metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­[μ-11,23-di-tert-butyl-3,7,15,19-tetra­azatri­cyclo­[19.3.1.19,13]tetra­cosa-1(25),2,6,9,11,13(26),14,19,21,23-do­deca­ene-25,26-diolato-κ4N3,N7,O25,O26:κ4N15,N19,O25,O26]dicopper(II) bis­­(perchlorate)

aSchool of Materials and Chemical Engineering, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, People's Republic of China
*Correspondence e-mail: xuq18@sina.com

(Received 12 June 2012; accepted 9 July 2012; online 14 July 2012)

In the dinuclear title complex, [Cu2(C30H38N4O2)(H2O)2](ClO4)2, the coordination cation has crystallographically imposed twofold rotational symmetry. The CuII ion is five-coordinated by two N and two O atoms from the macrocylic ligand and one O atom from a water mol­ecule, forming a square-pyramidal N2O3 geometry with the water mol­ecule in the apical position. The distance between the two CuII atoms is 3.0930 (5) Å. Hydrogen bonds between water mol­ecules and between water mol­ecules and perchlorate anions assemble two cations and four anions into discrete supermolecules of S4 symmetry. Intramolecular O—H⋯N hydrogen bonds are also observed. The perchlorate anion and the tert-butyl group are disordered over two positions, with occupancies of the major positions of 0.527 (11) and 0.592 (9), respectively.

Related literature

For the synthesis of the magnesium precursor, see: Mohanta et al. (1997[Mohanta, S., Nanda, M. K., Werner, R., Haase, W., Mukherjee, A. K., Dutta, S. K. & Nag, K. (1997). Inorg. Chem. 36, 4656-4664.]). For the synthesis of 4-tert-butyl-2,6-diformyl­phenol, see: Lindoy et al. (1998[Lindoy, F. L., Meehan, V. G. & Svenstrup, N. (1998). Synthesis, pp. 1029-1032.]). For similar copper(II) and nickel(II) complexes, see: Bai et al. (2007[Bai, J.-L., Zhou, H., Pan, Z.-Q. & Meng, X.-G. (2007). Acta Cryst. E63, m2641.]); Chen et al. (2005[Chen, L., Zhou, H., Pan, Z.-Q., Hu, X.-L. & Liu, B. (2005). Acta Cryst. E61, m1467-m1469.]); Nanda et al. (1994[Nanda, K. K., Venkatsubramanian, K., Majumdar, D. & Nag, K. (1994). Inorg. Chem. 33, 1581-1582.]). For the preparation of similar macrocyclic ligands, see: Thompson et al. (1996[Thompson, I. K., Mandal, S. K., Tandon, S. S., Bridson, J. N. & Park, M. K. (1996). Inorg. Chem. 35, 3117-3125.]); Pilkington & Robson (1970[Pilkington, N. H. & Robson, R. (1970). Aust. J. Chem. 23, 2225-2236.]); Zhou et al. (2005[Zhou, H., Peng, Z. H., Pan, Z. Q., Liu, B. & Liu, Y. Q. (2005). J. Coord. Chem. 58, 443-451.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C30H38N4O2)(H2O)2](ClO4)2

  • Mr = 848.66

  • Tetragonal, [P \overline 42_1 c ]

  • a = 18.9013 (4) Å

  • c = 9.9174 (4) Å

  • V = 3543.08 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.42 mm−1

  • T = 296 K

  • 0.38 × 0.36 × 0.32 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.615, Tmax = 0.660

  • 19006 measured reflections

  • 3489 independent reflections

  • 2942 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.115

  • S = 1.02

  • 3489 reflections

  • 298 parameters

  • 125 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.33 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1527 Friedel pairs

  • Flack parameter: 0.31 (3)

Table 1
Selected bond lengths (Å)

Cu1—N1 1.939 (4)
Cu1—N2 1.945 (4)
Cu1—O1i 1.954 (3)
Cu1—O1 1.964 (3)
Cu1—O2 2.707 (5)
Symmetry code: (i) -x, -y+2, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2B⋯O2ii 0.82 (2) 2.07 (4) 2.821 (6) 153 (8)
O2—H2A⋯O3 0.81 (2) 2.26 (3) 2.806 (8) 125 (2)
O2—H2A⋯O3′ 0.81 (2) 2.49 (4) 2.947 (10) 117 (3)
O2—H2A⋯N1 0.81 (2) 2.55 (3) 3.197 (6) 138 (3)
Symmetry code: (ii) y-1, -x+1, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Dinuclear heterometallic and homometallic transition metal complexes have been well studied with a series of macrocyclic liagnds based on the first reported condensation reaction between 2,6-diformyl-4-R-phenol (R= CH3, Cl, F, n-butyl) and alkylenediamine by stepwise template reaction (Thompson et al., 1996; Pilkington & Robson, 1970; Zhou et al., 2005). Several tetranuclear as well as trinuclear nickel(II) and copper(II) complexes have been structurally characterized (Mohanta et al.,1997; Nanda et al.,1994). In addition, Mohanta et al. (1997) reported a protonated macrocyclic magnesium compound of composition [Mg2(L1H4)2(NO3)2](NO3)26H2O by a template reaction. The transmetalation reaction of the magnesium precursor with copper(II) perchlorate in the presence of triethylamine resulted in the formation of a dinuclear copper(II) complex (Mohanta et al.,1997). Herein, we synthesized a similar magnesium precursor by a template reaction involving 4-tert-butyl-2,6-diformylphenol, 1,3-diaminopropane, magnesium acetate, and magnesium nitrate.The transmetalation reaction of the new magnesium precursor with copper(II) perchlorate leads to a new dinuclear copper(II) complex.

The structure of the cation the title compound is shown in Fig.1. In the cation, each copper(II) is coordinated by two O atoms and two N atoms from the macrocylic ligand and one O from water molecule, forming a square pyramidal {N2O3} geometry. In {N2O3}, the N2O2 donor sets from the macrocyclic ligand occupy the basal plane of the pyramid and the O atom from the water molecule locates in the apical position. The distance of the apical O atom and the copper atom [Cu1–O2: 2.707 (5) Å] is longer than the basal donors [ranging from 1.938 (4) to 1.964 (3) Å] due to the Jahn-Teller effect. Fig. 2 shows the crystal packing of the title compound along the b axis.

Related literature top

For the synthesis of the magnesium precursor, see: Mohanta et al.(1997). For the synthesis of 4-tert-butyl-2,6-diformylphenol, see: Lindoy et al. (1998). For similar copper(II) and nickel(II) complexes, see: Bai et al. (2007); Chen et al. (2005); Nanda et al. (1994). For the preparation of similar macrocyclic ligands, see: Thompson et al. (1996); Pilkington & Robson (1970); Zhou et al. (2005).

Experimental top

4-tert-Butyl-2,6-diformylphenol was synthesized according to the reported literature (Lindoy et al.,1998). The magnesium precursor was prepared according to the reported method by Mohanta (Mohanta et al.,1997). The title complex was obtained by the following procedures: Cu(ClO4)26H2O (0.185 g, 0.5 mmol) and magnesium precursor (0.136 g, 0.1 mmol) were dissolved in CH3OH (15 ml) and the solution was filtered and left to stand at room temperature. Blue block single crystals suitable for X-ray analysis were obtained by slow evaporation over a period of two weeks.

Refinement top

The H atoms bonded to C atoms were positioned geometrically and refined using a riding model, with C–H = 0.93-0.96 Å, and with Uiso(H) = 1.2 or 1.5 times Ueq(C). The H atoms bonded to O1W were located in Fourier difference maps and refined with restraints imposed on O-H and H···H distances [O-H= 0.83 (1) Å, H···H. 1.35 (1) Å]. Restraints were also imposed on Cl-O, O···O, C-C and C···C distances of disordered perchlorate and tert-butyl groups [Cl-O 1.44 (1) Å, O···O 2.35 (1) Å, C-C 1. 50 (1) Å, C···C 2.35 (1) Å]. The crystal was refined as an inversion twin with the ratio of the two twin domains of 0.31 (3):0.69 (3).

Structure description top

Dinuclear heterometallic and homometallic transition metal complexes have been well studied with a series of macrocyclic liagnds based on the first reported condensation reaction between 2,6-diformyl-4-R-phenol (R= CH3, Cl, F, n-butyl) and alkylenediamine by stepwise template reaction (Thompson et al., 1996; Pilkington & Robson, 1970; Zhou et al., 2005). Several tetranuclear as well as trinuclear nickel(II) and copper(II) complexes have been structurally characterized (Mohanta et al.,1997; Nanda et al.,1994). In addition, Mohanta et al. (1997) reported a protonated macrocyclic magnesium compound of composition [Mg2(L1H4)2(NO3)2](NO3)26H2O by a template reaction. The transmetalation reaction of the magnesium precursor with copper(II) perchlorate in the presence of triethylamine resulted in the formation of a dinuclear copper(II) complex (Mohanta et al.,1997). Herein, we synthesized a similar magnesium precursor by a template reaction involving 4-tert-butyl-2,6-diformylphenol, 1,3-diaminopropane, magnesium acetate, and magnesium nitrate.The transmetalation reaction of the new magnesium precursor with copper(II) perchlorate leads to a new dinuclear copper(II) complex.

The structure of the cation the title compound is shown in Fig.1. In the cation, each copper(II) is coordinated by two O atoms and two N atoms from the macrocylic ligand and one O from water molecule, forming a square pyramidal {N2O3} geometry. In {N2O3}, the N2O2 donor sets from the macrocyclic ligand occupy the basal plane of the pyramid and the O atom from the water molecule locates in the apical position. The distance of the apical O atom and the copper atom [Cu1–O2: 2.707 (5) Å] is longer than the basal donors [ranging from 1.938 (4) to 1.964 (3) Å] due to the Jahn-Teller effect. Fig. 2 shows the crystal packing of the title compound along the b axis.

For the synthesis of the magnesium precursor, see: Mohanta et al.(1997). For the synthesis of 4-tert-butyl-2,6-diformylphenol, see: Lindoy et al. (1998). For similar copper(II) and nickel(II) complexes, see: Bai et al. (2007); Chen et al. (2005); Nanda et al. (1994). For the preparation of similar macrocyclic ligands, see: Thompson et al. (1996); Pilkington & Robson (1970); Zhou et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. The H atoms attached to C atoms were omitted for clarity. Atoms with the A label are generated by the '-x, -y+2, z' symmetry operation. tert-Butyl group and perchlorate anion are disordered.
[Figure 2] Fig. 2. View of the crystal packing along the b axis. For the sake of clarity, H atoms and minor position of the disordered groups have been omitted.
Diaqua[µ-11,23-di-tert-butyl-3,7,15,19-tetraazatricyclo[19.3.1.19,13]tetracosa-1(25),2,6,9,11,13(26),14,19,21,23-dodecaene-25,26-diolato-κ4N3,N7,O25,O26:κ4N15,N19,O25,O26]dicopper(II) bis(perchlorate) top
Crystal data top
[Cu2(C30H38N4O2)(H2O)2](ClO4)2Dx = 1.591 Mg m3
Mr = 848.66Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P421cCell parameters from 7958 reflections
Hall symbol: P-42 nθ = 2.3–29.4°
a = 18.9013 (4) ŵ = 1.42 mm1
c = 9.9174 (4) ÅT = 296 K
V = 3543.08 (18) Å3Block, blue
Z = 40.38 × 0.36 × 0.32 mm
F(000) = 1752
Data collection top
Bruker APEXII CCD
diffractometer
3489 independent reflections
Radiation source: fine-focus sealed tube2942 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
phi and ω scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1823
Tmin = 0.615, Tmax = 0.660k = 2223
19006 measured reflectionsl = 129
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0615P)2 + 4.6836P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3489 reflectionsΔρmax = 0.47 e Å3
298 parametersΔρmin = 0.33 e Å3
125 restraintsAbsolute structure: Flack (1983), 1527 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.31 (3)
Crystal data top
[Cu2(C30H38N4O2)(H2O)2](ClO4)2Z = 4
Mr = 848.66Mo Kα radiation
Tetragonal, P421cµ = 1.42 mm1
a = 18.9013 (4) ÅT = 296 K
c = 9.9174 (4) Å0.38 × 0.36 × 0.32 mm
V = 3543.08 (18) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3489 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2942 reflections with I > 2σ(I)
Tmin = 0.615, Tmax = 0.660Rint = 0.021
19006 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115Δρmax = 0.47 e Å3
S = 1.02Δρmin = 0.33 e Å3
3489 reflectionsAbsolute structure: Flack (1983), 1527 Friedel pairs
298 parametersAbsolute structure parameter: 0.31 (3)
125 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.08182 (2)0.99986 (3)0.18030 (5)0.03063 (16)
O10.00045 (19)0.93667 (12)0.1690 (3)0.0329 (6)
O20.0833 (2)0.9539 (2)0.4388 (5)0.0614 (10)
N10.14955 (18)0.92478 (19)0.1474 (4)0.0314 (9)
N20.14970 (19)1.0758 (2)0.2082 (4)0.0389 (10)
C10.1312 (2)1.1411 (2)0.2233 (5)0.0361 (10)
H10.16781.17280.24060.043*
C20.2279 (3)1.0650 (3)0.2171 (8)0.0657 (19)
H2A'0.24931.08190.13430.079*
H2B'0.24611.09360.29040.079*
C30.2500 (2)0.9908 (3)0.2390 (6)0.0504 (13)
H3A0.23110.97440.32440.061*
H3B0.30120.98890.24460.061*
C40.2254 (2)0.9415 (3)0.1278 (5)0.0431 (11)
H4A0.23220.96390.04080.052*
H4B0.25300.89830.12960.052*
C50.1332 (2)0.8591 (2)0.1536 (5)0.0347 (10)
H50.16980.82720.13840.042*
C60.0651 (2)0.8288 (2)0.1813 (5)0.0318 (9)
C70.0649 (2)0.7551 (2)0.2042 (5)0.0398 (11)
H70.10730.73050.19740.048*
C80.0046 (3)0.71818 (19)0.2360 (4)0.0393 (9)
C90.0578 (3)0.7557 (2)0.2404 (5)0.0394 (11)
H90.09950.73160.25990.047*
C100.0611 (3)0.8288 (2)0.2168 (5)0.0330 (11)
C110.0005 (3)0.86673 (17)0.1894 (4)0.0297 (7)
C120.0062 (3)0.6385 (2)0.2598 (5)0.0538 (12)
C130.0775 (4)0.6074 (4)0.2618 (11)0.059 (3)0.592 (9)
H13A0.07410.55740.27710.089*0.592 (9)
H13B0.10470.62870.33280.089*0.592 (9)
H13C0.10040.61590.17680.089*0.592 (9)
C140.0277 (6)0.6227 (6)0.3911 (9)0.085 (4)0.592 (9)
H14A0.02690.57250.40670.127*0.592 (9)
H14B0.07590.63890.38980.127*0.592 (9)
H14C0.00240.64630.46190.127*0.592 (9)
C150.0368 (6)0.6024 (6)0.1554 (11)0.086 (4)0.592 (9)
H15A0.03570.55220.17050.129*0.592 (9)
H15B0.01780.61270.06780.129*0.592 (9)
H15C0.08480.61880.16030.129*0.592 (9)
C13'0.0409 (8)0.6032 (9)0.1429 (13)0.084 (6)0.408 (9)
H13D0.04190.55300.15770.126*0.408 (9)
H13E0.08830.62060.13350.126*0.408 (9)
H13F0.01470.61320.06220.126*0.408 (9)
C14'0.0491 (8)0.6226 (10)0.3793 (13)0.085 (6)0.408 (9)
H14D0.05000.57240.39380.127*0.408 (9)
H14E0.02890.64550.45670.127*0.408 (9)
H14F0.09640.63950.36570.127*0.408 (9)
C15'0.0633 (5)0.6048 (7)0.2754 (15)0.064 (4)0.408 (9)
H15D0.05720.55500.28960.096*0.408 (9)
H15E0.09080.61240.19530.096*0.408 (9)
H15F0.08730.62510.35140.096*0.408 (9)
Cl10.22950 (8)0.78567 (9)0.46056 (14)0.0669 (4)
O30.1844 (6)0.8458 (5)0.4620 (12)0.086 (4)0.527 (11)
O40.2055 (8)0.7328 (7)0.5596 (13)0.160 (7)0.527 (11)
O50.2295 (6)0.7511 (6)0.3334 (8)0.102 (4)0.527 (11)
O60.2988 (5)0.8071 (8)0.4988 (16)0.153 (6)0.527 (11)
O3'0.1632 (4)0.8212 (7)0.4726 (13)0.082 (4)0.473 (11)
O4'0.2672 (7)0.8119 (8)0.3419 (11)0.142 (7)0.473 (11)
O5'0.2189 (8)0.7114 (4)0.4411 (19)0.164 (7)0.473 (11)
O6'0.2725 (5)0.7960 (6)0.5766 (10)0.084 (4)0.473 (11)
H2B0.054 (4)0.932 (4)0.482 (8)0.101*
H2A0.115 (3)0.937 (3)0.395 (3)0.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0211 (2)0.0202 (2)0.0506 (3)0.0005 (3)0.00050 (19)0.0018 (3)
O10.0256 (12)0.0176 (11)0.0556 (16)0.0010 (15)0.002 (2)0.0020 (10)
O20.051 (2)0.056 (2)0.078 (3)0.0051 (18)0.013 (2)0.008 (2)
N10.0249 (17)0.0275 (18)0.042 (2)0.0022 (15)0.0023 (15)0.0005 (15)
N20.0228 (17)0.031 (2)0.063 (3)0.0002 (15)0.0023 (17)0.0026 (18)
C10.030 (2)0.027 (2)0.052 (3)0.0061 (17)0.004 (2)0.0028 (19)
C20.026 (2)0.037 (3)0.134 (6)0.001 (2)0.013 (3)0.016 (3)
C30.027 (2)0.049 (3)0.076 (3)0.002 (2)0.009 (2)0.003 (3)
C40.030 (2)0.033 (2)0.066 (3)0.0016 (19)0.006 (2)0.006 (2)
C50.029 (2)0.029 (2)0.046 (3)0.0074 (18)0.0041 (19)0.0023 (19)
C60.034 (2)0.019 (2)0.043 (2)0.0015 (17)0.001 (2)0.0013 (19)
C70.036 (2)0.024 (2)0.060 (3)0.0062 (19)0.002 (2)0.003 (2)
C80.046 (2)0.0224 (17)0.049 (2)0.001 (2)0.000 (2)0.0035 (16)
C90.047 (3)0.022 (2)0.049 (3)0.006 (2)0.004 (2)0.0032 (19)
C100.034 (3)0.022 (2)0.043 (3)0.0023 (17)0.0053 (19)0.0008 (17)
C110.0305 (17)0.0183 (15)0.040 (2)0.002 (2)0.004 (2)0.0004 (14)
C120.054 (3)0.0230 (18)0.085 (3)0.001 (2)0.005 (3)0.010 (2)
C130.062 (4)0.031 (4)0.085 (5)0.013 (3)0.003 (4)0.010 (3)
C140.097 (6)0.066 (5)0.091 (6)0.013 (4)0.012 (4)0.020 (4)
C150.095 (6)0.061 (5)0.102 (6)0.006 (4)0.015 (5)0.001 (4)
C13'0.092 (8)0.068 (7)0.092 (8)0.002 (5)0.011 (5)0.008 (5)
C14'0.088 (7)0.075 (7)0.091 (7)0.001 (5)0.008 (5)0.015 (5)
C15'0.070 (6)0.048 (6)0.075 (6)0.007 (4)0.002 (5)0.007 (4)
Cl10.0723 (9)0.0795 (10)0.0488 (7)0.0325 (8)0.0097 (7)0.0036 (7)
O30.088 (5)0.075 (5)0.095 (5)0.031 (4)0.004 (4)0.003 (4)
O40.169 (8)0.154 (8)0.157 (8)0.000 (5)0.014 (5)0.012 (5)
O50.105 (6)0.110 (6)0.091 (5)0.033 (4)0.002 (4)0.021 (4)
O60.142 (8)0.159 (8)0.157 (8)0.004 (5)0.012 (5)0.004 (5)
O3'0.076 (6)0.082 (6)0.087 (6)0.019 (4)0.002 (4)0.001 (4)
O4'0.137 (8)0.151 (8)0.137 (8)0.011 (5)0.013 (5)0.013 (5)
O5'0.169 (9)0.151 (8)0.173 (9)0.002 (5)0.002 (5)0.011 (5)
O6'0.072 (5)0.098 (6)0.082 (5)0.022 (4)0.026 (4)0.008 (4)
Geometric parameters (Å, º) top
Cu1—N11.939 (4)C10—C1i1.444 (6)
Cu1—N21.945 (4)C12—C15'1.467 (8)
Cu1—O1i1.954 (3)C12—C14'1.468 (8)
Cu1—O11.964 (3)C12—C131.471 (7)
Cu1—O22.707 (5)C12—C141.482 (7)
O1—C111.338 (4)C12—C151.482 (8)
O1—Cu1i1.954 (3)C12—C13'1.489 (9)
O2—H2B0.82 (2)C13—H13A0.9600
O2—H2A0.81 (2)C13—H13B0.9600
N1—C51.282 (6)C13—H13C0.9600
N1—C41.481 (6)C14—H14A0.9600
N2—C11.291 (6)C14—H14B0.9600
N2—C21.494 (6)C14—H14C0.9600
C1—C10i1.444 (6)C15—H15A0.9600
C1—H10.9300C15—H15B0.9600
C2—C31.480 (7)C15—H15C0.9600
C2—H2A'0.9700C13'—H13D0.9600
C2—H2B'0.9700C13'—H13E0.9600
C3—C41.516 (7)C13'—H13F0.9600
C3—H3A0.9700C14'—H14D0.9600
C3—H3B0.9700C14'—H14E0.9600
C4—H4A0.9700C14'—H14F0.9600
C4—H4B0.9700C15'—H15D0.9600
C5—C61.435 (6)C15'—H15E0.9600
C5—H50.9300C15'—H15F0.9600
C6—C71.411 (6)Cl1—O51.421 (6)
C6—C111.418 (6)Cl1—O31.421 (6)
C7—C81.372 (7)Cl1—O6'1.422 (7)
C7—H70.9300Cl1—O61.422 (7)
C8—C91.378 (7)Cl1—O3'1.426 (7)
C8—C121.525 (5)Cl1—O5'1.431 (7)
C9—C101.403 (6)Cl1—O4'1.462 (8)
C9—H90.9300Cl1—O41.472 (8)
C10—C111.395 (7)
N1—Cu1—N297.38 (14)C13—C12—C14107.7 (6)
N1—Cu1—O1i163.64 (15)C13—C12—C15109.2 (6)
N2—Cu1—O1i94.27 (13)C14—C12—C15106.5 (6)
N1—Cu1—O193.91 (13)C15'—C12—C13'106.4 (7)
N2—Cu1—O1168.30 (15)C14'—C12—C13'107.1 (7)
O1i—Cu1—O175.33 (11)C15'—C12—C8115.3 (7)
C11—O1—Cu1i127.5 (3)C14'—C12—C8109.8 (8)
C11—O1—Cu1125.6 (3)C13—C12—C8114.4 (5)
Cu1i—O1—Cu1104.28 (11)C14—C12—C8109.1 (6)
H2B—O2—H2A125 (8)C15—C12—C8109.7 (6)
C5—N1—C4116.5 (4)C13'—C12—C8109.3 (8)
C5—N1—Cu1122.8 (3)C12—C13—H13A109.5
C4—N1—Cu1120.3 (3)C12—C13—H13B109.5
C1—N2—C2113.0 (4)H13A—C13—H13B109.5
C1—N2—Cu1122.9 (3)C12—C13—H13C109.5
C2—N2—Cu1124.1 (3)H13A—C13—H13C109.5
N2—C1—C10i128.3 (4)H13B—C13—H13C109.5
N2—C1—H1115.9C12—C14—H14A109.5
C10i—C1—H1115.9C12—C14—H14B109.5
C3—C2—N2114.7 (4)H14A—C14—H14B109.5
C3—C2—H2A'108.6C12—C14—H14C109.5
N2—C2—H2A'108.6H14A—C14—H14C109.5
C3—C2—H2B'108.6H14B—C14—H14C109.5
N2—C2—H2B'108.6C12—C15—H15A109.5
H2A'—C2—H2B'107.6C12—C15—H15B109.5
C2—C3—C4112.8 (5)H15A—C15—H15B109.5
C2—C3—H3A109.0C12—C15—H15C109.5
C4—C3—H3A109.0H15A—C15—H15C109.5
C2—C3—H3B109.0H15B—C15—H15C109.5
C4—C3—H3B109.0C12—C13'—H13D109.5
H3A—C3—H3B107.8C12—C13'—H13E109.5
N1—C4—C3109.5 (4)H13D—C13'—H13E109.5
N1—C4—H4A109.8C12—C13'—H13F109.5
C3—C4—H4A109.8H13D—C13'—H13F109.5
N1—C4—H4B109.8H13E—C13'—H13F109.5
C3—C4—H4B109.8C12—C14'—H14D109.5
H4A—C4—H4B108.2C12—C14'—H14E109.5
N1—C5—C6127.7 (4)H14D—C14'—H14E109.5
N1—C5—H5116.1C12—C14'—H14F109.5
C6—C5—H5116.1H14D—C14'—H14F109.5
C7—C6—C11119.2 (4)H14E—C14'—H14F109.5
C7—C6—C5115.3 (4)C12—C15'—H15D109.5
C11—C6—C5125.6 (4)C12—C15'—H15E109.5
C8—C7—C6122.8 (4)H15D—C15'—H15E109.5
C8—C7—H7118.6C12—C15'—H15F109.5
C6—C7—H7118.6H15D—C15'—H15F109.5
C7—C8—C9117.2 (3)H15E—C15'—H15F109.5
C7—C8—C12121.5 (5)O5—Cl1—O3112.1 (6)
C9—C8—C12121.3 (5)O5—Cl1—O6111.6 (6)
C8—C9—C10122.6 (4)O3—Cl1—O6108.8 (7)
C8—C9—H9118.7O6'—Cl1—O3'111.6 (6)
C10—C9—H9118.7O6'—Cl1—O5'108.9 (7)
C11—C10—C9120.2 (4)O3'—Cl1—O5'110.5 (6)
C11—C10—C1i124.9 (4)O6'—Cl1—O4'109.0 (6)
C9—C10—C1i114.9 (4)O3'—Cl1—O4'109.7 (6)
O1—C11—C10121.7 (4)O5'—Cl1—O4'107.0 (7)
O1—C11—C6120.2 (4)O5—Cl1—O4106.3 (6)
C10—C11—C6118.0 (3)O3—Cl1—O4110.5 (6)
C15'—C12—C14'108.7 (7)O6—Cl1—O4107.4 (6)
N1—Cu1—O1—C1123.1 (3)C5—C6—C7—C8178.0 (5)
N2—Cu1—O1—C11141.7 (7)C6—C7—C8—C92.3 (7)
O1i—Cu1—O1—C11169.4 (3)C6—C7—C8—C12179.9 (5)
N1—Cu1—O1—Cu1i174.27 (14)C7—C8—C9—C101.4 (7)
N2—Cu1—O1—Cu1i21.0 (8)C12—C8—C9—C10178.9 (5)
O1i—Cu1—O1—Cu1i6.78 (17)C8—C9—C10—C110.9 (8)
N2—Cu1—N1—C5163.2 (4)C8—C9—C10—C1i178.9 (4)
O1i—Cu1—N1—C561.8 (7)Cu1i—O1—C11—C103.0 (5)
O1—Cu1—N1—C513.7 (4)Cu1—O1—C11—C10161.7 (3)
N2—Cu1—N1—C410.2 (4)Cu1i—O1—C11—C6177.9 (3)
O1i—Cu1—N1—C4124.9 (5)Cu1—O1—C11—C619.3 (5)
O1—Cu1—N1—C4172.9 (3)C9—C10—C11—O1178.7 (4)
N1—Cu1—N2—C1173.9 (4)C1i—C10—C11—O11.5 (7)
O1i—Cu1—N2—C15.4 (4)C9—C10—C11—C62.3 (6)
O1—Cu1—N2—C121.5 (10)C1i—C10—C11—C6177.5 (5)
N1—Cu1—N2—C27.4 (5)C7—C6—C11—O1179.5 (4)
O1i—Cu1—N2—C2175.8 (5)C5—C6—C11—O10.7 (7)
O1—Cu1—N2—C2157.3 (7)C7—C6—C11—C101.4 (7)
C2—N2—C1—C10i178.0 (5)C5—C6—C11—C10179.8 (5)
Cu1—N2—C1—C10i3.2 (7)C7—C8—C12—C15'172.3 (8)
C1—N2—C2—C3163.5 (5)C9—C8—C12—C15'5.1 (9)
Cu1—N2—C2—C315.3 (8)C7—C8—C12—C14'64.5 (9)
N2—C2—C3—C459.5 (7)C9—C8—C12—C14'118.0 (8)
C5—N1—C4—C3125.1 (4)C7—C8—C12—C137.0 (8)
Cu1—N1—C4—C348.7 (5)C9—C8—C12—C13175.5 (6)
C2—C3—C4—N177.9 (6)C7—C8—C12—C14127.7 (7)
C4—N1—C5—C6175.2 (5)C9—C8—C12—C1454.8 (7)
Cu1—N1—C5—C61.6 (7)C7—C8—C12—C15116.1 (7)
N1—C5—C6—C7169.8 (5)C9—C8—C12—C1561.4 (8)
N1—C5—C6—C119.0 (9)C7—C8—C12—C13'52.6 (9)
C11—C6—C7—C80.9 (8)C9—C8—C12—C13'124.9 (8)
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···O2ii0.82 (2)2.07 (4)2.821 (6)153 (8)
O2—H2A···O30.81 (2)2.26 (3)2.806 (8)125 (2)
O2—H2A···O30.81 (2)2.49 (4)2.947 (10)117 (3)
O2—H2A···N10.81 (2)2.55 (3)3.197 (6)138 (3)
Symmetry code: (ii) y1, x+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C30H38N4O2)(H2O)2](ClO4)2
Mr848.66
Crystal system, space groupTetragonal, P421c
Temperature (K)296
a, c (Å)18.9013 (4), 9.9174 (4)
V3)3543.08 (18)
Z4
Radiation typeMo Kα
µ (mm1)1.42
Crystal size (mm)0.38 × 0.36 × 0.32
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.615, 0.660
No. of measured, independent and
observed [I > 2σ(I)] reflections
19006, 3489, 2942
Rint0.021
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.115, 1.02
No. of reflections3489
No. of parameters298
No. of restraints125
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.33
Absolute structureFlack (1983), 1527 Friedel pairs
Absolute structure parameter0.31 (3)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N11.939 (4)Cu1—O11.964 (3)
Cu1—N21.945 (4)Cu1—O22.707 (5)
Cu1—O1i1.954 (3)
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···O2ii0.82 (2)2.07 (4)2.821 (6)153 (8)
O2—H2A···O30.81 (2)2.26 (3)2.806 (8)125 (2)
O2—H2A···O3'0.81 (2)2.49 (4)2.947 (10)117 (3)
O2—H2A···N10.81 (2)2.55 (3)3.197 (6)138 (3)
Symmetry code: (ii) y1, x+1, z+1.
 

Acknowledgements

The authors thank the Science and Technology Project of Chongqing Municipal Education Commission (KJ071208) for support.

References

First citationBai, J.-L., Zhou, H., Pan, Z.-Q. & Meng, X.-G. (2007). Acta Cryst. E63, m2641.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, L., Zhou, H., Pan, Z.-Q., Hu, X.-L. & Liu, B. (2005). Acta Cryst. E61, m1467–m1469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLindoy, F. L., Meehan, V. G. & Svenstrup, N. (1998). Synthesis, pp. 1029–1032.  CrossRef Google Scholar
First citationMohanta, S., Nanda, M. K., Werner, R., Haase, W., Mukherjee, A. K., Dutta, S. K. & Nag, K. (1997). Inorg. Chem. 36, 4656-4664.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationNanda, K. K., Venkatsubramanian, K., Majumdar, D. & Nag, K. (1994). Inorg. Chem. 33, 1581–1582.  CSD CrossRef CAS Web of Science Google Scholar
First citationPilkington, N. H. & Robson, R. (1970). Aust. J. Chem. 23, 2225–2236.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThompson, I. K., Mandal, S. K., Tandon, S. S., Bridson, J. N. & Park, M. K. (1996). Inorg. Chem. 35, 3117–3125.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationZhou, H., Peng, Z. H., Pan, Z. Q., Liu, B. & Liu, Y. Q. (2005). J. Coord. Chem. 58, 443–451.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds