Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C26H20N2O2, is a 1,8-naphthalimide derivative. Mol­ecules are arranged into stacks via π–π inter­actions between the naphthalimide systems, with inter­planar distances of 3.379 (2) and 3.630 (2) Å. In addition, the crystal structure is stabilized by weak inter­molecular C—H...O inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807049975/gk2103sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807049975/gk2103Isup2.hkl
Contains datablock I

CCDC reference: 636030

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • R factor = 0.051
  • wR factor = 0.136
  • Data-to-parameter ratio = 13.3

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

Since that the naphthalimide derivatives have been used as important dyes (Konstantinova et al., 2000), fluorescent taps (Mitchell et al., 1998) and photochemical DNA cleaving reagents (Xu et al., 2004), the synthesis of naphthalimides has attracted a great deal of attention. Here we report the synthesis and crystal structure of a new naphthalimide derivative.

The molecular structure of the title compound is shown in Fig.1. The molecular geometry is comparable with that of 2-benzyl-1H-benzo[de]isoquinoline-1,3(2H)-dione (Sarma et al., 2007). The 1, 8-naphthalimide unit are almost planar.

Weak intermolecular C—H···O hydrogen bonds and π-π stacking interactions stabilize the crystal packing (Fig. 2).

Related literature top

For related literature, see: Konstantinova et al. (2000); Mitchell et al. (1998); Sarma et al. (2007); Xu et al. (2004).

Experimental top

The mixture of 4-bromo-1,8-naphthalic anhydride (0.28 g, 1 mmol), benzylamine (0.25 g, 2.3 mmol) and copper nitrate trihydrate (0.021 g, 0.1 mmol) was refluxed in ethylene glycol monomethyl ether (30 ml) for about 10 h, and cooled to afford the yellow powder of the title compound. Upon recrystallization from ethanol, yellow crystals were obtained (yield 46%, m.p. 428–430 K).

Refinement top

H atoms bound to C atoms were positioned geometrically and included in the refinement in the riding-model approximation [d(C—H) = 0.95 and 0.99 Å for aromatic and CH2 groups, respectively; d(N—H) = 0.87 Å], and with Uiso(H) = 1.2Ueq(C,N).

Structure description top

Since that the naphthalimide derivatives have been used as important dyes (Konstantinova et al., 2000), fluorescent taps (Mitchell et al., 1998) and photochemical DNA cleaving reagents (Xu et al., 2004), the synthesis of naphthalimides has attracted a great deal of attention. Here we report the synthesis and crystal structure of a new naphthalimide derivative.

The molecular structure of the title compound is shown in Fig.1. The molecular geometry is comparable with that of 2-benzyl-1H-benzo[de]isoquinoline-1,3(2H)-dione (Sarma et al., 2007). The 1, 8-naphthalimide unit are almost planar.

Weak intermolecular C—H···O hydrogen bonds and π-π stacking interactions stabilize the crystal packing (Fig. 2).

For related literature, see: Konstantinova et al. (2000); Mitchell et al. (1998); Sarma et al. (2007); Xu et al. (2004).

Computing details top

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear (Rigaku, 1999); data reduction: CrystalStructure (Rigaku/MSC, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 50% probability displacement ellipsoids and the atom labelling scheme. H atoms are represented by small spheres of arbitrary radius.
[Figure 2] Fig. 2. Packing diagram with H bonds indicated by dashed lines.
2-Benzyl-6-(benzylamino)-1H-benzo[de]isoquinoline-1,3(2H)-dione top
Crystal data top
C26H20N2O2Z = 2
Mr = 392.44F(000) = 412
Triclinic, P1Dx = 1.324 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.354 (2) ÅCell parameters from 1545 reflections
b = 10.314 (3) Åθ = 2.5–26.6°
c = 12.503 (3) ŵ = 0.08 mm1
α = 78.068 (4)°T = 298 K
β = 87.225 (4)°Prism, yellow
γ = 69.065 (4)°0.27 × 0.23 × 0.14 mm
V = 984.1 (5) Å3
Data collection top
Rigaku Mercury
diffractometer
3602 independent reflections
Radiation source: fine-focus sealed tube2545 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
φ and ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(Jacobson, 1998)
h = 610
Tmin = 0.978, Tmax = 0.988k = 1112
5185 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0683P)2 + 0.0186P]
where P = (Fo2 + 2Fc2)/3
3602 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C26H20N2O2γ = 69.065 (4)°
Mr = 392.44V = 984.1 (5) Å3
Triclinic, P1Z = 2
a = 8.354 (2) ÅMo Kα radiation
b = 10.314 (3) ŵ = 0.08 mm1
c = 12.503 (3) ÅT = 298 K
α = 78.068 (4)°0.27 × 0.23 × 0.14 mm
β = 87.225 (4)°
Data collection top
Rigaku Mercury
diffractometer
3602 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
2545 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.988Rint = 0.017
5185 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.04Δρmax = 0.16 e Å3
3602 reflectionsΔρmin = 0.15 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2622 (2)0.59547 (19)0.71932 (14)0.0512 (5)
C20.2342 (2)0.49746 (18)0.81289 (13)0.0477 (4)
C30.1932 (2)0.3848 (2)0.79810 (14)0.0578 (5)
H30.17550.37630.72740.069*
C40.1775 (3)0.2837 (2)0.88512 (14)0.0594 (5)
H40.14970.20870.87180.071*
C50.2025 (2)0.29171 (18)0.99235 (13)0.0491 (4)
C60.2351 (2)0.41232 (17)1.01200 (13)0.0444 (4)
C70.2521 (2)0.43494 (19)1.11711 (13)0.0517 (5)
H70.23870.37061.17780.062*
C80.2876 (3)0.54894 (19)1.13225 (14)0.0591 (5)
H80.29800.56181.20270.071*
C90.3086 (2)0.64652 (19)1.04242 (15)0.0568 (5)
H90.33530.72311.05330.068*
C100.2900 (2)0.63026 (17)0.93806 (13)0.0470 (4)
C110.2517 (2)0.51367 (17)0.92052 (13)0.0433 (4)
C120.3131 (2)0.73448 (19)0.84477 (15)0.0525 (5)
C130.3202 (2)0.81558 (18)0.64637 (14)0.0573 (5)
H13A0.26900.90990.66200.069*
H13B0.26060.81300.58260.069*
C140.5053 (2)0.78830 (18)0.62048 (13)0.0507 (5)
C150.5796 (3)0.8849 (2)0.63119 (16)0.0697 (6)
H150.51420.96720.65500.084*
C160.7474 (4)0.8621 (3)0.60742 (19)0.0871 (8)
H160.79510.92860.61490.105*
C170.8459 (3)0.7410 (3)0.57247 (18)0.0887 (8)
H170.96070.72470.55700.106*
C180.7732 (3)0.6437 (3)0.56048 (18)0.0822 (7)
H180.83870.56170.53630.099*
C190.6045 (3)0.6681 (2)0.58416 (16)0.0643 (5)
H190.55620.60230.57560.077*
C200.1766 (3)0.0588 (2)1.06164 (15)0.0712 (6)
H20A0.25990.01721.01010.085*
H20B0.06300.08181.03090.085*
C210.2003 (3)0.04668 (19)1.16736 (14)0.0555 (5)
C220.0616 (3)0.0690 (2)1.22008 (15)0.0632 (5)
H220.04810.01691.19040.076*
C230.0825 (3)0.1670 (2)1.31597 (17)0.0731 (6)
H230.01280.18051.35090.088*
C240.2425 (4)0.2446 (2)1.36027 (17)0.0772 (7)
H240.25640.31111.42520.093*
C250.3827 (3)0.2244 (2)1.30889 (18)0.0779 (7)
H250.49200.27731.33890.093*
C260.3621 (3)0.1256 (2)1.21254 (16)0.0684 (6)
H260.45770.11221.17790.082*
N10.29555 (19)0.71192 (14)0.74032 (11)0.0503 (4)
N20.1971 (2)0.18745 (15)1.07740 (11)0.0610 (5)
H20.20610.19821.14300.073*
O10.34627 (19)0.83731 (13)0.85503 (10)0.0699 (4)
O20.25983 (18)0.58088 (14)0.62488 (9)0.0659 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0489 (11)0.0597 (11)0.0461 (10)0.0226 (9)0.0022 (8)0.0061 (8)
C20.0472 (11)0.0534 (10)0.0436 (9)0.0210 (9)0.0011 (8)0.0061 (8)
C30.0690 (14)0.0725 (12)0.0411 (10)0.0367 (11)0.0038 (9)0.0097 (9)
C40.0766 (14)0.0662 (12)0.0499 (11)0.0426 (11)0.0026 (9)0.0107 (9)
C50.0501 (11)0.0532 (10)0.0458 (10)0.0223 (9)0.0007 (8)0.0061 (8)
C60.0402 (10)0.0487 (9)0.0432 (9)0.0145 (8)0.0012 (7)0.0095 (7)
C70.0569 (12)0.0553 (10)0.0413 (10)0.0190 (10)0.0049 (8)0.0090 (8)
C80.0768 (14)0.0615 (11)0.0433 (10)0.0257 (11)0.0048 (9)0.0188 (9)
C90.0698 (14)0.0476 (10)0.0556 (11)0.0185 (10)0.0049 (9)0.0207 (9)
C100.0469 (11)0.0445 (9)0.0463 (10)0.0115 (8)0.0029 (8)0.0111 (8)
C110.0368 (10)0.0458 (9)0.0452 (9)0.0122 (8)0.0010 (7)0.0087 (7)
C120.0526 (12)0.0448 (10)0.0555 (11)0.0117 (9)0.0039 (9)0.0107 (8)
C130.0657 (13)0.0480 (10)0.0511 (11)0.0179 (10)0.0007 (9)0.0015 (8)
C140.0622 (13)0.0512 (10)0.0387 (9)0.0243 (10)0.0013 (8)0.0010 (8)
C150.0874 (17)0.0710 (13)0.0614 (13)0.0424 (13)0.0019 (11)0.0108 (10)
C160.095 (2)0.120 (2)0.0694 (15)0.0721 (19)0.0012 (13)0.0072 (14)
C170.0613 (16)0.143 (3)0.0605 (14)0.0467 (18)0.0057 (11)0.0000 (15)
C180.0653 (16)0.0978 (18)0.0756 (15)0.0195 (15)0.0112 (12)0.0200 (13)
C190.0647 (14)0.0652 (12)0.0647 (12)0.0246 (11)0.0037 (10)0.0145 (10)
C200.1121 (19)0.0646 (12)0.0507 (11)0.0492 (13)0.0010 (11)0.0089 (9)
C210.0787 (15)0.0487 (10)0.0465 (10)0.0296 (11)0.0021 (10)0.0134 (8)
C220.0721 (15)0.0583 (12)0.0602 (12)0.0228 (11)0.0038 (10)0.0151 (10)
C230.0967 (19)0.0731 (14)0.0591 (13)0.0431 (14)0.0204 (12)0.0151 (11)
C240.128 (2)0.0574 (13)0.0464 (11)0.0338 (15)0.0044 (14)0.0089 (9)
C250.0922 (18)0.0687 (14)0.0629 (13)0.0132 (13)0.0133 (13)0.0161 (11)
C260.0743 (15)0.0782 (14)0.0596 (12)0.0333 (13)0.0089 (11)0.0194 (11)
N10.0542 (10)0.0476 (8)0.0455 (8)0.0172 (8)0.0004 (7)0.0029 (6)
N20.0911 (13)0.0584 (9)0.0430 (8)0.0393 (9)0.0003 (8)0.0078 (7)
O10.0988 (12)0.0489 (7)0.0684 (9)0.0333 (8)0.0052 (8)0.0136 (6)
O20.0870 (11)0.0811 (9)0.0396 (7)0.0448 (9)0.0036 (6)0.0057 (6)
Geometric parameters (Å, º) top
C1—O21.223 (2)C14—C191.376 (3)
C1—N11.402 (2)C14—C151.379 (2)
C1—C21.449 (2)C15—C161.364 (3)
C2—C31.371 (2)C15—H150.9300
C2—C111.411 (2)C16—C171.372 (3)
C3—C41.380 (2)C16—H160.9300
C3—H30.9300C17—C181.380 (3)
C4—C51.390 (2)C17—H170.9300
C4—H40.9300C18—C191.369 (3)
C5—N21.359 (2)C18—H180.9300
C5—C61.434 (2)C19—H190.9300
C6—C71.404 (2)C20—N21.450 (2)
C6—C111.419 (2)C20—C211.499 (2)
C7—C81.361 (2)C20—H20A0.9700
C7—H70.9300C20—H20B0.9700
C8—C91.394 (2)C21—C221.372 (3)
C8—H80.9300C21—C261.381 (3)
C9—C101.372 (2)C22—C231.372 (3)
C9—H90.9300C22—H220.9300
C10—C111.410 (2)C23—C241.363 (3)
C10—C121.470 (2)C23—H230.9300
C12—O11.219 (2)C24—C251.369 (3)
C12—N11.396 (2)C24—H240.9300
C13—N11.4765 (19)C25—C261.381 (3)
C13—C141.501 (3)C25—H250.9300
C13—H13A0.9700C26—H260.9300
C13—H13B0.9700N2—H20.8600
O2—C1—N1119.24 (15)C16—C15—C14121.2 (2)
O2—C1—C2123.69 (17)C16—C15—H15119.4
N1—C1—C2117.07 (15)C14—C15—H15119.4
C3—C2—C11118.65 (15)C15—C16—C17120.2 (2)
C3—C2—C1120.19 (16)C15—C16—H16119.9
C11—C2—C1121.14 (16)C17—C16—H16119.9
C2—C3—C4121.88 (16)C16—C17—C18119.4 (2)
C2—C3—H3119.1C16—C17—H17120.3
C4—C3—H3119.1C18—C17—H17120.3
C3—C4—C5121.24 (17)C19—C18—C17119.9 (2)
C3—C4—H4119.4C19—C18—H18120.0
C5—C4—H4119.4C17—C18—H18120.0
N2—C5—C4121.01 (16)C18—C19—C14121.1 (2)
N2—C5—C6120.23 (15)C18—C19—H19119.5
C4—C5—C6118.76 (15)C14—C19—H19119.5
C7—C6—C11118.34 (16)N2—C20—C21111.32 (15)
C7—C6—C5123.34 (16)N2—C20—H20A109.4
C11—C6—C5118.32 (15)C21—C20—H20A109.4
C8—C7—C6121.49 (16)N2—C20—H20B109.4
C8—C7—H7119.3C21—C20—H20B109.4
C6—C7—H7119.3H20A—C20—H20B108.0
C7—C8—C9120.20 (17)C22—C21—C26118.61 (18)
C7—C8—H8119.9C22—C21—C20120.6 (2)
C9—C8—H8119.9C26—C21—C20120.8 (2)
C10—C9—C8120.39 (17)C23—C22—C21120.9 (2)
C10—C9—H9119.8C23—C22—H22119.5
C8—C9—H9119.8C21—C22—H22119.5
C9—C10—C11120.33 (16)C24—C23—C22120.2 (2)
C9—C10—C12119.31 (16)C24—C23—H23119.9
C11—C10—C12120.35 (16)C22—C23—H23119.9
C10—C11—C2119.83 (15)C23—C24—C25119.8 (2)
C10—C11—C6119.21 (15)C23—C24—H24120.1
C2—C11—C6120.94 (16)C25—C24—H24120.1
O1—C12—N1119.74 (16)C24—C25—C26120.1 (2)
O1—C12—C10123.19 (17)C24—C25—H25119.9
N1—C12—C10117.07 (16)C26—C25—H25119.9
N1—C13—C14113.22 (14)C25—C26—C21120.3 (2)
N1—C13—H13A108.9C25—C26—H26119.8
C14—C13—H13A108.9C21—C26—H26119.8
N1—C13—H13B108.9C12—N1—C1124.40 (14)
C14—C13—H13B108.9C12—N1—C13117.28 (14)
H13A—C13—H13B107.7C1—N1—C13118.28 (14)
C19—C14—C15118.26 (19)C5—N2—C20122.42 (15)
C19—C14—C13121.24 (17)C5—N2—H2118.8
C15—C14—C13120.49 (18)C20—N2—H2118.8
O2—C1—C2—C33.7 (3)C11—C10—C12—N10.1 (3)
N1—C1—C2—C3177.04 (15)N1—C13—C14—C1965.5 (2)
O2—C1—C2—C11174.97 (17)N1—C13—C14—C15115.45 (18)
N1—C1—C2—C114.3 (3)C19—C14—C15—C160.5 (3)
C11—C2—C3—C43.4 (3)C13—C14—C15—C16179.64 (18)
C1—C2—C3—C4175.33 (18)C14—C15—C16—C170.2 (3)
C2—C3—C4—C50.1 (3)C15—C16—C17—C180.7 (3)
C3—C4—C5—N2176.01 (18)C16—C17—C18—C190.5 (3)
C3—C4—C5—C63.7 (3)C17—C18—C19—C140.3 (3)
N2—C5—C6—C74.1 (3)C15—C14—C19—C180.8 (3)
C4—C5—C6—C7176.14 (17)C13—C14—C19—C18179.89 (18)
N2—C5—C6—C11175.62 (16)N2—C20—C21—C22104.6 (2)
C4—C5—C6—C114.1 (3)N2—C20—C21—C2676.8 (2)
C11—C6—C7—C81.6 (3)C26—C21—C22—C230.3 (3)
C5—C6—C7—C8178.19 (17)C20—C21—C22—C23178.92 (17)
C6—C7—C8—C90.2 (3)C21—C22—C23—C240.3 (3)
C7—C8—C9—C101.4 (3)C22—C23—C24—C250.1 (3)
C8—C9—C10—C110.8 (3)C23—C24—C25—C260.1 (3)
C8—C9—C10—C12179.88 (17)C24—C25—C26—C210.0 (3)
C9—C10—C11—C2179.52 (16)C22—C21—C26—C250.2 (3)
C12—C10—C11—C20.5 (3)C20—C21—C26—C25178.77 (18)
C9—C10—C11—C61.0 (3)O1—C12—N1—C1178.24 (17)
C12—C10—C11—C6178.12 (16)C10—C12—N1—C11.8 (3)
C3—C2—C11—C10178.62 (16)O1—C12—N1—C130.6 (2)
C1—C2—C11—C102.7 (3)C10—C12—N1—C13179.45 (15)
C3—C2—C11—C62.8 (3)O2—C1—N1—C12175.40 (16)
C1—C2—C11—C6175.87 (16)C2—C1—N1—C123.9 (3)
C7—C6—C11—C102.1 (3)O2—C1—N1—C132.3 (2)
C5—C6—C11—C10177.67 (15)C2—C1—N1—C13178.47 (15)
C7—C6—C11—C2179.35 (15)C14—C13—N1—C1282.09 (19)
C5—C6—C11—C20.9 (3)C14—C13—N1—C195.74 (19)
C9—C10—C12—O11.0 (3)C4—C5—N2—C204.1 (3)
C11—C10—C12—O1179.94 (16)C6—C5—N2—C20175.57 (18)
C9—C10—C12—N1179.02 (16)C21—C20—N2—C5171.73 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···O20.972.352.709 (2)101
C17—H17···O2i0.932.493.287 (3)144
C19—H19···O20.932.603.298 (3)133
C22—H22···O1ii0.932.523.430 (3)165
C24—H24···O2iii0.932.513.407 (3)162
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+2; (iii) x, y1, z+1.

Experimental details

Crystal data
Chemical formulaC26H20N2O2
Mr392.44
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.354 (2), 10.314 (3), 12.503 (3)
α, β, γ (°)78.068 (4), 87.225 (4), 69.065 (4)
V3)984.1 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.27 × 0.23 × 0.14
Data collection
DiffractometerRigaku Mercury
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.978, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
5185, 3602, 2545
Rint0.017
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.136, 1.04
No. of reflections3602
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: CrystalClear (Rigaku, 1999), CrystalStructure (Rigaku/MSC, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···O20.972.352.709 (2)101
C17—H17···O2i0.932.493.287 (3)144
C19—H19···O20.932.603.298 (3)133
C22—H22···O1ii0.932.523.430 (3)165
C24—H24···O2iii0.932.513.407 (3)162
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+2; (iii) x, y1, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds