metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chloridobis(4-pyridylmethyl 1H-pyrrole-2-carboxyl­ate-κN)zinc

aTianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China, and bAgro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, People's Republic of China
*Correspondence e-mail: tjyinzm@yahoo.com.cn

(Received 19 December 2011; accepted 11 January 2012; online 24 February 2012)

In the title mol­ecule, [ZnCl2(C11H10N2O2)2], the ZnII ion, situated on a twofold axis, is in a distorted tetra­hedral coordination environment formed by two chloride anions and two pyridine N atoms of the two organic ligands. In the pyrrole-2-carboxyl­ate unit, the pyrrole N—H group and the carbonyl group point approximately in the same direction. The dihedral angle between the two pyridine rings is 54.8 (3)°. The complex mol­ecules are connected into chains extending along [101] by N—H⋯Cl hydrogen bonds. The chains are further assembled into (-101) layers by C—H⋯O and C—H⋯Cl inter­actions.

Related literature

For the hydrogen-bonded assemblies of pyrrole-based structures, see: Wang & Yin (2007[Wang, W.-Y. & Yin, Z.-M. (2007). Acta Cryst. E63, o2737-o2738.]); Yin & Li (2006[Yin, Z. & Li, Z. (2006). Tetrahedron Lett. 47, 7875-7879.]); Cui et al. (2009[Cui, Y., Yin, Z., Dong, L. & He, J. (2009). J. Mol. Struct. 938, 322-327.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C11H10N2O2)2]

  • Mr = 540.69

  • Monoclinic, C 2/c

  • a = 27.604 (14) Å

  • b = 6.205 (3) Å

  • c = 16.087 (8) Å

  • β = 120.309 (6)°

  • V = 2379 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.29 mm−1

  • T = 296 K

  • 0.26 × 0.20 × 0.14 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.727, Tmax = 1.000

  • 6100 measured reflections

  • 2098 independent reflections

  • 1823 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.069

  • S = 1.06

  • 2098 reflections

  • 150 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Cl1i 0.86 2.57 3.306 (3) 144
C3—H3⋯Cl1ii 0.93 2.75 3.495 (3) 138
C4—H4⋯O1iii 0.93 2.54 3.354 (3) 146
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) x, y+1, z; (iii) [-x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z+1].

Data collection: SMART (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In our earlier works, we have reported the hydrogen-bonded assemblies of 4-pyridylmethyl 1H-pyrrole-2-carboxylate (Wang & Yin, 2007) and some other pyrrole-based compounds (Yin & Li, 2006; Cui et al. 2009) in the solid state. Combination of coordination bonding and hydrogen bonding is an effective strategy for the generation of supramolecular networks. Continuing our study, herein we report the crystal structure of the complex obtained with 4-pyridylmethyl-1H-pyrrole-2-carboxylate and ZnCl2.

A perspective view of the title compound with atomic labeling is shown in Fig. 1. The complex consists of one ZnCl2 and two ligand molecules, in which both the pyrrole-2-carboxylate moieties adopted syn conformation with the carbonyl group arranged in the same direction as the adjacent pyrrole N—H group. In the complex, the dihedral angle between the two pyridine rings is 54.8 (3)°. The complex molecules assemble into layer structrue through N—H···Cl, C—H···O and C—H···Cl hydrogen bonds (Fig. 2).

Related literature top

For the hydrogen- bonded assemblies of pyrrole-based compounds, see: Wang & Yin (2007); Yin &Li (2006); Cui et al. (2009).

Experimental top

The methanol solution of ZnCl2 (0.1 M, 5 mL) was layered on CHCl3 solution of 4-pyridylmethyl 1H-pyrrole-2-carboxylate (0.1 M, 10 mL) and then evaporated to give colorless crystals of the title compound in about 70% yield.

Refinement top

All H atoms were placed in calculated positions (C—H = 0.93 -0.97 Å; N-H = 0.86 Å) and refined as riding on their carrier atoms with Uiso(H) = 1.2 Ueq(C, N).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids shown at the 30% probability level. The atom with the 'A' label were generated by the symmetry operation -x,y,1/2-z.
[Figure 2] Fig. 2. The layer of the title molecules assembled by intermolecular hydrogen bonds (hydrogen bonds are shown as dashed lines).
Dichloridobis(pyridin-4-ylmethyl 1H-pyrrole-2-carboxylate-κN)zinc top
Crystal data top
[ZnCl2(C11H10N2O2)2]F(000) = 1104
Mr = 540.69Dx = 1.510 Mg m3
Monoclinic, C2/cMelting point: 438 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 27.604 (14) ÅCell parameters from 2747 reflections
b = 6.205 (3) Åθ = 2.5–26.8°
c = 16.087 (8) ŵ = 1.29 mm1
β = 120.309 (6)°T = 296 K
V = 2379 (2) Å3Block, colourless
Z = 40.26 × 0.20 × 0.14 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2098 independent reflections
Radiation source: fine-focus sealed tube1823 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
phi and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 3232
Tmin = 0.727, Tmax = 1.000k = 75
6100 measured reflectionsl = 1719
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0441P)2 + 0.3857P]
where P = (Fo2 + 2Fc2)/3
2098 reflections(Δ/σ)max < 0.001
150 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[ZnCl2(C11H10N2O2)2]V = 2379 (2) Å3
Mr = 540.69Z = 4
Monoclinic, C2/cMo Kα radiation
a = 27.604 (14) ŵ = 1.29 mm1
b = 6.205 (3) ÅT = 296 K
c = 16.087 (8) Å0.26 × 0.20 × 0.14 mm
β = 120.309 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2098 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1823 reflections with I > 2σ(I)
Tmin = 0.727, Tmax = 1.000Rint = 0.018
6100 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.06Δρmax = 0.17 e Å3
2098 reflectionsΔρmin = 0.27 e Å3
150 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.41749 (4)0.25000.03878 (12)
Cl10.01743 (2)0.23365 (8)0.14847 (3)0.05019 (15)
O10.30330 (6)1.1722 (3)0.65205 (11)0.0654 (4)
O20.24547 (5)0.8880 (2)0.60656 (9)0.0495 (3)
N10.06598 (6)0.6110 (2)0.33725 (10)0.0395 (3)
N20.37959 (7)0.9421 (3)0.81985 (12)0.0555 (5)
H20.39311.06630.81870.067*
C10.15031 (8)0.6615 (3)0.48714 (13)0.0481 (5)
H10.17540.60950.54830.058*
C20.10377 (8)0.5440 (3)0.42633 (14)0.0470 (5)
H2A0.09800.41220.44750.056*
C30.07520 (7)0.8013 (3)0.30828 (13)0.0405 (4)
H30.04940.85020.24690.049*
C40.12083 (8)0.9263 (3)0.36502 (14)0.0427 (4)
H40.12581.05690.34200.051*
C50.15987 (7)0.8576 (3)0.45746 (13)0.0394 (4)
C60.20924 (8)0.9974 (3)0.51816 (14)0.0501 (5)
H6A0.22931.02850.48440.060*
H6B0.19681.13280.53130.060*
C70.29241 (8)0.9944 (4)0.66858 (13)0.0444 (4)
C80.32739 (8)0.8683 (3)0.75342 (13)0.0460 (4)
C90.40637 (10)0.7894 (5)0.88712 (16)0.0712 (7)
H90.44270.79940.93920.085*
C100.37168 (12)0.6193 (5)0.86637 (18)0.0767 (8)
H100.37960.49300.90200.092*
C110.32176 (10)0.6672 (4)0.78171 (16)0.0607 (5)
H110.29040.57840.75040.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03178 (17)0.03411 (18)0.03693 (18)0.0000.00734 (13)0.000
Cl10.0473 (3)0.0494 (3)0.0450 (3)0.0092 (2)0.0167 (2)0.0014 (2)
O10.0573 (9)0.0543 (9)0.0588 (9)0.0232 (8)0.0102 (8)0.0022 (8)
O20.0393 (7)0.0473 (8)0.0451 (7)0.0124 (6)0.0089 (6)0.0012 (6)
N10.0343 (8)0.0366 (8)0.0373 (8)0.0042 (6)0.0104 (7)0.0007 (6)
N20.0416 (9)0.0756 (13)0.0404 (9)0.0067 (9)0.0142 (8)0.0053 (8)
C10.0428 (10)0.0460 (11)0.0378 (10)0.0054 (9)0.0071 (9)0.0065 (9)
C20.0450 (11)0.0395 (11)0.0426 (10)0.0090 (8)0.0118 (9)0.0066 (8)
C30.0382 (10)0.0378 (10)0.0368 (9)0.0010 (8)0.0124 (8)0.0037 (8)
C40.0404 (10)0.0370 (10)0.0457 (10)0.0039 (8)0.0181 (9)0.0047 (8)
C50.0341 (9)0.0381 (9)0.0416 (10)0.0050 (8)0.0159 (8)0.0028 (8)
C60.0425 (11)0.0455 (11)0.0460 (11)0.0106 (9)0.0103 (9)0.0023 (9)
C70.0357 (10)0.0500 (11)0.0417 (10)0.0097 (9)0.0152 (9)0.0063 (9)
C80.0386 (10)0.0565 (12)0.0412 (10)0.0040 (9)0.0190 (9)0.0036 (9)
C90.0527 (13)0.112 (2)0.0409 (12)0.0165 (15)0.0176 (11)0.0113 (13)
C100.0786 (18)0.092 (2)0.0623 (15)0.0227 (16)0.0379 (14)0.0292 (14)
C110.0610 (13)0.0659 (14)0.0588 (13)0.0012 (12)0.0328 (12)0.0075 (11)
Geometric parameters (Å, º) top
Zn1—N12.0367 (15)C2—H2A0.9300
Zn1—N1i2.0367 (15)C3—C41.364 (3)
Zn1—Cl1i2.2347 (9)C3—H30.9300
Zn1—Cl12.2347 (9)C4—C51.392 (3)
O1—C71.208 (3)C4—H40.9300
O2—C71.344 (2)C5—C61.490 (3)
O2—C61.431 (2)C6—H6A0.9700
N1—C31.340 (2)C6—H6B0.9700
N1—C21.344 (2)C7—C81.441 (3)
N2—C91.345 (3)C8—C111.364 (3)
N2—C81.369 (3)C9—C101.349 (4)
N2—H20.8600C9—H90.9300
C1—C21.368 (3)C10—C111.396 (3)
C1—C51.380 (3)C10—H100.9300
C1—H10.9300C11—H110.9300
N1—Zn1—N1i107.76 (9)C1—C5—C4117.34 (17)
N1—Zn1—Cl1i104.16 (6)C1—C5—C6123.90 (17)
N1i—Zn1—Cl1i110.92 (6)C4—C5—C6118.76 (17)
N1—Zn1—Cl1110.92 (6)O2—C6—C5108.94 (16)
N1i—Zn1—Cl1104.16 (6)O2—C6—H6A109.9
Cl1i—Zn1—Cl1118.61 (4)C5—C6—H6A109.9
C7—O2—C6115.69 (15)O2—C6—H6B109.9
C3—N1—C2117.51 (15)C5—C6—H6B109.9
C3—N1—Zn1122.71 (12)H6A—C6—H6B108.3
C2—N1—Zn1119.71 (12)O1—C7—O2122.62 (18)
C9—N2—C8109.1 (2)O1—C7—C8125.59 (17)
C9—N2—H2125.4O2—C7—C8111.77 (17)
C8—N2—H2125.4C11—C8—N2107.33 (19)
C2—C1—C5119.81 (18)C11—C8—C7132.68 (19)
C2—C1—H1120.1N2—C8—C7119.74 (18)
C5—C1—H1120.1N2—C9—C10108.6 (2)
N1—C2—C1122.78 (17)N2—C9—H9125.7
N1—C2—H2A118.6C10—C9—H9125.7
C1—C2—H2A118.6C9—C10—C11107.6 (2)
N1—C3—C4122.79 (17)C9—C10—H10126.2
N1—C3—H3118.6C11—C10—H10126.2
C4—C3—H3118.6C8—C11—C10107.3 (2)
C3—C4—C5119.77 (17)C8—C11—H11126.3
C3—C4—H4120.1C10—C11—H11126.3
C5—C4—H4120.1
N1i—Zn1—N1—C334.15 (12)C7—O2—C6—C5179.31 (16)
Cl1i—Zn1—N1—C3152.03 (13)C1—C5—C6—O24.0 (3)
Cl1—Zn1—N1—C379.27 (15)C4—C5—C6—O2175.71 (16)
N1i—Zn1—N1—C2149.00 (17)C6—O2—C7—O11.0 (3)
Cl1i—Zn1—N1—C231.12 (15)C6—O2—C7—C8177.45 (16)
Cl1—Zn1—N1—C297.58 (15)C9—N2—C8—C111.1 (2)
C3—N1—C2—C10.1 (3)C9—N2—C8—C7173.90 (18)
Zn1—N1—C2—C1177.12 (16)O1—C7—C8—C11178.6 (2)
C5—C1—C2—N10.1 (3)O2—C7—C8—C110.2 (3)
C2—N1—C3—C40.2 (3)O1—C7—C8—N25.1 (3)
Zn1—N1—C3—C4176.75 (14)O2—C7—C8—N2173.28 (17)
N1—C3—C4—C50.5 (3)C8—N2—C9—C101.4 (3)
C2—C1—C5—C40.2 (3)N2—C9—C10—C111.2 (3)
C2—C1—C5—C6179.95 (19)N2—C8—C11—C100.4 (2)
C3—C4—C5—C10.5 (3)C7—C8—C11—C10173.7 (2)
C3—C4—C5—C6179.77 (18)C9—C10—C11—C80.5 (3)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl1ii0.862.573.306 (3)144
C3—H3···Cl1iii0.932.753.495 (3)138
C4—H4···O1iv0.932.543.354 (3)146
Symmetry codes: (ii) x+1/2, y+3/2, z+1; (iii) x, y+1, z; (iv) x+1/2, y+5/2, z+1.

Experimental details

Crystal data
Chemical formula[ZnCl2(C11H10N2O2)2]
Mr540.69
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)27.604 (14), 6.205 (3), 16.087 (8)
β (°) 120.309 (6)
V3)2379 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.29
Crystal size (mm)0.26 × 0.20 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.727, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6100, 2098, 1823
Rint0.018
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.069, 1.06
No. of reflections2098
No. of parameters150
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.27

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl1i0.862.573.306 (3)144
C3—H3···Cl1ii0.932.753.495 (3)138
C4—H4···O1iii0.932.543.354 (3)146
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y+1, z; (iii) x+1/2, y+5/2, z+1.
 

Acknowledgements

We sincerely thank the Natural Science Foundation of China for financial support (NSFC Nos. 20702038 and 21172174)

References

First citationBruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCui, Y., Yin, Z., Dong, L. & He, J. (2009). J. Mol. Struct. 938, 322–327.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, W.-Y. & Yin, Z.-M. (2007). Acta Cryst. E63, o2737–o2738.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYin, Z. & Li, Z. (2006). Tetrahedron Lett. 47, 7875–7879.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds