Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Co(C2H8N2)3](I3)I, is isostructural with the analogous ZnII and NiII complexes [Wieczorrek (2000). Acta Cryst. C56, 1079–1081]. The CoII atom, which has a distorted octa­hedral environment, and the iodide anion are located on twofold axes (8d site). The central I atom of the triiodide anion is also located on a twofold axis (8c site). The I3 anion is linear. The crystal shows inversion twinning.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807059971/gk2101sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807059971/gk2101Isup2.hkl
Contains datablock I

CCDC reference: 672781

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](Wav) = 0.000 Å
  • R factor = 0.017
  • wR factor = 0.044
  • Data-to-parameter ratio = 22.1

checkCIF/PLATON results

No syntax errors found



Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.864 Tmax scaled 0.234 Tmin scaled 0.194 REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 25.35 From the CIF: _reflns_number_total 1771 Count of symmetry unique reflns 999 Completeness (_total/calc) 177.28% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 772 Fraction of Friedel pairs measured 0.773 Are heavy atom types Z>Si present yes
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 0 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The crystal structures of tris(1,2-ethanediamine-N,N')zinc(II) triiodide iodide and tris(1,2-ethanediamine-N,N') nickel(II) triiodide iodide have been reported earlier (Wieczorrek, 2000). Herein, we report the synthesis and crystal structure of tris(1,2-ethanediamine-N,N')cobalt(II) triiodide iodide. This complex is isostructural with the Zn(II) and Ni(II) complexes.

As shown in Fig. 1, the title complex consists of one [Co(en)3]2+ cation, one triiodide anion, and one iodide anion. The Co atom is coordinated by three ethanediamine ligands that form a distorted octahedral environment with the Co—N bond distances ranging from 2.269 (3) to 2.290 (3) Å (Table 1). It is important to stress that compounds conating [Co(en)3]2+ cation are rare in comparison with those containing [Co(en)3]3+ (Bu et al., 2000; Jia et al., 2004; Pan et al., 2005; Stephan & Kanatzidis, 1997; Vaqueiro, 2006; Vaqueiro et al., 2004; Varand et al., 1967; Wang et al., 2003; Yu et al., 2001, 2002). The I—I bond distance of the linear triiodide anion in the present compound is 2.9322 (2) Å, which is inagreement with those found in [Zn(C2H8N2)3](I3)I and [Ni(C2H8N2)3](I3)I. The crystal structure of the title compound is shown in Figure 2. Hydrogen bonds are formed between N atoms of the ethanediamine ligands and I atoms of triiodide and iodide anions (Table 2).

Related literature top

For related literature, see: Bu et al. (2000); Jia et al. (2004); Pan et al. (2005); Stephan & Kanatzidis (1997); Vaqueiro (2006); Vaqueiro et al. (2004); Varand et al. (1967); Wang et al. (2003); Wieczorrek (2000); Yu et al. (2001, 2002).

Experimental top

CoCl2.6H2O (0.5 mmol, 119 mg), HI (25.6 mmol, 4 ml), ethylenediamine (15 mmol, 1 ml) and ethanol (2 ml) were heated at 453 K for two days under autogeneous pressure in a sealed 25 ml Teflon-lined stainless steel vessel, and then cooled down to room temperature within two days. Red crystals of the title compound were obtained with 25% yield (based on cobalt chloride).

Refinement top

All atoms were allowed to ride on their respective parent atoms with the C—H and N—H bond distances fixed at 0.97 and 0.90 Å, respectively. H atoms were included in the refinement process with isotropic displacement parameters Uiso(H) = 1.2Ueq(C,N). The deepest hole in the final difference map of -1.01 e Å-3 is in the vicinity of the Co atom. The crystal was refined as an inversion twin.

Computing details top

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear (Rigaku, 2002); data reduction: CrystalClear (Rigaku, 2002); program(s) used to solve structure: SHELXTL (Siemens, 1994); program(s) used to refine structure: SHELXTL (Siemens, 1994); molecular graphics: SHELXTL (Siemens, 1994); software used to prepare material for publication: SHELXTL (Siemens, 1994).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title compond showing 30% probability displacement ellipsoids. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. Packing diagram viewed along the c direction.
Tris(1,2-ethanediamine-κ2N,N')cobalt(II) triiodide iodide top
Crystal data top
[Co(C2H8N2)3](I3)IDx = 2.561 Mg m3
Mr = 746.84Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I42dCell parameters from 5670 reflections
Hall symbol: I -4 2bwθ = 3.0–27.5°
a = 14.7850 (4) ŵ = 7.26 mm1
c = 17.7221 (9) ÅT = 293 K
V = 3874.0 (2) Å3Prism, red
Z = 80.30 × 0.20 × 0.20 mm
F(000) = 2728
Data collection top
Rigaku Mercury CCD
diffractometer
1771 independent reflections
Radiation source: rotating anode generator1766 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 25.4°, θmin = 3.3°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
h = 1617
Tmin = 0.224, Tmax = 0.271k = 1714
12658 measured reflectionsl = 1921
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.017H-atom parameters constrained
wR(F2) = 0.044 w = 1/[σ2(Fo2) + (0.0313P)2 + 5.16P]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
1771 reflectionsΔρmax = 0.43 e Å3
80 parametersΔρmin = 1.02 e Å3
0 restraintsAbsolute structure: Flack (1983), with 772 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.0 (5)
Crystal data top
[Co(C2H8N2)3](I3)IZ = 8
Mr = 746.84Mo Kα radiation
Tetragonal, I42dµ = 7.26 mm1
a = 14.7850 (4) ÅT = 293 K
c = 17.7221 (9) Å0.30 × 0.20 × 0.20 mm
V = 3874.0 (2) Å3
Data collection top
Rigaku Mercury CCD
diffractometer
1771 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
1766 reflections with I > 2σ(I)
Tmin = 0.224, Tmax = 0.271Rint = 0.032
12658 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.017H-atom parameters constrained
wR(F2) = 0.044Δρmax = 0.43 e Å3
S = 0.98Δρmin = 1.02 e Å3
1771 reflectionsAbsolute structure: Flack (1983), with 772 Friedel pairs
80 parametersAbsolute structure parameter: 0.0 (5)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Crystal refined as inversion twin with BASF 0.5

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I11.101498 (17)0.75000.12500.01992 (6)
I20.329735 (14)0.898314 (14)0.128322 (12)0.02335 (5)
I30.50001.00000.12773 (2)0.02203 (7)
Co10.77236 (4)0.75000.12500.01965 (13)
N110.7898 (2)0.61932 (19)0.05720 (15)0.0196 (7)
H11E0.74190.58280.06440.024*
H11F0.79380.63200.00760.024*
N120.87417 (19)0.8274 (2)0.05429 (15)0.0173 (6)
H12E0.92930.80210.05870.021*
H12F0.85790.82610.00540.021*
N130.6522 (2)0.8038 (2)0.05786 (15)0.0177 (7)
H13E0.64580.86360.06590.021*
H13F0.66130.79480.00820.021*
C110.8727 (3)0.5747 (2)0.0830 (2)0.0238 (9)
H11A0.92510.60530.06200.029*
H11B0.87350.51240.06570.029*
C120.8767 (3)0.9226 (2)0.0817 (2)0.0244 (9)
H12A0.82580.95580.06100.029*
H12B0.93190.95150.06450.029*
C130.5697 (2)0.7554 (3)0.08248 (15)0.0176 (7)
H13A0.56750.69640.05870.021*
H13B0.51660.78910.06700.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01401 (12)0.03132 (15)0.01442 (12)0.0000.0000.00234 (13)
I20.02650 (11)0.02545 (11)0.01809 (9)0.00195 (8)0.00569 (11)0.00330 (10)
I30.03353 (15)0.01645 (14)0.01612 (13)0.00729 (11)0.0000.000
Co10.0191 (3)0.0207 (3)0.0192 (3)0.0000.0000.0004 (3)
N110.0280 (15)0.0192 (15)0.0118 (13)0.0022 (12)0.0005 (11)0.0009 (11)
N120.0169 (14)0.0197 (14)0.0153 (12)0.0011 (12)0.0015 (11)0.0015 (11)
N130.0216 (15)0.0195 (16)0.0119 (12)0.0010 (12)0.0003 (11)0.0021 (10)
C110.029 (2)0.0205 (18)0.0216 (18)0.0043 (16)0.0055 (15)0.0063 (13)
C120.023 (2)0.0227 (19)0.0275 (19)0.0115 (16)0.0013 (15)0.0020 (14)
C130.0163 (14)0.0227 (16)0.0139 (15)0.0052 (18)0.0012 (11)0.0017 (15)
Geometric parameters (Å, º) top
I2—I32.9322 (2)N13—C131.479 (4)
Co1—N122.269 (3)N13—H13E0.9000
Co1—N132.282 (3)N13—H13F0.9000
Co1—N112.290 (3)C11—H11A0.9700
N11—C111.465 (5)C11—H11B0.9700
N11—H11E0.9000C12—H12A0.9700
N11—H11F0.9000C12—H12B0.9700
N12—C121.489 (5)C13—H13A0.9700
N12—H12E0.9000C13—H13B0.9700
N12—H12F0.9000
I2i—I3—I2179.587 (17)C13—N13—Co1108.63 (19)
N12—Co1—N1393.02 (9)C13—N13—H13E110.0
N12—Co1—N1193.51 (11)Co1—N13—H13E110.0
N13—Co1—N1196.22 (10)C13—N13—H13F110.0
C11—N11—Co1108.1 (2)Co1—N13—H13F110.0
C11—N11—H11E110.1H13E—N13—H13F108.3
Co1—N11—H11E110.1N11—C11—H11A109.8
C11—N11—H11F110.1N11—C11—H11B109.8
Co1—N11—H11F110.1H11A—C11—H11B108.2
H11E—N11—H11F108.4N12—C12—H12A109.6
C12—N12—Co1108.2 (2)N12—C12—H12B109.6
C12—N12—H12E110.0H12A—C12—H12B108.1
Co1—N12—H12E110.0N13—C13—H13A109.6
C12—N12—H12F110.0N13—C13—H13B109.6
Co1—N12—H12F110.0H13A—C13—H13B108.1
H12E—N12—H12F108.4
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12E···I10.902.913.765 (3)160
N12—H12F···I1ii0.903.003.817 (3)151
N13—H13E···I30.903.153.874 (3)139
N13—H13F···I2iii0.903.083.818 (3)141
N13—H13F···I1ii0.903.103.815 (3)137
N11—H11E···I2iv0.903.103.887 (3)148
N11—H11F···I2v0.902.923.735 (3)152
Symmetry codes: (ii) y, x+2, z; (iii) y+3/2, x+1, z1/4; (iv) x+1, y1/2, z+1/4; (v) y, x+1, z.

Experimental details

Crystal data
Chemical formula[Co(C2H8N2)3](I3)I
Mr746.84
Crystal system, space groupTetragonal, I42d
Temperature (K)293
a, c (Å)14.7850 (4), 17.7221 (9)
V3)3874.0 (2)
Z8
Radiation typeMo Kα
µ (mm1)7.26
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2002)
Tmin, Tmax0.224, 0.271
No. of measured, independent and
observed [I > 2σ(I)] reflections
12658, 1771, 1766
Rint0.032
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.044, 0.98
No. of reflections1771
No. of parameters80
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 1.02
Absolute structureFlack (1983), with 772 Friedel pairs
Absolute structure parameter0.0 (5)

Computer programs: CrystalClear (Rigaku, 2002), SHELXTL (Siemens, 1994).

Selected geometric parameters (Å, º) top
I2—I32.9322 (2)Co1—N132.282 (3)
Co1—N122.269 (3)Co1—N112.290 (3)
I2i—I3—I2179.587 (17)
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12E···I10.902.913.765 (3)160
N12—H12F···I1ii0.903.003.817 (3)151
N13—H13E···I30.903.153.874 (3)139
N13—H13F···I2iii0.903.083.818 (3)141
N13—H13F···I1ii0.903.103.815 (3)137
N11—H11E···I2iv0.903.103.887 (3)148
N11—H11F···I2v0.902.923.735 (3)152
Symmetry codes: (ii) y, x+2, z; (iii) y+3/2, x+1, z1/4; (iv) x+1, y1/2, z+1/4; (v) y, x+1, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds