organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 4-[(5-chloro­pyrimidin-2-yl)carbamo­yl]benzoate

aDepartment of Chemistry, Chung-Yuan Christian University, Chung-Li, Taiwan
*Correspondence e-mail: jdchen@cycu.edu.tw

(Received 24 June 2011; accepted 27 June 2011; online 2 July 2011)

Mol­ecules of the title compound, C13H10ClN3O3, form centrosymmetric dimers via inter­molecular N—H⋯N hydrogen bonds generating an R22(8) motif. The dimers are further connected through an O⋯Cl—C halogen bond [O⋯Cl = 3.233 (1) Å and O⋯Cl—C = 167.33 (1)°] into a chain along [110]. The secondary amide group adopts a cis conformation. Weak C—H⋯N hydrogen bonds among the methyl benzoate and pyrimidyl rings are also observed in the crystal structure.

Related literature

For silver complexes of the title compound, see: Wu et al. (2011[Wu, C.-J., Sie, M.-J., Hsiao, H.-L. & Chen, J.-D. (2011). CrystEngComm, 13, 4121-4130.]). For the conformation of the amide group in similar compounds, see: Forbes et al. (2001[Forbes, C. C., Beatty, A. M. & Smith, B. D. (2001). Org. Lett. 3, 3595-3598.]); Oertli et al. (1992[Oertli, G., Meyer, W. R., Suter, U. W., Joho, F. B., Gramlich, V. & Petter, W. (1992). Helv. Chim. Acta, 75, 184-189.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10ClN3O3

  • Mr = 291.69

  • Triclinic, [P \overline 1]

  • a = 5.9068 (8) Å

  • b = 7.3378 (9) Å

  • c = 15.816 (4) Å

  • α = 78.259 (14)°

  • β = 82.030 (13)°

  • γ = 67.986 (10)°

  • V = 620.78 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 295 K

  • 0.5 × 0.4 × 0.3 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: ψ scan (XSCANS; Siemens, 1995[Siemens (1995). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.888, Tmax = 0.918

  • 2811 measured reflections

  • 2140 independent reflections

  • 1715 reflections with I > 2σ(I)

  • Rint = 0.026

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.098

  • S = 1.02

  • 2140 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯N2i 0.86 2.10 2.959 (2) 176
C13—H13C⋯N1ii 0.96 2.57 3.339 (2) 138
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x+1, -y+1, -z+1.

Data collection: XSCANS (Siemens, 1995[Siemens (1995). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The silver(I) complex containg methyl 4-(5-chloropyrimidin-2-ylcarbamoyl)benzoate ligand has been reported, which shows a two-dimensional network (Wu et al., 2011). Within this project the crystal structure of the title compound was determined (Fig. 1). In its crystal structure intermolecular N—H···N hydrogen bonds are found (Table 1) and the molecules are also interlinked through C—Cl···O interactions [3.233 (1) Å and 167.33 (1)°]. Weak C—H···N hydrogen bonds among the methyl benzoate and pyrimidyl rings are also observed in the solid state (Fig. 2). In the crystal structure the amide group of the title compound adopts the cis conformation, which is in marked contrast to the trans conformation found in the Ag complex (Wu et al., 2011).

Related literature top

For silver complexes of the title compound, see: Wu et al. (2011). For the conformation of the amide group in similar compounds, see: Forbes et al. (2001); Oertli et al. (1992).

Experimental top

The title compound was prepared according to a published procedure (Wu et al., 2011). Block crystals suitable for X-ray crystallography were obtained by slow evaporation of the solvent from a solution of the title compound in methanol.

Refinement top

H atoms bound to C and N atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 - 0.96Å and N—H = 0.86 Å, and with Uiso(H) = 1.2 or 1.5 Ueq(C/N).

Computing details top

Data collection: XSCANS (Siemens, 1995); cell refinement: XSCANS (Siemens, 1995); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound wiFig. 1. Crystal structure of the title compound with atom labeling and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Partial packing diagram showing C—H···N and N—H···N hydrogen bonds and C—Cl···O interactions among the molecules, with atom labeling and displacement ellipsoids drawn at the 30% probability level. Symmetric code: (i) 1 - x, 2 - y, -z; (ii) 1 - x, 1 - y, 1 - z; (iii) 1 + x, 1 + y, z.
Methyl 4-[(5-chloropyrimidin-2-yl)carbamoyl]benzoate top
Crystal data top
C13H10ClN3O3Z = 2
Mr = 291.69F(000) = 300
Triclinic, P1Dx = 1.560 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9068 (8) ÅCell parameters from 28 reflections
b = 7.3378 (9) Åθ = 4.7–13.3°
c = 15.816 (4) ŵ = 0.32 mm1
α = 78.259 (14)°T = 295 K
β = 82.030 (13)°Block, colourless
γ = 67.986 (10)°0.5 × 0.4 × 0.3 mm
V = 620.78 (19) Å3
Data collection top
Siemens P4
diffractometer
1715 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 25.0°, θmin = 2.6°
ω scansh = 17
Absorption correction: ψ scan
(XSCANS; Siemens, 1995)
k = 88
Tmin = 0.888, Tmax = 0.918l = 1818
2811 measured reflections3 standard reflections every 97 reflections
2140 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.1938P]
where P = (Fo2 + 2Fc2)/3
2140 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C13H10ClN3O3γ = 67.986 (10)°
Mr = 291.69V = 620.78 (19) Å3
Triclinic, P1Z = 2
a = 5.9068 (8) ÅMo Kα radiation
b = 7.3378 (9) ŵ = 0.32 mm1
c = 15.816 (4) ÅT = 295 K
α = 78.259 (14)°0.5 × 0.4 × 0.3 mm
β = 82.030 (13)°
Data collection top
Siemens P4
diffractometer
1715 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XSCANS; Siemens, 1995)
Rint = 0.026
Tmin = 0.888, Tmax = 0.9183 standard reflections every 97 reflections
2811 measured reflections intensity decay: none
2140 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.02Δρmax = 0.17 e Å3
2140 reflectionsΔρmin = 0.21 e Å3
182 parameters
Special details top

Experimental. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.10131 (12)0.38338 (9)0.11742 (4)0.0550 (2)
C10.3775 (4)0.5274 (3)0.18741 (12)0.0397 (5)
H1A0.37820.42870.23490.048*
C20.2528 (4)0.5446 (3)0.11729 (12)0.0367 (5)
C30.2556 (4)0.6923 (3)0.04841 (13)0.0431 (5)
H3A0.17460.70550.00010.052*
C40.4859 (4)0.7890 (3)0.12062 (11)0.0325 (4)
C50.7163 (4)0.9541 (3)0.18183 (12)0.0347 (4)
C60.6516 (4)0.8916 (3)0.27530 (11)0.0318 (4)
C70.8388 (4)0.8014 (3)0.33151 (12)0.0359 (5)
H7A1.00070.77630.31040.043*
C80.7837 (4)0.7492 (3)0.41870 (12)0.0363 (5)
H8A0.90910.68810.45620.044*
C90.5424 (4)0.7875 (3)0.45062 (11)0.0311 (4)
C100.3554 (4)0.8838 (3)0.39472 (12)0.0347 (4)
H10A0.19300.91410.41620.042*
C110.4102 (4)0.9345 (3)0.30739 (12)0.0354 (5)
H11A0.28480.99760.27010.043*
C120.4893 (4)0.7203 (3)0.54431 (12)0.0331 (4)
C130.1836 (4)0.6842 (3)0.65241 (12)0.0411 (5)
H13A0.01940.68540.65680.062*
H13B0.19250.77300.68780.062*
H13C0.29320.55160.67180.062*
N10.4973 (3)0.6482 (3)0.18929 (10)0.0408 (4)
N20.3709 (3)0.8174 (3)0.04906 (10)0.0393 (4)
N30.6073 (3)0.9194 (2)0.11818 (10)0.0378 (4)
H3B0.61610.99100.06840.045*
O10.8550 (3)1.0460 (3)0.16089 (9)0.0527 (4)
O20.6419 (3)0.6464 (3)0.59689 (9)0.0512 (4)
O30.2527 (3)0.7486 (2)0.56330 (8)0.0406 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0698 (4)0.0616 (4)0.0504 (3)0.0436 (3)0.0186 (3)0.0026 (3)
C10.0561 (14)0.0391 (11)0.0274 (10)0.0232 (10)0.0099 (9)0.0038 (8)
C20.0417 (12)0.0423 (11)0.0315 (10)0.0212 (10)0.0039 (9)0.0052 (8)
C30.0539 (13)0.0585 (13)0.0267 (10)0.0312 (11)0.0121 (9)0.0006 (9)
C40.0379 (11)0.0393 (10)0.0220 (9)0.0168 (9)0.0034 (8)0.0017 (7)
C50.0418 (11)0.0381 (11)0.0285 (10)0.0203 (9)0.0041 (8)0.0023 (8)
C60.0418 (11)0.0350 (10)0.0255 (9)0.0210 (9)0.0059 (8)0.0036 (8)
C70.0319 (11)0.0478 (12)0.0332 (10)0.0200 (9)0.0044 (8)0.0057 (8)
C80.0382 (11)0.0443 (12)0.0299 (10)0.0183 (9)0.0122 (8)0.0003 (8)
C90.0369 (11)0.0347 (10)0.0264 (9)0.0172 (9)0.0080 (8)0.0031 (7)
C100.0333 (11)0.0424 (11)0.0292 (10)0.0150 (9)0.0048 (8)0.0028 (8)
C110.0375 (12)0.0425 (11)0.0265 (10)0.0149 (9)0.0104 (8)0.0007 (8)
C120.0392 (12)0.0347 (10)0.0287 (10)0.0165 (9)0.0085 (9)0.0024 (8)
C130.0477 (13)0.0498 (12)0.0272 (10)0.0225 (10)0.0024 (9)0.0007 (9)
N10.0575 (11)0.0432 (10)0.0283 (9)0.0268 (9)0.0143 (8)0.0047 (7)
N20.0504 (11)0.0522 (11)0.0224 (8)0.0285 (9)0.0084 (7)0.0016 (7)
N30.0519 (11)0.0469 (10)0.0217 (8)0.0287 (9)0.0091 (7)0.0045 (7)
O10.0702 (11)0.0736 (11)0.0343 (8)0.0522 (10)0.0029 (7)0.0013 (7)
O20.0452 (9)0.0793 (11)0.0298 (8)0.0269 (8)0.0155 (7)0.0074 (7)
O30.0394 (8)0.0553 (9)0.0254 (7)0.0196 (7)0.0060 (6)0.0043 (6)
Geometric parameters (Å, º) top
Cl—C21.730 (2)C7—H7A0.9300
C1—N11.332 (3)C8—C91.387 (3)
C1—C21.374 (3)C8—H8A0.9300
C1—H1A0.9300C9—C101.390 (3)
C2—C31.375 (3)C9—C121.492 (3)
C3—N21.334 (3)C10—C111.382 (3)
C3—H3A0.9300C10—H10A0.9300
C4—N11.328 (2)C11—H11A0.9300
C4—N21.341 (2)C12—O21.206 (2)
C4—N31.387 (2)C12—O31.334 (2)
C5—O11.217 (2)C13—O31.446 (2)
C5—N31.378 (3)C13—H13A0.9600
C5—C61.497 (3)C13—H13B0.9600
C6—C111.385 (3)C13—H13C0.9600
C6—C71.391 (3)N3—H3B0.8600
C7—C81.381 (3)
N1—C1—C2121.82 (17)C8—C9—C10119.59 (17)
N1—C1—H1A119.1C8—C9—C12119.08 (17)
C2—C1—H1A119.1C10—C9—C12121.31 (17)
C1—C2—C3117.43 (19)C11—C10—C9120.16 (18)
C1—C2—Cl120.22 (15)C11—C10—H10A119.9
C3—C2—Cl122.34 (16)C9—C10—H10A119.9
N2—C3—C2122.04 (18)C10—C11—C6120.13 (18)
N2—C3—H3A119.0C10—C11—H11A119.9
C2—C3—H3A119.0C6—C11—H11A119.9
N1—C4—N2126.16 (18)O2—C12—O3123.57 (18)
N1—C4—N3119.57 (16)O2—C12—C9124.38 (19)
N2—C4—N3114.23 (16)O3—C12—C9112.05 (16)
O1—C5—N3118.93 (17)O3—C13—H13A109.5
O1—C5—C6120.70 (17)O3—C13—H13B109.5
N3—C5—C6120.25 (17)H13A—C13—H13B109.5
C11—C6—C7119.85 (17)O3—C13—H13C109.5
C11—C6—C5121.36 (17)H13A—C13—H13C109.5
C7—C6—C5118.62 (18)H13B—C13—H13C109.5
C8—C7—C6119.92 (19)C4—N1—C1116.57 (16)
C8—C7—H7A120.0C3—N2—C4115.95 (16)
C6—C7—H7A120.0C5—N3—C4131.10 (16)
C7—C8—C9120.30 (18)C5—N3—H3B114.4
C7—C8—H8A119.9C4—N3—H3B114.4
C9—C8—H8A119.9C12—O3—C13116.21 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···N2i0.862.102.959 (2)176
C13—H13C···N1ii0.962.573.339 (2)138
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H10ClN3O3
Mr291.69
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)5.9068 (8), 7.3378 (9), 15.816 (4)
α, β, γ (°)78.259 (14), 82.030 (13), 67.986 (10)
V3)620.78 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.5 × 0.4 × 0.3
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionψ scan
(XSCANS; Siemens, 1995)
Tmin, Tmax0.888, 0.918
No. of measured, independent and
observed [I > 2σ(I)] reflections
2811, 2140, 1715
Rint0.026
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.02
No. of reflections2140
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.21

Computer programs: XSCANS (Siemens, 1995), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···N2i0.862.102.959 (2)176
C13—H13C···N1ii0.962.573.339 (2)138
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

We are grateful to the National Science Council of the Republic of China for support.

References

First citationForbes, C. C., Beatty, A. M. & Smith, B. D. (2001). Org. Lett. 3, 3595–3598.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOertli, G., Meyer, W. R., Suter, U. W., Joho, F. B., Gramlich, V. & Petter, W. (1992). Helv. Chim. Acta, 75, 184–189.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1995). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWu, C.-J., Sie, M.-J., Hsiao, H.-L. & Chen, J.-D. (2011). CrystEngComm, 13, 4121–4130.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds