Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound (systematic name: pyrido[4,3-e]thieno[2,3-c]pyridazine), C9H5N3S, consists of three fused heterocyclic rings. The mol­ecule is planar and the N=N bond length of 1.302 (2) Å is in good agreement with values observed in similar compounds. The mol­ecules show π–π stacking inter­actions, forming mol­ecular stacks along the b axis with inter­planar distances of 3.39 (2) and 3.49 (2) Å. The C—H groups of the thio­phene ring are involved in C—H...N inter­actions, joining mol­ecules into two-dimensional sheets parallel to (0\overline{1}1).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807041335/gk2090sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807041335/gk2090Isup2.hkl
Contains datablock I

CCDC reference: 660356

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.041
  • wR factor = 0.132
  • Data-to-parameter ratio = 17.3

checkCIF/PLATON results

No syntax errors found



Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 0 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The crystal structure of the title compound was solved as part of a study of new tris-heterocyclic compounds with potential biological activity (Stockmann & Fiksdahl, 2007). Thieno[c]cinnolines (Barton et al., 1985) have been described in the literature and the crystal structure of benzo[c]cinnoline (9,10-diazaphenanthrene) has been solved (van der Meer et al., 1972). A view of the title molecule with the atomic numbering scheme is presented in Fig. 1. The bond lengths are within the normal range of such bonds and also in accordance with the regio-isomer 7-azathieno[3,2-c]cinnoline (Hansen et al., 2007) and other benzo[c]cinnoline derivatives (Hökelek et al., 1990, 1991a,b). The mean NN distance for seven similar structures is 1.293 (10) Å, ranging from 1.283 (4) to 1.306 (2) Å. The C6—C7 bonds are always significantly shorter than the C7—C8 bonds. Mean C6—C7 bond is 1.364 (10) Å while the mean C7—C8 bond is 1.409 (10) Å. Also the angles show the same systematic differences. The mean C8—C9—C3 angle and the mean C4—C8—C9 angle are 117.8(2.) and 116.1(1.9)°, respectively, while the mean N2—C4—C8 angle is 122.3(2.0)° (see van der Meer, 1972 and references cited therein). The C—H groups of the thiophene ring are involved in intermolecular C—H···N interactions.

Related literature top

For related literature, see: Barton et al. (1985); Hansen et al. (2007); Holt & Fiksdahl (2006); Hökelek et al. (1990, 1991a,b); Stockmann & Fiksdahl (2007); van der Meer et al. (1972).

Experimental top

7-Azathieno[2,3-c]cinnoline was prepared by intramolecular diazo coupling of the diazonium ion intermediate, made by NOBF4 diazotization (Holt & Fiksdahl, 2006) of the 3-amino-4-(thiophen-3-yl)pyridine precursor. Single crystals were grown by crystallization from ethyl acetate (Stockmann & Fiksdahl, 2007).

Refinement top

All H atoms were found from a difference map and were refined with isotropic displacement parameters.

Structure description top

The crystal structure of the title compound was solved as part of a study of new tris-heterocyclic compounds with potential biological activity (Stockmann & Fiksdahl, 2007). Thieno[c]cinnolines (Barton et al., 1985) have been described in the literature and the crystal structure of benzo[c]cinnoline (9,10-diazaphenanthrene) has been solved (van der Meer et al., 1972). A view of the title molecule with the atomic numbering scheme is presented in Fig. 1. The bond lengths are within the normal range of such bonds and also in accordance with the regio-isomer 7-azathieno[3,2-c]cinnoline (Hansen et al., 2007) and other benzo[c]cinnoline derivatives (Hökelek et al., 1990, 1991a,b). The mean NN distance for seven similar structures is 1.293 (10) Å, ranging from 1.283 (4) to 1.306 (2) Å. The C6—C7 bonds are always significantly shorter than the C7—C8 bonds. Mean C6—C7 bond is 1.364 (10) Å while the mean C7—C8 bond is 1.409 (10) Å. Also the angles show the same systematic differences. The mean C8—C9—C3 angle and the mean C4—C8—C9 angle are 117.8(2.) and 116.1(1.9)°, respectively, while the mean N2—C4—C8 angle is 122.3(2.0)° (see van der Meer, 1972 and references cited therein). The C—H groups of the thiophene ring are involved in intermolecular C—H···N interactions.

For related literature, see: Barton et al. (1985); Hansen et al. (2007); Holt & Fiksdahl (2006); Hökelek et al. (1990, 1991a,b); Stockmann & Fiksdahl (2007); van der Meer et al. (1972).

Computing details top

Data collection: CAD-4-PC Software (Enraf–Nonius, 1992); cell refinement: CELDIM in CAD-4-PC Software (Enraf–Nonius, 1992); data reduction: XCAD (McArdle & Higgins, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995) and ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: OSCAIL (McArdle, 1993).

Figures top
[Figure 1] Fig. 1. A view of the title molecule with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
pyrido[4,3-e]thieno[2,3-c]pyridazine top
Crystal data top
C9H5N3SZ = 2
Mr = 187.22F(000) = 192
Triclinic, P1Dx = 1.514 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 6.8340 (18) ÅCell parameters from 25 reflections
b = 7.656 (2) Åθ = 12–18°
c = 8.847 (2) ŵ = 0.34 mm1
α = 104.172 (3)°T = 293 K
β = 101.376 (4)°Prism, colourless
γ = 107.042 (5)°0.40 × 0.30 × 0.20 mm
V = 410.63 (18) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1805 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.008
Graphite monochromatorθmax = 29.9°, θmin = 2.5°
ω/2θ scansh = 09
Absorption correction: ψ scan
[ABSCALC in OSCAIL (McArdle & Daly, 1999; North et al., 1968)]
k = 1010
Tmin = 0.882, Tmax = 0.935l = 1212
2646 measured reflections3 standard reflections every 120 min
2387 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132All H-atom parameters refined
S = 1.09 w = 1/[σ2(Fo2) + (0.0802P)2 + 0.041P]
where P = (Fo2 + 2Fc2)/3
2387 reflections(Δ/σ)max = 0.016
138 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C9H5N3Sγ = 107.042 (5)°
Mr = 187.22V = 410.63 (18) Å3
Triclinic, P1Z = 2
a = 6.8340 (18) ÅMo Kα radiation
b = 7.656 (2) ŵ = 0.34 mm1
c = 8.847 (2) ÅT = 293 K
α = 104.172 (3)°0.40 × 0.30 × 0.20 mm
β = 101.376 (4)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1805 reflections with I > 2σ(I)
Absorption correction: ψ scan
[ABSCALC in OSCAIL (McArdle & Daly, 1999; North et al., 1968)]
Rint = 0.008
Tmin = 0.882, Tmax = 0.9353 standard reflections every 120 min
2646 measured reflections intensity decay: 1%
2387 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.132All H-atom parameters refined
S = 1.09Δρmax = 0.37 e Å3
2387 reflectionsΔρmin = 0.28 e Å3
138 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 0.8879 (0.0025) x + 6.8684 (0.0030) y - 5.7312 (0.0029) z = 1.8667 (0.0014)

* 0.0357 (0.0008) S1 * -0.0053 (0.0012) N1 * -0.0173 (0.0012) N2 * 0.0186 (0.0014) N3 * 0.0049 (0.0013) C1 * -0.0149 (0.0013) C2 * 0.0030 (0.0013) C3 * -0.0112 (0.0013) C4 * 0.0111 (0.0015) C5 * 0.0122 (0.0014) C6 * -0.0038 (0.0013) C7 * -0.0169 (0.0012) C8 * -0.0161 (0.0012) C9

Rms deviation of fitted atoms = 0.0156

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.31663 (8)0.41015 (6)0.11053 (5)0.05756 (17)
N20.78580 (19)0.7761 (2)0.48565 (19)0.0527 (3)
N10.6832 (2)0.6459 (2)0.34347 (19)0.0516 (3)
N30.7020 (3)1.0644 (2)0.83784 (19)0.0640 (4)
H20.009 (3)0.557 (3)0.340 (3)0.064 (6)*
H50.937 (4)1.042 (3)0.766 (3)0.071 (6)*
H60.419 (4)1.059 (4)0.871 (3)0.083 (7)*
H70.203 (4)0.833 (4)0.648 (3)0.084 (7)*
H10.045 (3)0.332 (3)0.077 (2)0.057 (5)*
C10.0860 (3)0.4135 (2)0.1556 (2)0.0521 (4)
C20.1168 (2)0.5381 (2)0.30372 (18)0.0440 (3)
C30.4669 (2)0.5808 (2)0.29745 (17)0.0400 (3)
C40.6725 (2)0.8437 (2)0.58315 (18)0.0421 (3)
C50.7900 (3)0.9894 (3)0.7357 (2)0.0584 (4)
C60.4846 (3)1.0005 (3)0.7961 (2)0.0576 (4)
C70.3532 (3)0.8628 (2)0.65419 (18)0.0449 (3)
C80.44728 (19)0.77948 (18)0.54209 (15)0.0349 (3)
C90.33770 (19)0.63693 (18)0.38810 (15)0.0342 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0703 (3)0.0558 (3)0.0418 (2)0.0245 (2)0.01587 (18)0.00583 (17)
N20.0308 (6)0.0565 (8)0.0718 (9)0.0165 (5)0.0131 (6)0.0227 (7)
N10.0395 (6)0.0590 (8)0.0648 (8)0.0245 (6)0.0224 (6)0.0205 (7)
N30.0738 (10)0.0452 (7)0.0484 (8)0.0114 (7)0.0071 (7)0.0048 (6)
C10.0461 (8)0.0480 (8)0.0460 (8)0.0091 (6)0.0026 (6)0.0096 (6)
C20.0311 (6)0.0470 (7)0.0487 (8)0.0118 (5)0.0057 (5)0.0139 (6)
C30.0390 (6)0.0418 (7)0.0426 (7)0.0178 (5)0.0136 (5)0.0139 (5)
C40.0314 (6)0.0393 (7)0.0492 (7)0.0090 (5)0.0024 (5)0.0151 (6)
C50.0450 (8)0.0463 (8)0.0611 (10)0.0050 (7)0.0090 (7)0.0116 (7)
C60.0773 (12)0.0485 (8)0.0421 (8)0.0242 (8)0.0131 (8)0.0076 (6)
C70.0481 (8)0.0444 (7)0.0426 (7)0.0177 (6)0.0157 (6)0.0115 (6)
C80.0315 (6)0.0347 (6)0.0373 (6)0.0115 (5)0.0077 (5)0.0119 (5)
C90.0291 (5)0.0368 (6)0.0367 (6)0.0126 (5)0.0083 (4)0.0121 (5)
Geometric parameters (Å, º) top
S1—C11.7058 (19)C2—H20.89 (2)
S1—C31.7267 (17)C3—C91.3929 (18)
N2—N11.302 (2)C4—C81.4114 (18)
N2—C41.375 (2)C4—C51.421 (2)
N1—C31.3534 (19)C5—H50.92 (2)
N3—C51.293 (3)C6—C71.359 (2)
N3—C61.361 (3)C6—H60.97 (2)
C1—C21.354 (2)C7—C81.4089 (19)
C1—H10.95 (2)C7—H70.97 (3)
C2—C91.4205 (18)C8—C91.4136 (18)
C1—S1—C390.68 (7)N3—C5—C4123.69 (16)
N1—N2—C4119.47 (12)N3—C5—H5115.1 (15)
N2—N1—C3118.30 (13)C4—C5—H5121.2 (15)
C5—N3—C6117.91 (15)C7—C6—N3124.48 (17)
C2—C1—S1114.11 (12)C7—C6—H6117.7 (15)
C2—C1—H1127.8 (12)N3—C6—H6117.8 (15)
S1—C1—H1118.1 (12)C6—C7—C8118.13 (16)
C1—C2—C9111.69 (14)C6—C7—H7112.6 (15)
C1—C2—H2122.8 (14)C8—C7—H7129.3 (15)
C9—C2—H2125.4 (14)C7—C8—C4118.27 (13)
N1—C3—C9126.65 (14)C7—C8—C9126.32 (12)
N1—C3—S1121.77 (11)C4—C8—C9115.40 (12)
C9—C3—S1111.58 (11)C3—C9—C8115.56 (12)
N2—C4—C8124.60 (13)C3—C9—C2111.93 (13)
N2—C4—C5117.89 (14)C8—C9—C2132.50 (12)
C8—C4—C5117.51 (15)
C4—N2—N1—C30.5 (2)C6—C7—C8—C9179.09 (14)
C3—S1—C1—C20.64 (13)N2—C4—C8—C7179.74 (13)
S1—C1—C2—C90.48 (18)C5—C4—C8—C70.2 (2)
N2—N1—C3—C90.8 (2)N2—C4—C8—C90.6 (2)
N2—N1—C3—S1179.35 (11)C5—C4—C8—C9178.96 (13)
C1—S1—C3—N1179.21 (14)N1—C3—C9—C81.4 (2)
C1—S1—C3—C90.63 (11)S1—C3—C9—C8178.80 (9)
N1—N2—C4—C81.2 (2)N1—C3—C9—C2179.35 (14)
N1—N2—C4—C5178.37 (15)S1—C3—C9—C20.49 (15)
C6—N3—C5—C40.4 (3)C7—C8—C9—C3178.46 (13)
N2—C4—C5—N3179.99 (16)C4—C8—C9—C30.58 (18)
C8—C4—C5—N30.4 (3)C7—C8—C9—C20.6 (2)
C5—N3—C6—C70.1 (3)C4—C8—C9—C2179.69 (14)
N3—C6—C7—C80.1 (3)C1—C2—C9—C30.02 (18)
C6—C7—C8—C40.1 (2)C1—C2—C9—C8179.12 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N3i0.943 (19)2.441 (18)3.352 (3)159.1 (18)
C2—H2···N1ii0.89 (2)2.52 (2)3.360 (2)158 (2)
Symmetry codes: (i) x1, y1, z1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC9H5N3S
Mr187.22
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.8340 (18), 7.656 (2), 8.847 (2)
α, β, γ (°)104.172 (3), 101.376 (4), 107.042 (5)
V3)410.63 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
[ABSCALC in OSCAIL (McArdle & Daly, 1999; North et al., 1968)]
Tmin, Tmax0.882, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
2646, 2387, 1805
Rint0.008
(sin θ/λ)max1)0.702
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.132, 1.09
No. of reflections2387
No. of parameters138
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.37, 0.28

Computer programs: CELDIM in CAD-4-PC Software (Enraf–Nonius, 1992), XCAD (McArdle & Higgins, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEX (McArdle, 1995) and ORTEPIII (Burnett & Johnson, 1996), OSCAIL (McArdle, 1993).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N3i0.943 (19)2.441 (18)3.352 (3)159.1 (18)
C2—H2···N1ii0.89 (2)2.52 (2)3.360 (2)158 (2)
Symmetry codes: (i) x1, y1, z1; (ii) x1, y, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds