metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­aqua­(2,2′-bi­pyridine N,N′-dioxide-κ2O,O′)(5-nitro­benzene-1,3-di­carboxyl­ato-κO1)zinc(II)

aDepartment of Chemical Engineering, Wuhan University of Science and Engineering, Wuhan, Hubei 430073, People's Republic of China, and bSchool of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, People's Republic of China
*Correspondence e-mail: carpo1978@163.com

(Received 16 April 2009; accepted 24 April 2009; online 20 May 2009)

In the title compound, [Zn(C8H3NO6)(C10H8N2O2)(H2O)3], the ZnII ion is coordinated in a distorted octa­hedral geometry by three water mol­ecules, one O atom from a 5-nitro­benzene-1,3-dicarboxyl­ate ligand and two O atoms from a chelating 2,2′-bipyridine N,N′-dioxide ligand. An extensive network of O—H⋯O hydrogen bonds is formed between the water mol­ecules and the carboxyl­ate groups. C—H⋯O inter­actions are also present.

Related literature

For metal complexes containing the 2,2′-bipyridine-N,N′-dioxide ligand, see: Hill et al. (2004[Hill, R. J., Long, D. L., Turvey, M. S., Blake, A. J., Champness, N. R., Hubberstey, P., Wilson, C. & Schröder, M. (2004). Chem. Commun. pp. 1792-1793.]); Long et al. (2001[Long, D. L., Blake, A. J., Champness, N. R., Wilson, C. & Schröder, M. (2001). Angew. Chem. Int. Ed. 40, 2443-2447.]); Ma et al. (2003[Ma, B. Q., Sun, H. L. & Gao, S. (2003). Chem. Commun. pp. 2164-2165.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C8H3NO6)(C10H8N2O2)(H2O)3]

  • Mr = 516.72

  • Triclinic, [P \overline 1]

  • a = 8.3040 (14) Å

  • b = 10.7036 (18) Å

  • c = 11.6546 (19) Å

  • α = 87.217 (3)°

  • β = 88.436 (3)°

  • γ = 87.006 (3)°

  • V = 1032.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.26 mm−1

  • T = 294 K

  • 0.20 × 0.19 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.778, Tmax = 0.828

  • 6281 measured reflections

  • 3604 independent reflections

  • 2737 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.143

  • S = 1.05

  • 3604 reflections

  • 316 parameters

  • 15 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Selected bond lengths (Å)

O1—Zn1 2.094 (3)
O2—Zn1 2.144 (3)
O3—Zn1 2.043 (3)
O9—Zn1 2.125 (3)
O10—Zn1 2.067 (3)
O11—Zn1 2.054 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9A⋯O5i 0.82 (3) 2.08 (4) 2.773 (5) 143 (5)
O9—H9B⋯O4 0.83 (3) 1.83 (3) 2.635 (5) 164 (4)
O10—H10A⋯O6ii 0.81 (5) 1.96 (5) 2.735 (5) 161 (6)
O10—H10B⋯O6iii 0.82 (5) 2.03 (5) 2.702 (5) 139 (5)
O11—H11A⋯O2iv 0.82 (3) 1.95 (3) 2.687 (5) 149 (5)
O11—H11B⋯O5ii 0.83 (3) 1.87 (4) 2.692 (5) 169 (4)
C2—H2⋯O8v 0.93 2.59 3.229 (8) 126
C3—H3⋯O6vi 0.93 2.49 3.269 (7) 141
C4—H4⋯O3vii 0.93 2.46 3.358 (7) 162
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x, y, z-1; (iii) -x+1, -y+2, -z+2; (iv) -x+1, -y+1, -z+1; (v) -x+1, -y+2, -z+1; (vi) x-1, y, z-1; (vii) x-1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Herein we report the crystal structure of a novel compound, [Zn(C10H8N2O2)(C8H3NO6)(H2O)3](I). As shown in Fig.1, the central Zn atom is coordinated by three O atoms from three water molecules, one O atom from 5-nitrobenzene-1,3-dicarboxylate ligand and two O atoms from 2,2'-bipyridine-N,N'-dioxide ligand in a distorted octahedral geometry. The 2,2'-bipyridine-N,N'-dioxide coordinated to the Zn atom forms a seven-membered chalate ring. O1, O2, O3 and O11 atoms lie in the equatorial plane, with the O3—O1—O2—O11 torsional angle of 0.51°, while the Zn atom deviates from the equatorial plane by 0.026 Å. O9 and O10 atoms occupy the axial sites, with O9—Zn1—O10 angle of 173.04°) (distances to the equatorial plane are 2.143 and 2.040 Å). Among the distances of Zn—O, the distance of Zn(1)—O(2) is the longest, (see Table 2). The neighboring molecules in the crystal are linked by a series of O—H···O and C—H ···O intermolecular hydrogen bonds.

Related literature top

For metal complexes containing the 2,2'-bipyridine-N,N'-dioxide ligand, see: Hill et al. (2004); Long et al. (2001); Ma et al. (2003).

Experimental top

A mixture of ZnSO4(0.50 mmol),5-nitrobenzene-1,3-dicarboxylic acid (0.50 mmol), 2,2'-bipyridine-N,N'-dioxide (0.50 mmol), and H2O (3.00 ml), was placed in a Parr Teflon-lined stainless steel vessel (10 mL), and then the vessel was sealed and heated at 393 K for 3 days. After the mixture was slowly cooled to room temperature, several colourless crystals of the title compound were obtained.

Refinement top

H atoms of the water molecules were located in a difference Fourier map and refined with O—H distance restraints of 0.80 (2) Å,H···H distance restraints of 1.35 (4) Å and Uiso(H) = 1.5Ueq(O). H atoms bonded to C atoms were introduced at calculated positions and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and C–H distancess of 0.93 Å. The displacement parameters of N1 and O2 were restrained with the SIMU function of SHELXL-97.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure showing hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
Triaqua(2,2'-bipyridine N,N'-dioxide-κ2O,O')(5-nitrobenzene-1,3- dicarboxylato-κO1)zinc(II) top
Crystal data top
[Zn(C8H3NO6)(C10H8N2O2)(H2O)3]Z = 2
Mr = 516.72F(000) = 528
Triclinic, P1Dx = 1.661 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3040 (14) ÅCell parameters from 1831 reflections
b = 10.7036 (18) Åθ = 2.5–25.8°
c = 11.6546 (19) ŵ = 1.26 mm1
α = 87.217 (3)°T = 294 K
β = 88.436 (3)°Plate, colourless
γ = 87.006 (3)°0.20 × 0.19 × 0.15 mm
V = 1032.9 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3604 independent reflections
Radiation source: fine-focus sealed tube2737 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 1.8°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1212
Tmin = 0.778, Tmax = 0.828l = 1312
6281 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0678P)2]
where P = (Fo2 + 2Fc2)/3
3604 reflections(Δ/σ)max = 0.001
316 parametersΔρmax = 0.62 e Å3
15 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Zn(C8H3NO6)(C10H8N2O2)(H2O)3]γ = 87.006 (3)°
Mr = 516.72V = 1032.9 (3) Å3
Triclinic, P1Z = 2
a = 8.3040 (14) ÅMo Kα radiation
b = 10.7036 (18) ŵ = 1.26 mm1
c = 11.6546 (19) ÅT = 294 K
α = 87.217 (3)°0.20 × 0.19 × 0.15 mm
β = 88.436 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3604 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2737 reflections with I > 2σ(I)
Tmin = 0.778, Tmax = 0.828Rint = 0.075
6281 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05415 restraints
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.62 e Å3
3604 reflectionsΔρmin = 0.52 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1974 (7)0.7637 (5)0.4162 (4)0.0393 (13)
H10.28190.75300.36290.047*
C20.0764 (7)0.8456 (5)0.3923 (5)0.0501 (15)
H20.07900.89410.32390.060*
C30.0552 (7)0.8599 (5)0.4689 (5)0.0422 (14)
H30.14260.91460.45100.051*
C40.0514 (7)0.7907 (5)0.5715 (5)0.0419 (13)
H40.13650.79880.62450.050*
C50.0808 (6)0.7082 (4)0.5958 (4)0.0291 (11)
C60.0829 (6)0.6224 (4)0.6979 (4)0.0316 (11)
C70.0296 (7)0.5359 (5)0.7202 (5)0.0446 (14)
H70.11520.53220.67100.054*
C80.0185 (7)0.4531 (5)0.8157 (5)0.0467 (15)
H80.09460.39310.82980.056*
C90.1038 (7)0.4616 (5)0.8867 (5)0.0437 (14)
H90.11160.40740.95140.052*
C100.2200 (6)0.5500 (5)0.8659 (4)0.0383 (12)
H100.30510.55430.91550.046*
C110.6375 (6)0.7121 (4)0.8717 (4)0.0319 (11)
C120.6641 (6)0.8090 (4)0.9588 (4)0.0294 (11)
C130.6310 (6)0.7849 (4)1.0732 (4)0.0315 (12)
H130.59280.70741.09660.038*
C140.6522 (6)0.8719 (4)1.1562 (4)0.0279 (11)
C150.6128 (6)0.8387 (4)1.2805 (4)0.0313 (12)
C160.7084 (6)0.9882 (4)1.1206 (4)0.0308 (11)
H160.72291.04901.17320.037*
C170.7419 (6)1.0105 (4)1.0055 (4)0.0305 (11)
C180.7202 (6)0.9267 (5)0.9228 (4)0.0345 (12)
H180.74170.94690.84560.041*
N10.1998 (5)0.6958 (4)0.5163 (3)0.0334 (10)
N20.2069 (5)0.6291 (4)0.7726 (3)0.0337 (10)
N30.8039 (6)1.1326 (4)0.9671 (4)0.0534 (14)
O10.3113 (4)0.7178 (3)0.7539 (3)0.0333 (8)
O20.3271 (4)0.6146 (3)0.5377 (3)0.0321 (8)
O30.6489 (4)0.7466 (3)0.7662 (3)0.0352 (8)
O40.6108 (5)0.6041 (3)0.9116 (3)0.0420 (9)
O50.5983 (5)0.7257 (3)1.3088 (3)0.0444 (10)
O60.5973 (5)0.9246 (3)1.3487 (3)0.0473 (10)
O70.8838 (7)1.1868 (4)1.0367 (4)0.0822 (16)
O80.7846 (7)1.1702 (4)0.8683 (4)0.0804 (16)
O90.5579 (5)0.4929 (3)0.7204 (3)0.0339 (8)
H9A0.546 (7)0.418 (2)0.732 (4)0.051*
H9B0.562 (7)0.518 (4)0.786 (2)0.051*
O100.4917 (6)0.8518 (3)0.5648 (3)0.0561 (12)
H10A0.544 (7)0.872 (6)0.509 (4)0.084*
H10B0.421 (6)0.904 (5)0.583 (5)0.084*
O110.6736 (4)0.6260 (3)0.5182 (3)0.0326 (8)
H11A0.640 (6)0.556 (2)0.514 (4)0.049*
H11B0.644 (6)0.664 (4)0.458 (3)0.049*
Zn10.50994 (7)0.67555 (5)0.64551 (4)0.0280 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.045 (3)0.047 (3)0.025 (3)0.002 (3)0.001 (2)0.001 (2)
C20.064 (4)0.049 (4)0.036 (3)0.006 (3)0.001 (3)0.014 (3)
C30.039 (3)0.034 (3)0.053 (4)0.002 (2)0.009 (3)0.005 (3)
C40.049 (3)0.033 (3)0.045 (3)0.016 (3)0.003 (3)0.002 (3)
C50.025 (3)0.031 (3)0.032 (3)0.003 (2)0.002 (2)0.000 (2)
C60.032 (3)0.031 (3)0.031 (3)0.005 (2)0.005 (2)0.005 (2)
C70.055 (4)0.039 (3)0.041 (3)0.012 (3)0.003 (3)0.004 (3)
C80.051 (4)0.037 (3)0.052 (4)0.015 (3)0.011 (3)0.007 (3)
C90.059 (4)0.035 (3)0.035 (3)0.002 (3)0.009 (3)0.011 (2)
C100.041 (3)0.042 (3)0.032 (3)0.003 (2)0.003 (2)0.002 (2)
C110.039 (3)0.032 (3)0.026 (3)0.004 (2)0.001 (2)0.007 (2)
C120.040 (3)0.025 (3)0.022 (3)0.003 (2)0.001 (2)0.000 (2)
C130.053 (3)0.017 (2)0.024 (3)0.004 (2)0.005 (2)0.004 (2)
C140.036 (3)0.027 (3)0.020 (2)0.002 (2)0.003 (2)0.000 (2)
C150.046 (3)0.021 (3)0.027 (3)0.006 (2)0.005 (2)0.007 (2)
C160.036 (3)0.027 (3)0.029 (3)0.005 (2)0.004 (2)0.004 (2)
C170.037 (3)0.021 (2)0.034 (3)0.010 (2)0.009 (2)0.002 (2)
C180.045 (3)0.038 (3)0.021 (3)0.011 (2)0.008 (2)0.005 (2)
N10.049 (3)0.028 (2)0.024 (2)0.0079 (19)0.001 (2)0.0047 (18)
N20.048 (3)0.028 (2)0.025 (2)0.0071 (19)0.012 (2)0.0035 (18)
N30.083 (4)0.034 (3)0.043 (3)0.021 (3)0.028 (3)0.007 (2)
O10.0317 (18)0.035 (2)0.0343 (19)0.0105 (15)0.0064 (15)0.0039 (15)
O20.0346 (19)0.0302 (19)0.0315 (19)0.0060 (15)0.0029 (15)0.0078 (15)
O30.056 (2)0.035 (2)0.0162 (17)0.0189 (17)0.0065 (16)0.0040 (14)
O40.075 (3)0.027 (2)0.0250 (19)0.0127 (18)0.0032 (18)0.0032 (15)
O50.089 (3)0.0219 (19)0.0234 (19)0.0153 (18)0.0033 (19)0.0003 (14)
O60.089 (3)0.028 (2)0.0233 (19)0.0018 (19)0.0155 (19)0.0030 (16)
O70.141 (5)0.055 (3)0.056 (3)0.055 (3)0.033 (3)0.023 (2)
O80.136 (5)0.056 (3)0.051 (3)0.041 (3)0.012 (3)0.019 (2)
O90.054 (2)0.0217 (18)0.0266 (19)0.0063 (17)0.0021 (17)0.0016 (15)
O100.118 (4)0.021 (2)0.028 (2)0.003 (2)0.026 (2)0.0001 (16)
O110.048 (2)0.0273 (19)0.0229 (19)0.0100 (17)0.0039 (16)0.0005 (15)
Zn10.0418 (4)0.0228 (3)0.0197 (3)0.0056 (2)0.0028 (2)0.0024 (2)
Geometric parameters (Å, º) top
C1—C21.325 (7)C13—H130.9300
C1—N11.344 (6)C14—C161.393 (6)
C1—H10.9300C14—C151.507 (6)
C2—C31.399 (8)C15—O61.243 (5)
C2—H20.9300C15—O51.249 (5)
C3—C41.375 (7)C16—C171.374 (6)
C3—H30.9300C16—H160.9300
C4—C51.398 (7)C17—C181.370 (6)
C4—H40.9300C17—N31.475 (6)
C5—N11.342 (6)C18—H180.9300
C5—C61.468 (6)N1—O21.353 (5)
C6—C71.361 (7)N2—O11.325 (5)
C6—N21.374 (6)N3—O81.214 (6)
C7—C81.390 (7)N3—O71.244 (6)
C7—H70.9300O1—Zn12.094 (3)
C8—C91.338 (7)O2—Zn12.144 (3)
C8—H80.9300O3—Zn12.043 (3)
C9—C101.394 (7)O9—Zn12.125 (3)
C9—H90.9300O9—H9A0.816 (19)
C10—N21.349 (6)O9—H9B0.821 (19)
C10—H100.9300O10—Zn12.067 (3)
C11—O41.254 (5)O10—H10A0.80 (2)
C11—O31.268 (5)O10—H10B0.818 (19)
C11—C121.514 (6)O11—Zn12.054 (4)
C12—C131.370 (6)O11—H11A0.814 (19)
C12—C181.407 (6)O11—H11B0.833 (19)
C13—C141.395 (6)
C2—C1—N1120.9 (5)C17—C16—C14118.1 (4)
C2—C1—H1119.5C17—C16—H16121.0
N1—C1—H1119.5C14—C16—H16121.0
C1—C2—C3120.7 (5)C18—C17—C16124.3 (4)
C1—C2—H2119.7C18—C17—N3117.2 (4)
C3—C2—H2119.7C16—C17—N3118.6 (4)
C4—C3—C2118.0 (5)C17—C18—C12117.7 (4)
C4—C3—H3121.0C17—C18—H18121.2
C2—C3—H3121.0C12—C18—H18121.2
C3—C4—C5119.9 (5)C5—N1—C1121.6 (5)
C3—C4—H4120.1C5—N1—O2119.5 (4)
C5—C4—H4120.1C1—N1—O2118.9 (4)
N1—C5—C4118.8 (5)O1—N2—C10120.1 (4)
N1—C5—C6118.7 (4)O1—N2—C6118.9 (4)
C4—C5—C6122.0 (4)C10—N2—C6121.0 (4)
C7—C6—N2119.1 (5)O8—N3—O7123.8 (5)
C7—C6—C5123.2 (5)O8—N3—C17118.8 (5)
N2—C6—C5117.8 (4)O7—N3—C17117.2 (5)
C6—C7—C8121.0 (5)N2—O1—Zn1116.6 (3)
C6—C7—H7119.5N1—O2—Zn1117.1 (2)
C8—C7—H7119.5C11—O3—Zn1121.9 (3)
C9—C8—C7118.6 (5)Zn1—O9—H9A157 (4)
C9—C8—H8120.7Zn1—O9—H9B93 (3)
C7—C8—H8120.7H9A—O9—H9B102 (4)
C8—C9—C10121.4 (5)Zn1—O10—H10A124 (4)
C8—C9—H9119.3Zn1—O10—H10B122 (4)
C10—C9—H9119.3H10A—O10—H10B114 (5)
N2—C10—C9119.0 (5)Zn1—O11—H11A94 (4)
N2—C10—H10120.5Zn1—O11—H11B107 (4)
C9—C10—H10120.5H11A—O11—H11B104 (4)
O4—C11—O3126.4 (4)O3—Zn1—O11103.59 (13)
O4—C11—C12116.2 (4)O3—Zn1—O1088.62 (16)
O3—C11—C12117.4 (4)O11—Zn1—O1087.49 (15)
C13—C12—C18118.8 (4)O3—Zn1—O186.88 (13)
C13—C12—C11120.9 (4)O11—Zn1—O1169.46 (12)
C18—C12—C11120.3 (4)O10—Zn1—O191.57 (15)
C12—C13—C14122.7 (4)O3—Zn1—O989.47 (13)
C12—C13—H13118.6O11—Zn1—O986.47 (13)
C14—C13—H13118.6O10—Zn1—O9173.05 (17)
C16—C14—C13118.4 (4)O1—Zn1—O995.00 (13)
C16—C14—C15121.9 (4)O3—Zn1—O2169.33 (13)
C13—C14—C15119.7 (4)O11—Zn1—O286.92 (12)
O6—C15—O5124.0 (5)O10—Zn1—O290.04 (16)
O6—C15—C14118.4 (4)O1—Zn1—O282.58 (12)
O5—C15—C14117.6 (4)O9—Zn1—O293.05 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O5i0.82 (3)2.08 (4)2.773 (5)143 (5)
O9—H9B···O40.83 (3)1.83 (3)2.635 (5)164 (4)
O10—H10A···O6ii0.81 (5)1.96 (5)2.735 (5)161 (6)
O10—H10B···O6iii0.82 (5)2.03 (5)2.702 (5)139 (5)
O11—H11A···O2iv0.82 (3)1.95 (3)2.687 (5)149 (5)
O11—H11B···O5ii0.83 (3)1.87 (4)2.692 (5)169 (4)
C2—H2···O8v0.932.593.229 (8)126
C3—H3···O6vi0.932.493.269 (7)141
C4—H4···O3vii0.932.463.358 (7)162
C13—H13···O40.932.472.780 (6)100
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y, z1; (iii) x+1, y+2, z+2; (iv) x+1, y+1, z+1; (v) x+1, y+2, z+1; (vi) x1, y, z1; (vii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Zn(C8H3NO6)(C10H8N2O2)(H2O)3]
Mr516.72
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)8.3040 (14), 10.7036 (18), 11.6546 (19)
α, β, γ (°)87.217 (3), 88.436 (3), 87.006 (3)
V3)1032.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.26
Crystal size (mm)0.20 × 0.19 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.778, 0.828
No. of measured, independent and
observed [I > 2σ(I)] reflections
6281, 3604, 2737
Rint0.075
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.143, 1.05
No. of reflections3604
No. of parameters316
No. of restraints15
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.62, 0.52

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
O1—Zn12.094 (3)O9—Zn12.125 (3)
O2—Zn12.144 (3)O10—Zn12.067 (3)
O3—Zn12.043 (3)O11—Zn12.054 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O5i0.82 (3)2.08 (4)2.773 (5)143 (5)
O9—H9B···O40.83 (3)1.83 (3)2.635 (5)164 (4)
O10—H10A···O6ii0.81 (5)1.96 (5)2.735 (5)161 (6)
O10—H10B···O6iii0.82 (5)2.03 (5)2.702 (5)139 (5)
O11—H11A···O2iv0.82 (3)1.95 (3)2.687 (5)149 (5)
O11—H11B···O5ii0.83 (3)1.87 (4)2.692 (5)169 (4)
C2—H2···O8v0.932.593.229 (8)126
C3—H3···O6vi0.932.493.269 (7)141
C4—H4···O3vii0.932.463.358 (7)162
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y, z1; (iii) x+1, y+2, z+2; (iv) x+1, y+1, z+1; (v) x+1, y+2, z+1; (vi) x1, y, z1; (vii) x1, y, z.
 

References

First citationBruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHill, R. J., Long, D. L., Turvey, M. S., Blake, A. J., Champness, N. R., Hubberstey, P., Wilson, C. & Schröder, M. (2004). Chem. Commun. pp. 1792–1793.  Web of Science CSD CrossRef Google Scholar
First citationLong, D. L., Blake, A. J., Champness, N. R., Wilson, C. & Schröder, M. (2001). Angew. Chem. Int. Ed. 40, 2443–2447.  CrossRef Google Scholar
First citationMa, B. Q., Sun, H. L. & Gao, S. (2003). Chem. Commun. pp. 2164–2165.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds