H, d, J = 8.4 Hz), 7.03 (2H, t, J = 7.2 Hz), 7.08 (2H, d, J = 9.3 Hz), 7.22 (4H, t, J = 7.5 Hz), 7.33 (4H, t, J = 7.8 Hz), 7.46 (2H, t, J = 6.9 Hz), 7.80 (4H, d, J = 7.5 Hz), 7.89 (2H, d, J = 9.0 Hz); 13C NMR (75 MHz, CDCl3): δ 117.333, 119.169, 123.863, 125.374, 127.984, 128.070, 129.361, 129.714, 131.980, 133.022, 138.501, 153.884, 156.121, 179.239, 196.142; IR (KBr): ν 1655, 1614, 1592, 1504 cm-1; HRMS (m/z): [M+H]+ Calculated for C30H25O4, 521.1753; found, 521.1768; m.p. 423.6–424.4 K.

?

Refinement details top

All H atoms were located in a difference Fourier map and were subsequently refined as riding on their carriers, with C—H = 0.95 Å (aromatic) and Uiso(H) = 1.2 Ueq(C). Crystal data, data collection and structure refinement details are summarized in Table 2.

Related literature top

For related literature, see: Allen (2002); Gvishi et al. (1993); Hijikata et al. (2012); Jiang et al. (2010); Jiao et al. (2009); Mei et al. (2006); Nakaema et al. (2008); Okamoto & Yonezawa (2009); Okamoto et al. (2011, 2014); Oneil et al. (1992); Seo et al. (2013); Shao et al. (2014); Shibano et al. (2009); Shinamura et al. (2010); Würthner (2004); Wang & Yu (2010).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SIR2004 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title molecule, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Two types of C—H···π interactions between the benzene ring of the benzoyl groups and the naphthalene rings, forming a single column structure (see Table 1 for details).
[Figure 3] Fig. 3. ππ interactions between the benzene rings of the benzoyl groups (green dashed line) and between the benzene rings of the phenoxy groups (blue dashed lines).
1,8-Dibenzoyl-2,7-diphenoxynaphthalene top
Crystal data top
C36H24O4F(000) = 1088
Mr = 520.55Dx = 1.285 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ybcCell parameters from 26940 reflections
a = 12.7734 (2) Åθ = 3.4–68.2°
b = 16.4106 (3) ŵ = 0.66 mm1
c = 12.9012 (2) ÅT = 193 K
β = 95.939 (1)°Platelet, colorless
V = 2689.81 (9) Å30.50 × 0.35 × 0.10 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4924 independent reflections
Radiation source: fine-focus sealed tube4506 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 10.000 pixels mm-1θmax = 68.2°, θmin = 3.5°
ω scansh = 1514
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1919
Tmin = 0.732, Tmax = 0.937l = 1515
49716 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0558P)2 + 0.4291P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4924 reflectionsΔρmax = 0.21 e Å3
362 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00272 (19)
Crystal data top
C36H24O4V = 2689.81 (9) Å3
Mr = 520.55Z = 4
Monoclinic, P21/cCu Kα radiation
a = 12.7734 (2) ŵ = 0.66 mm1
b = 16.4106 (3) ÅT = 193 K
c = 12.9012 (2) Å0.50 × 0.35 × 0.10 mm
β = 95.939 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4924 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
4506 reflections with I > 2σ(I)
Tmin = 0.732, Tmax = 0.937Rint = 0.041
49716 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.04Δρmax = 0.21 e Å3
4924 reflectionsΔρmin = 0.19 e Å3
362 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.50123 (6)0.17091 (5)0.26210 (6)0.0420 (2)
O20.68204 (6)0.28487 (5)0.43151 (6)0.0423 (2)
O30.29940 (6)0.17736 (5)0.40091 (6)0.04128 (19)
O40.13200 (6)0.30376 (5)0.23233 (6)0.0453 (2)
C10.50205 (8)0.28673 (6)0.37033 (7)0.0324 (2)
C20.59047 (8)0.32915 (7)0.40983 (8)0.0357 (2)
C30.59303 (9)0.41494 (7)0.41644 (8)0.0410 (3)
H30.65470.44230.44560.049*
C40.50574 (9)0.45778 (7)0.38032 (8)0.0400 (3)
H40.50760.51560.38230.048*
C50.32265 (9)0.46409 (6)0.30298 (8)0.0401 (3)
H50.32580.52180.30750.048*
C60.23228 (9)0.42820 (7)0.26128 (8)0.0417 (3)
H60.17390.46030.23410.050*
C70.22675 (8)0.34215 (7)0.25911 (8)0.0372 (2)
C80.31057 (8)0.29366 (6)0.29617 (7)0.0332 (2)
C90.40819 (8)0.33102 (6)0.33549 (7)0.0329 (2)
C100.41238 (8)0.41796 (6)0.33991 (7)0.0358 (2)
C110.51520 (7)0.19679 (6)0.35110 (8)0.0322 (2)
C120.54959 (7)0.14356 (6)0.44108 (8)0.0317 (2)
C130.53226 (8)0.16529 (6)0.54194 (8)0.0356 (2)
H130.49840.21540.55440.043*
C140.56439 (9)0.11396 (7)0.62452 (9)0.0426 (3)
H140.55240.12890.69340.051*
C150.61378 (8)0.04119 (7)0.60686 (10)0.0455 (3)
H150.63520.00610.66360.055*
C160.63217 (8)0.01926 (7)0.50689 (10)0.0450 (3)
H160.66710.03050.49510.054*
C170.59953 (8)0.06985 (6)0.42409 (9)0.0384 (2)
H170.61120.05430.35530.046*
C180.75171 (8)0.30897 (6)0.51655 (9)0.0409 (3)
C190.85574 (10)0.31908 (8)0.50004 (12)0.0541 (3)
H190.87770.31250.43240.065*
C200.92813 (11)0.33918 (9)0.58451 (15)0.0703 (5)
H201.00000.34700.57430.084*
C210.89623 (12)0.34786 (9)0.68263 (14)0.0722 (5)
H210.94600.36170.73980.087*
C220.79282 (12)0.33645 (8)0.69766 (11)0.0630 (4)
H220.77120.34180.76560.076*
C230.71910 (10)0.31718 (7)0.61457 (10)0.0485 (3)
H230.64720.30980.62510.058*
C240.28832 (8)0.20438 (6)0.31252 (8)0.0335 (2)
C250.24927 (8)0.15255 (6)0.22211 (8)0.0336 (2)
C260.26596 (8)0.17354 (7)0.12080 (8)0.0399 (2)
H260.30200.22250.10780.048*
C270.22996 (9)0.12298 (7)0.03865 (9)0.0467 (3)
H270.24180.13740.03050.056*
C280.17703 (9)0.05188 (7)0.05675 (10)0.0479 (3)
H280.15230.01760.00010.057*
C290.15999 (9)0.03062 (7)0.15734 (10)0.0468 (3)
H290.12330.01820.16970.056*
C300.19624 (8)0.08026 (7)0.23989 (9)0.0394 (2)
H300.18500.06520.30900.047*
C310.06162 (8)0.33949 (7)0.15531 (9)0.0404 (3)
C320.09041 (10)0.35598 (9)0.05780 (10)0.0531 (3)
H320.16040.34650.04190.064*
C330.01505 (12)0.38679 (10)0.01674 (11)0.0679 (4)
H330.03390.39940.08420.082*
C340.08662 (11)0.39936 (10)0.00530 (12)0.0675 (4)
H340.13770.41990.04690.081*
C350.11407 (10)0.38220 (9)0.10278 (13)0.0616 (4)
H350.18440.39080.11820.074*
C360.03952 (9)0.35228 (8)0.17909 (10)0.0486 (3)
H360.05810.34080.24700.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0491 (4)0.0440 (4)0.0323 (4)0.0028 (3)0.0023 (3)0.0061 (3)
O20.0355 (4)0.0421 (4)0.0487 (4)0.0006 (3)0.0015 (3)0.0073 (3)
O30.0456 (4)0.0421 (4)0.0358 (4)0.0013 (3)0.0026 (3)0.0084 (3)
O40.0368 (4)0.0427 (4)0.0551 (5)0.0022 (3)0.0015 (3)0.0100 (4)
C10.0378 (5)0.0323 (5)0.0276 (5)0.0010 (4)0.0056 (4)0.0017 (4)
C20.0369 (5)0.0379 (6)0.0324 (5)0.0011 (4)0.0048 (4)0.0001 (4)
C30.0449 (6)0.0389 (6)0.0388 (6)0.0084 (5)0.0028 (5)0.0033 (4)
C40.0546 (7)0.0305 (5)0.0352 (5)0.0033 (5)0.0064 (5)0.0014 (4)
C50.0553 (7)0.0307 (5)0.0350 (5)0.0050 (5)0.0069 (5)0.0033 (4)
C60.0477 (6)0.0373 (6)0.0395 (6)0.0095 (5)0.0019 (5)0.0065 (4)
C70.0396 (6)0.0387 (6)0.0334 (5)0.0024 (4)0.0039 (4)0.0033 (4)
C80.0379 (5)0.0329 (5)0.0291 (5)0.0018 (4)0.0048 (4)0.0015 (4)
C90.0394 (6)0.0325 (5)0.0273 (5)0.0008 (4)0.0056 (4)0.0019 (4)
C100.0467 (6)0.0328 (5)0.0285 (5)0.0003 (4)0.0066 (4)0.0011 (4)
C110.0282 (5)0.0361 (5)0.0327 (5)0.0010 (4)0.0049 (4)0.0026 (4)
C120.0280 (5)0.0307 (5)0.0363 (5)0.0020 (4)0.0023 (4)0.0008 (4)
C130.0357 (5)0.0350 (5)0.0362 (5)0.0006 (4)0.0043 (4)0.0003 (4)
C140.0404 (6)0.0497 (7)0.0373 (6)0.0047 (5)0.0016 (4)0.0056 (5)
C150.0339 (5)0.0459 (6)0.0545 (7)0.0030 (5)0.0060 (5)0.0162 (5)
C160.0323 (5)0.0335 (5)0.0681 (8)0.0029 (4)0.0000 (5)0.0040 (5)
C170.0333 (5)0.0350 (5)0.0470 (6)0.0004 (4)0.0043 (4)0.0047 (4)
C180.0352 (5)0.0317 (5)0.0541 (7)0.0020 (4)0.0038 (5)0.0007 (5)
C190.0393 (6)0.0459 (7)0.0767 (9)0.0044 (5)0.0044 (6)0.0080 (6)
C200.0355 (7)0.0543 (8)0.1166 (14)0.0062 (6)0.0134 (7)0.0059 (8)
C210.0621 (9)0.0542 (8)0.0917 (12)0.0063 (7)0.0322 (8)0.0148 (8)
C220.0722 (9)0.0498 (7)0.0619 (8)0.0152 (7)0.0172 (7)0.0131 (6)
C230.0466 (7)0.0427 (6)0.0548 (7)0.0038 (5)0.0010 (5)0.0077 (5)
C240.0293 (5)0.0358 (5)0.0358 (5)0.0022 (4)0.0052 (4)0.0042 (4)
C250.0292 (5)0.0326 (5)0.0390 (5)0.0034 (4)0.0029 (4)0.0020 (4)
C260.0401 (6)0.0396 (6)0.0408 (6)0.0016 (4)0.0072 (4)0.0014 (4)
C270.0496 (6)0.0513 (7)0.0396 (6)0.0037 (5)0.0066 (5)0.0045 (5)
C280.0446 (6)0.0435 (6)0.0536 (7)0.0041 (5)0.0043 (5)0.0107 (5)
C290.0413 (6)0.0354 (6)0.0622 (7)0.0021 (5)0.0019 (5)0.0004 (5)
C300.0348 (5)0.0362 (5)0.0468 (6)0.0018 (4)0.0024 (4)0.0066 (4)
C310.0362 (6)0.0358 (5)0.0479 (6)0.0041 (4)0.0012 (4)0.0016 (5)
C320.0428 (6)0.0652 (8)0.0512 (7)0.0024 (6)0.0052 (5)0.0040 (6)
C330.0655 (9)0.0857 (11)0.0499 (8)0.0132 (8)0.0071 (6)0.0131 (7)
C340.0547 (8)0.0672 (9)0.0744 (10)0.0014 (7)0.0229 (7)0.0138 (7)
C350.0385 (6)0.0567 (8)0.0881 (10)0.0112 (6)0.0015 (6)0.0009 (7)
C360.0423 (6)0.0471 (7)0.0571 (7)0.0076 (5)0.0079 (5)0.0018 (5)
Geometric parameters (Å, º) top
O1—C111.2199 (12)C18—C191.3774 (17)
O2—C21.3808 (13)C18—C231.3784 (17)
O2—C181.3964 (13)C19—C201.394 (2)
O3—C241.2181 (12)C19—H190.9500
O4—C71.3763 (13)C20—C211.377 (2)
O4—C311.3979 (13)C20—H200.9500
C1—C21.3786 (14)C21—C221.368 (2)
C1—C91.4338 (14)C21—H210.9500
C1—C111.5090 (14)C22—C231.3882 (17)
C2—C31.4107 (15)C22—H220.9500
C3—C41.3590 (16)C23—H230.9500
C3—H30.9500C24—C251.4873 (14)
C4—C101.4115 (15)C25—C261.3893 (15)
C4—H40.9500C25—C301.3967 (15)
C5—C61.3566 (16)C26—C271.3863 (16)
C5—C101.4145 (15)C26—H260.9500
C5—H50.9500C27—C281.3805 (17)
C6—C71.4141 (16)C27—H270.9500
C6—H60.9500C28—C291.3827 (18)
C7—C81.3791 (14)C28—H280.9500
C8—C91.4343 (14)C29—C301.3821 (16)
C8—C241.5115 (14)C29—H290.9500
C9—C101.4286 (15)C30—H300.9500
C11—C121.4826 (14)C31—C321.3736 (17)
C12—C131.3889 (14)C31—C361.3744 (16)
C12—C171.3952 (14)C32—C331.3840 (19)
C13—C141.3866 (15)C32—H320.9500
C13—H130.9500C33—C341.374 (2)
C14—C151.3803 (17)C33—H330.9500
C14—H140.9500C34—C351.369 (2)
C15—C161.3823 (18)C34—H340.9500
C15—H150.9500C35—C361.3868 (18)
C16—C171.3827 (16)C35—H350.9500
C16—H160.9500C36—H360.9500
C17—H170.9500
C2—O2—C18117.89 (8)C23—C18—O2121.33 (10)
C7—O4—C31118.07 (8)C18—C19—C20118.69 (14)
C2—C1—C9119.10 (9)C18—C19—H19120.7
C2—C1—C11116.98 (9)C20—C19—H19120.7
C9—C1—C11123.23 (9)C21—C20—C19120.52 (14)
C1—C2—O2116.98 (9)C21—C20—H20119.7
C1—C2—C3122.63 (10)C19—C20—H20119.7
O2—C2—C3119.94 (9)C22—C21—C20119.89 (13)
C4—C3—C2118.85 (10)C22—C21—H21120.1
C4—C3—H3120.6C20—C21—H21120.1
C2—C3—H3120.6C21—C22—C23120.64 (15)
C3—C4—C10121.26 (10)C21—C22—H22119.7
C3—C4—H4119.4C23—C22—H22119.7
C10—C4—H4119.4C18—C23—C22119.05 (13)
C6—C5—C10121.86 (10)C18—C23—H23120.5
C6—C5—H5119.1C22—C23—H23120.5
C10—C5—H5119.1O3—C24—C25121.54 (9)
C5—C6—C7118.69 (10)O3—C24—C8118.57 (9)
C5—C6—H6120.7C25—C24—C8119.84 (8)
C7—C6—H6120.7C26—C25—C30119.29 (10)
O4—C7—C8117.00 (9)C26—C25—C24121.63 (9)
O4—C7—C6120.19 (9)C30—C25—C24119.07 (9)
C8—C7—C6122.27 (10)C27—C26—C25119.99 (10)
C7—C8—C9119.43 (9)C27—C26—H26120.0
C7—C8—C24117.21 (9)C25—C26—H26120.0
C9—C8—C24122.28 (9)C28—C27—C26120.40 (11)
C10—C9—C1117.84 (9)C28—C27—H27119.8
C10—C9—C8117.94 (9)C26—C27—H27119.8
C1—C9—C8124.22 (9)C27—C28—C29119.96 (11)
C4—C10—C5120.05 (10)C27—C28—H28120.0
C4—C10—C9120.25 (9)C29—C28—H28120.0
C5—C10—C9119.70 (10)C30—C29—C28120.12 (11)
O1—C11—C12122.31 (9)C30—C29—H29119.9
O1—C11—C1119.17 (9)C28—C29—H29119.9
C12—C11—C1118.47 (8)C29—C30—C25120.24 (10)
C13—C12—C17119.31 (9)C29—C30—H30119.9
C13—C12—C11121.28 (9)C25—C30—H30119.9
C17—C12—C11119.41 (9)C32—C31—C36121.41 (11)
C14—C13—C12120.04 (10)C32—C31—O4121.35 (10)
C14—C13—H13120.0C36—C31—O4117.10 (10)
C12—C13—H13120.0C31—C32—C33118.39 (12)
C15—C14—C13120.18 (11)C31—C32—H32120.8
C15—C14—H14119.9C33—C32—H32120.8
C13—C14—H14119.9C34—C33—C32121.04 (14)
C14—C15—C16120.26 (10)C34—C33—H33119.5
C14—C15—H15119.9C32—C33—H33119.5
C16—C15—H15119.9C35—C34—C33119.78 (12)
C15—C16—C17119.84 (10)C35—C34—H34120.1
C15—C16—H16120.1C33—C34—H34120.1
C17—C16—H16120.1C34—C35—C36120.16 (13)
C16—C17—C12120.36 (10)C34—C35—H35119.9
C16—C17—H17119.8C36—C35—H35119.9
C12—C17—H17119.8C31—C36—C35119.21 (13)
C19—C18—C23121.21 (11)C31—C36—H36120.4
C19—C18—O2117.33 (11)C35—C36—H36120.4
C9—C1—C2—O2172.98 (8)C11—C12—C13—C14179.40 (9)
C11—C1—C2—O22.16 (13)C12—C13—C14—C150.07 (16)
C9—C1—C2—C30.74 (15)C13—C14—C15—C160.44 (16)
C11—C1—C2—C3170.07 (9)C14—C15—C16—C170.98 (16)
C18—O2—C2—C1145.91 (9)C15—C16—C17—C121.01 (16)
C18—O2—C2—C341.63 (13)C13—C12—C17—C160.51 (15)
C1—C2—C3—C41.54 (16)C11—C12—C17—C16179.95 (9)
O2—C2—C3—C4170.48 (9)C2—O2—C18—C19129.66 (11)
C2—C3—C4—C102.13 (16)C2—O2—C18—C2354.45 (14)
C10—C5—C6—C72.80 (16)C23—C18—C19—C200.98 (18)
C31—O4—C7—C8151.93 (10)O2—C18—C19—C20176.87 (11)
C31—O4—C7—C636.35 (14)C18—C19—C20—C210.7 (2)
C5—C6—C7—O4170.07 (9)C19—C20—C21—C220.2 (2)
C5—C6—C7—C81.19 (16)C20—C21—C22—C230.8 (2)
O4—C7—C8—C9173.51 (8)C19—C18—C23—C220.36 (18)
C6—C7—C8—C91.98 (15)O2—C18—C23—C22176.10 (11)
O4—C7—C8—C245.11 (14)C21—C22—C23—C180.6 (2)
C6—C7—C8—C24166.42 (10)C7—C8—C24—O3114.72 (11)
C2—C1—C9—C102.35 (13)C9—C8—C24—O353.32 (14)
C11—C1—C9—C10167.86 (9)C7—C8—C24—C2562.62 (13)
C2—C1—C9—C8177.90 (9)C9—C8—C24—C25129.33 (10)
C11—C1—C9—C811.89 (14)O3—C24—C25—C26160.13 (10)
C7—C8—C9—C103.46 (14)C8—C24—C25—C2622.61 (14)
C24—C8—C9—C10164.32 (9)O3—C24—C25—C3018.66 (15)
C7—C8—C9—C1176.29 (9)C8—C24—C25—C30158.60 (9)
C24—C8—C9—C115.92 (14)C30—C25—C26—C270.10 (16)
C3—C4—C10—C5179.91 (10)C24—C25—C26—C27178.89 (10)
C3—C4—C10—C90.47 (15)C25—C26—C27—C280.31 (17)
C6—C5—C10—C4178.39 (10)C26—C27—C28—C290.23 (18)
C6—C5—C10—C91.23 (15)C27—C28—C29—C300.26 (17)
C1—C9—C10—C41.79 (14)C28—C29—C30—C250.68 (17)
C8—C9—C10—C4178.44 (9)C26—C25—C30—C290.59 (15)
C1—C9—C10—C5177.84 (8)C24—C25—C30—C29179.41 (9)
C8—C9—C10—C51.94 (14)C7—O4—C31—C3256.41 (15)
C2—C1—C11—O1115.66 (11)C7—O4—C31—C36127.86 (11)
C9—C1—C11—O154.74 (13)C36—C31—C32—C330.6 (2)
C2—C1—C11—C1261.54 (12)O4—C31—C32—C33176.12 (12)
C9—C1—C11—C12128.06 (10)C31—C32—C33—C341.1 (2)
O1—C11—C12—C13158.43 (10)C32—C33—C34—C350.8 (2)
C1—C11—C12—C1324.46 (14)C33—C34—C35—C360.1 (2)
O1—C11—C12—C1721.00 (14)C32—C31—C36—C350.24 (19)
C1—C11—C12—C17156.11 (9)O4—C31—C36—C35175.48 (11)
C17—C12—C13—C140.03 (15)C34—C35—C36—C310.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C4/C10/C9 and C5–C10 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C14—H14···Cg1i0.952.503.4192 (12)163
C27—H27···Cg2ii0.952.513.4002 (12)155
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C4/C10/C9 and C5–C10 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C14—H14···Cg1i0.952.503.4192 (12)163
C27—H27···Cg2ii0.952.513.4002 (12)155
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC36H24O4
Mr520.55
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)12.7734 (2), 16.4106 (3), 12.9012 (2)
β (°) 95.939 (1)
V3)2689.81 (9)
Z4
Radiation typeCu Kα
µ (mm1)0.66
Crystal size (mm)0.50 × 0.35 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.732, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
49716, 4924, 4506
Rint0.041
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.097, 1.04
No. of reflections4924
No. of parameters362
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.19

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku, 2007), SIR2004 (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

 

Acknowledgements

The authors express their gratitude to Mr Rei Sakamoto, Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, and Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for technical advice. This work was partially supported by the Ogasawara Foundation for the Promotion of Science Engineering, Tokyo, Japan.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.  Google Scholar
First citationGvishi, R., Reisfeld, R. & Burshtein, Z. (1993). Chem. Phys. Lett. 213, 338–344.  CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHijikata, D., Sasagawa, K., Yoshiwaka, S., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o3246.  CSD CrossRef IUCr Journals Google Scholar
First citationJiang, Y. L., Gao, X. N., Zhou, G. N., Patel, A. & Javer, A. (2010). J. Org. Chem. 75, 324–333.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJiao, C. J., Huang, K. W., Luo, J., Zhang, K., Chi, C. Y. & Wu, J. S. (2009). Org. Lett. 11, 4508–4511.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMei, X. F., Martin, R. M. & Wolf, C. (2006). J. Org. Chem. 71, 2854–2861.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.  Web of Science CrossRef CAS Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationOkamoto, A., Yoshiwaka, S., Mohri, S., Hijikata, D. & Yonezawa, N. (2014). Eur. Chem. Bull. 3, 829–834.  CAS Google Scholar
First citationOneil, M. P., Niemczyk, M. P., Svec, W. A., Gosztola, D., Gaines, G. L. & Wasielewski, M. R. (1992). Science, 257, 63–65.  PubMed CAS Web of Science Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSeo, H.-S., Kim, D. K., Oh, J. D., Shin, E. S. & Choi, J. H. (2013). J. Phys. Chem. C, 117, 4764–4770.  Web of Science CrossRef CAS Google Scholar
First citationShao, P., Jia, N., Zhang, S. & Bai, M. (2014). Chem. Commun. 50, 5648–5651.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShibano, Y., Imahori, H. & Adachi, C. (2009). J. Phys. Chem. C, 113, 15454–15466.  Web of Science CrossRef CAS Google Scholar
First citationShinamura, S., Miyazaki, E. & Takiyama, K. (2010). J. Org. Chem. 75, 1228–1234.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWang, B. & Yu, C. (2010). Angew. Chem. Int. Ed. 49, 1485–1488.  Web of Science CrossRef CAS Google Scholar
First citationWürthner, F. (2004). Chem. Commun. pp. 1564–1579.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages 170-173
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds