Download citation
Download citation
link to html
In the three spiro­acenaphthylene structures 5′′-[(E)-2,3-dichloro­benzyl­idene]-7′-(2,3-dichloro­phenyl)-1′′-methyldispiro­[ace­naphthyl­ene-1,5′-pyrrolo­[1,2-c][1,3]thia­zole-6′,3′′-piperidine]-2,4′′-dione, C35H26Cl4N2O2S, (I), 5′′-[(E)-4-fluoro­benzyl­idene]-7′-(4-fluoro­phenyl)-1′′-methyldispiro­[acenaphthyl­ene-1,5′-pyrrolo­[1,2-c][1,3]thia­zole-6′,3′′-piperidine]-2,4′′-dione, C35H28F2N2O2S, (II), and 5′′-[(E)-4-bromo­benzylidene]-7′-(4-bromo­phenyl)-1′′-methyldispiro­[ace­naphthylene-1,5′-pyrrolo­[1,2-c][1,3]thia­zole-6′,3′′-piperidine]-2,4′′-dione, C35H28Br2N2O2S, (III), the substituted aryl groups are 2,3-dichloro-, 4-fluoro- and 4-bromo­phenyl, respectively. The six-membered piperidine ring in all three structures adopts a half-chair conformation, the thia­zolidine ring adopts a slightly twisted envelope and the pyrrolidine ring an envelope conformation; in each case, the C atom linking the rings is the flap atom. In all three structures, weak intra­molecular C—H...O inter­actions are present. The crystal packing is stabilized through a number of inter­molecular C—H...O and C—H...X inter­actions, where X = Cl in (I) and F or S in (II), and C—H...O inter­actions are observed predominantly in (III). In all three structures, mol­ecules are linked through centrosymmetric ring motifs, further tailored through a relay of C—H...X [Cl in (I), Br in (II) and O in (III)] inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112024584/gg3273sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112024584/gg3273Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112024584/gg3273IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112024584/gg3273IIIsup4.hkl
Contains datablock III

CCDC references: 893492; 893493; 893494

Comment top

The piperidine ring is a distinct structural feature in a variety of alkaloid natural products and drug candidates. During the past decade, thousands of piperidine compounds have been reported in clinical and preclinical studies (Watson et al., 2000). Piperidinones, though less prominent, are also precursors to a host of biologically active compounds and natural alkaloids, prior to their conversion to piperidines. Spiro systems are also of interest as they exhibit a wide range of biological activities (Kobayashi et al., 1991; James et al., 1991). Spiropyrrolidines have attracted much attention as potential antileukaemic and anticonvulsant agents (Abou Gharbia et al., 1979), with antiviral (Lundahl et al., 1972) and local anaesthetic (Kornett & Thio, 1976) activities. Our interest in preparing pharmacologically active piperidones led us to the title compounds, (I)–(III), and especially the study of their conformational features. There are few structures in the Cambridge Structral Database (CSD, Version?; Allen, 2002) containing pyrrrolothiazine ring systems and this is the first report with the attached five-membered ring. Hence, these structures are presumed to be interesting and contain rarely studied moieties.

The six-membered piperidine rings in all three compounds (Figs. 1–3) adopt the half-chair conformation, with deviations of atoms N1 and C5 from the least-squares plane defined by atoms C2/C3/C4/C6 of 0.613 (3) and 0.509 (3) Å in (I), 0.553 (3) and 0.562 (3) Å in (II), and 0.545 (3) and 0.565 (3) Å in (III), respectively. The differences in the deviations are due to steric hindrance of the different substituents at the C3 and C5 positions of the piperidine ring. The olefinic double bond in all three structures has an E conformation and the pyrrolidine ring is in an envelope conformation. The thiazolidine ring is in a twisted envelope conformation with atom C8 at the flap, with a pseudo-twofold axis passing through atom S1 and the C8—N2 bond. The puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) are q2 = 0.356 (2) Å, ϕ = -78.0 (4)° and Δs(C8) = 0.035 (1) Å for the thiazolidine ring, and q2 = 0.263 (2) Å, ϕ = -178.2 (4)° and Δs(C8) = 0.010 (1) Å for the pyrrolidine ring of (I); q2 = 0.419 (2) Å, ϕ = -93.3 (3)° and Δs(S1) = 0.016 (1) Å for the thiazolidine ring, and q2 = 0.456 (2) Å, ϕ = -0.4 (3)° and Δs(C8) = 0.001 (1) Å for the pyrrole [pyrrolidine?] ring of (II); and q2 = 0.440 (3) Å, ϕ = -75.0 (4)° and Δs(C8) = 0.029 (1) Å for the thiazolidine ring, and q2 = 0.460 (3) Å, ϕ = 144.6 (4)° and Δs(C8) = 0.011 (1) Å for the pyrrolidine ring of (III).

The aryl rings in all three structures are not coplanar with the mean plane of the piperidone ring; the torsion angle C3—C31—C32—C37 is 32.4 (3)° in (I), 9.6 (4)° in (II) and 43.7 (5)° in (III). This lack of coplanarity is caused by nonbonded interactions between one of the ortho H atoms in the aryl ring and the equatorial H atoms at the 2-position of the piperidone ring (H37/H2A or H2B). Steric repulsions are reduced by the expansion of the C3—C31—C32 angle [129.57 (19)° in (I), 132.7 (2)° in (II) and 127.1 (3)° in (III)]. The dihedral angle between the dichlorophenyl rings is 58.4 (1)° in (I), that between the fluorophenyl rings is 87.2 (1)° in (II), and that between the bromophenyl rings is 86.1 (1)° in (III), and these rings make angles of 56.5 (1) and 65.2 (1)° in (I), 45.4 (1) and 43.1 (1)° in (II), and 48.7 (1) and 48.4 (1)° in (III) with their respective acenaphthene group.

The C—C distances in the acenaphthene group range from 1.354 (3) (C21—C22) to 1.588 (2) Å (C11—C12) in (I), from 1.360 (2) (C21—C22) to 1.571 Å (C11—C12) in (II) and from 1.350 (C21—C22) to 1.565 Å (C11—C12) in (III), and the C—C—C angles are in the ranges 101.01 (16)–124.1 (2)° in (I), 101.93 (16)–123.1 (2)° in (II) and 101.3 (2)–123.6 (3)° in (III). These compare with those of related structures (Hazell, 1976; Hazell & Hazell, 1977; Hazell & Weigelt, 1976; Jones et al. 1992; Sundar et al., 2002). The C8—N2 bond length is 1.451 (3) Å in (I), 1.448 (4) Å in (II) and 1.454 (3) Å in (III) and these values are comparable with the Csp2—Nsp2 distances found in similar structures (Sussman & Wodak, 1973; Wodak, 1975). All three title structures feature a weak intramolecular C—H···O interaction.

In all three structures, due to the lack of suitable donor and acceptor atoms for classical hydrogen bonding, the crystal structures are stabilized through intermolecular C—H···X interactions [X = Cl in (I), F in (II) and O in (III)]. These C—H···X interactions lead to primary ring motifs around inversion centres, which are further connected through chain motifs (Bernstein et al., 1995).

In (I), the molecules are connected through a C2B—H2B···Cl1ii interaction, leading to an R22(16) ring around the inversion centres of the unit cell (Fig. 4) and this ring, translated by a unit cell along the b axis connected by an intermolecular C74—H74···Cl1i interaction (see Table 1 for symmetry codes), leads to a C(14) chain extending along the b axis (Fig. 5). These chains or rings do not have linking C—H···O or C—H···π interactions.

In (II), one C73—H73···O2iii and two C37—H37···F2ii interactions lead to an unusual R33(27) ring (Fig. 6), which is connected through a secondary C22(14) chain extending along the ab diagonal of the unit cell (Fig. 7), formed through C37—H37···F2ii and C33—H33···S1i interactions (see Table 2 for symmetry codes).

In (III), all the intermolecular interactions are of the C—H···O type (Table 3). The crystal packing features two dimeric R22(16) and R22(14)R22(16) ring motifs formed through C73—H73···O1iii and C76—H76···O2ii/C9—H9A···O2ii hydrogen bonds (Fig. 8 and 9). These C—H···O dimers are arranged in tandem and form a zigzag C(8) chain extending along the b axis through a C34—H34···O1i interaction (Fig. 10) (see Table 3 for symmetry codes).

Thus, all three title spiroacenaphthene crystal structures are stabilized through nonclassical C—H···X interactions with primary ring and secondary chain motifs.

Related literature top

For related literature, see: Abou & Doukas (1979); Allen (2002); Bernstein et al. (1995); Cremer & Pople (1975); Hazell (1976); Hazell & Hazell (1977); Hazell & Weigelt (1976); James et al. (1991); Jones et al. (1992); Kobayashi et al. (1991); Kornett & Thio (1976); Lundahl et al. (1972); Nardelli (1983); Sundar et al. (2002); Sussman & Wodak (1973); Watson et al. (2000); Wodak (1975).

Experimental top

For the preparation of (I), a mixture of 1-methyl-3,5-bis[(E)-2,3-dichlorobenzylidene]tetrahydropyridin-4(1H)-one (1 mmol), acenaphthenequinone (0.182 g, 1 mmol) and 1,3-thiazolane-4-carboxylic acid (0.133 g, 1 mmol) was dissolved in methanol (10 ml) and refluxed for 30 min. After completion of the reaction as evident from thin-layer chromatography (TLC), the mixture was poured into water (50 ml), and the precipitated solid was filtered off and washed with water (100 ml) to obtain the pure product as a pale-yellow solid. The product was recrystallized from ethyl acetate to obtain suitable crystals of (I) for X-ray analysis (yield 92%, m.p. 477 K).

For the preparation of (II), a mixture of 1-methyl-3,5-bis[(E)-4-flurobenzylidene]tetrahydropyridin-4(1H)-one (1 mmol), acenaphthenequinone (0.182 g, 1 mmol) and 1,3-thiazolane-4-carboxylic acid (0.133 g, 1 mmol) was dissolved in methanol (10 ml) and refluxed for 30 min. After completion of the reaction as evident from TLC, the mixture was poured into water (50 ml), and the precipitated solid was filtered off and washed with water (100 ml) to obtain the pure product as a pale-yellow solid. The product was recrystallized from ethyl acetate to obtain suitable crystals of (II) for X-ray analysis (yield 91%, m.p. 483 K).

For the preparation of (III), a mixture of 1-methyl-3,5-bis[(E)-4-bromobenzylidene]tetrahydropyridin-4(1H)-one (1 mmol), acenaphthenequinone (0.182 g, 1 mmol) and 1,3-thiazolane-4-carboxylic acid (0.133 g, 1 mmol) was dissolved in methanol (10 ml) and refluxed for 30 min. After completion of the reaction as evident from TLC, the mixture was poured into water (50 ml), and the precipitated solid was filtered off and washed with water (100 ml) to obtain the pure product as a pale-yellow solid. The product was recrystallized from ethyl acetate to obtain suitable crystals of (III) for X-ray analysis (yield 91%, m.p. 485 K).

Refinement top

H atoms were placed at calculated positions and allowed to ride on their carrier atoms, with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C) for CH2 and CH groups or 1.5Ueq(C) for methyl H atoms.

Computing details top

For all compounds, data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The molecular structure of (II), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 3] Fig. 3. The molecular structure of (III), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 4] Fig. 4. A partial packing view for (I), showing the R22(16) ring. Dashed lines indicate hydrogen bonds. Some H atoms have been omitted for clarity. (See Table 1 for symmetry code of acceptor atom.) [Please supply symmetry-code descriptor for repeat labels]
[Figure 5] Fig. 5. A partial packing view for (I), showing the C22(14) chain extending along the b axis of the unit cell. Dashed lines indicate hydrogen bonds. Some H atoms have been omitted for clarity. (See Table 1 for symmetry code of acceptor atom.) [Please supply symmetry-code descriptor for repeat label]
[Figure 6] Fig. 6. A partial packing view for (II), showing the unusal ring R33(27) motif. Dashed lines indicate hydrogen bonds. Some H atoms have been omitted for clarity. (See Table 2 for symmetry code of acceptor atom.) [Please supply symmetry-code descriptor for repeat labels]
[Figure 7] Fig. 7. A partial packing view for (II), showing the C22(14) chain extending along the ab diagonal of the unit cell. Dashed lines indicate hydrogen bonds. Some H atoms have been omitted for clarity. (See Table 2 for symmetry code of acceptor atom.) [Please supply symmetry-code descriptor for repeat labels]
[Figure 8] Fig. 8. A partial packing view for (III), showing the R22(16) ring. Dashed lines indicate hydrogen bonds. Some H atoms have been omitted for clarity. (See Table 3 for symmetry code of acceptor atom.) [Please supply symmetry-code descriptor for repeat label]
[Figure 9] Fig. 9. A partial packing view for (III), showing the R22(14)R22(16) ring. Dashed lines indicate hydrogen bonds. Some H atoms have been omitted for clarity. (See Table 3 for symmetry code of acceptor atom.) [Please supply symmetry-code descriptor for repeat labels]
[Figure 10] Fig. 10. A partial packing view for (III), showing the C(8) chain extending along the b axis of the unit cell. Dashed lines indicate hydrogen bonds. Some H atoms have been omitted for clarity. (See Table 3 for symmetry code of acceptor atom.) [Please supply symmetry-code descriptor for repeat label]
(I) 5''-[(E)-2,3-Dichlorobenzylidene]-7'-(2,3-dichlorophenyl)-1''-methyl- dispiro[acenaphthylene-1,5'-pyrrolo[1,2-c][1,3]thiazole-6',3''- piperidine]-2,4''-dione top
Crystal data top
C35H26Cl4N2O2SF(000) = 1400
Mr = 680.44Dx = 1.446 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2000 reflections
a = 13.4722 (6) Åθ = 2–31°
b = 16.4269 (8) ŵ = 0.48 mm1
c = 14.8673 (7) ÅT = 293 K
β = 108.243 (2)°Block, colourless
V = 3124.9 (3) Å30.19 × 0.16 × 0.11 mm
Z = 4
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
8258 independent reflections
Radiation source: fine-focus sealed tube5375 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 0 pixels mm-1θmax = 29.0°, θmin = 2.0°
ω and ϕ scansh = 1818
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2220
Tmin = 0.912, Tmax = 0.948l = 2020
37631 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0552P)2 + 1.3138P]
where P = (Fo2 + 2Fc2)/3
8258 reflections(Δ/σ)max < 0.001
397 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C35H26Cl4N2O2SV = 3124.9 (3) Å3
Mr = 680.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.4722 (6) ŵ = 0.48 mm1
b = 16.4269 (8) ÅT = 293 K
c = 14.8673 (7) Å0.19 × 0.16 × 0.11 mm
β = 108.243 (2)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
8258 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5375 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.948Rint = 0.034
37631 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.02Δρmax = 0.39 e Å3
8258 reflectionsΔρmin = 0.51 e Å3
397 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5172 (2)0.11908 (15)0.00355 (17)0.0574 (6)
H1A0.55910.15830.02310.086*
H1B0.45910.10340.05700.086*
H1C0.55880.07200.02180.086*
C20.42248 (17)0.23033 (12)0.03535 (14)0.0435 (5)
H2A0.36670.21960.02300.052*
H2B0.46990.26910.02140.052*
C30.37677 (14)0.26727 (12)0.10607 (13)0.0369 (4)
C40.35543 (15)0.21336 (12)0.17961 (13)0.0389 (4)
C50.41051 (15)0.13015 (11)0.19827 (13)0.0365 (4)
C60.41435 (16)0.09889 (12)0.10223 (13)0.0396 (4)
H6A0.44420.04460.10900.048*
H6B0.34440.09660.05730.048*
C70.35098 (16)0.07197 (12)0.24762 (14)0.0405 (4)
H70.28400.09740.24400.049*
C80.41836 (17)0.06983 (13)0.35178 (14)0.0464 (5)
H80.41680.01480.37680.056*
C90.3879 (2)0.13137 (16)0.41644 (16)0.0563 (6)
H9A0.33450.10880.44040.068*
H9B0.36140.18110.38220.068*
C100.58938 (19)0.10727 (17)0.44576 (16)0.0620 (7)
H10A0.64260.14620.44310.074*
H10B0.62390.05840.47710.074*
C110.52525 (15)0.14001 (12)0.27129 (13)0.0396 (4)
C120.61175 (16)0.10467 (13)0.22990 (14)0.0440 (5)
C130.68351 (17)0.17114 (14)0.22579 (15)0.0483 (5)
C140.76778 (19)0.17436 (18)0.19293 (18)0.0629 (7)
H140.78810.12890.16580.076*
C150.8227 (2)0.2483 (2)0.2014 (2)0.0766 (8)
H150.87950.25140.17860.092*
C160.7955 (2)0.3155 (2)0.2419 (2)0.0727 (8)
H160.83410.36310.24660.087*
C170.70888 (19)0.31394 (16)0.27714 (16)0.0573 (6)
C180.65381 (17)0.24013 (13)0.26630 (14)0.0458 (5)
C190.56458 (16)0.22748 (13)0.29537 (13)0.0428 (4)
C200.53250 (19)0.29075 (14)0.33933 (15)0.0534 (5)
H200.47530.28470.36120.064*
C210.5871 (2)0.36550 (16)0.35125 (17)0.0656 (7)
H210.56440.40830.38080.079*
C220.6712 (2)0.37727 (16)0.32134 (18)0.0690 (7)
H220.70440.42770.33010.083*
C310.35283 (16)0.34577 (12)0.11033 (15)0.0415 (4)
H310.32580.35930.15880.050*
C320.36283 (15)0.41397 (12)0.04976 (15)0.0413 (4)
C330.37847 (17)0.49265 (13)0.08745 (17)0.0472 (5)
C340.38266 (18)0.55894 (13)0.0303 (2)0.0552 (6)
C350.37141 (18)0.54820 (15)0.0638 (2)0.0604 (6)
H350.37480.59270.10150.072*
C360.35523 (18)0.47180 (16)0.10209 (17)0.0592 (6)
H360.34680.46450.16610.071*
C370.35122 (17)0.40506 (14)0.04632 (15)0.0496 (5)
H370.34060.35350.07340.060*
C710.32874 (16)0.01146 (12)0.20307 (15)0.0429 (5)
C720.23750 (17)0.02650 (14)0.12910 (16)0.0478 (5)
C730.21611 (19)0.10360 (17)0.08840 (18)0.0594 (6)
C740.2840 (2)0.16626 (16)0.1225 (2)0.0692 (8)
H740.26870.21800.09650.083*
C750.3744 (2)0.15297 (15)0.1947 (2)0.0652 (7)
H750.42060.19580.21740.078*
C760.39782 (19)0.07630 (14)0.23433 (17)0.0514 (5)
H760.46050.06790.28240.062*
N10.47866 (13)0.15483 (10)0.06896 (11)0.0402 (4)
N20.52372 (14)0.08807 (11)0.35163 (12)0.0465 (4)
O10.29640 (13)0.23496 (9)0.22163 (11)0.0563 (4)
O20.62027 (13)0.03332 (10)0.21321 (12)0.0564 (4)
S10.50629 (6)0.15104 (5)0.51224 (4)0.0714 (2)
Cl10.40324 (7)0.65580 (4)0.07790 (7)0.0925 (3)
Cl20.39619 (7)0.50886 (4)0.20618 (5)0.0742 (2)
Cl30.14815 (5)0.05119 (5)0.08583 (4)0.06758 (19)
Cl40.10393 (6)0.12156 (6)0.00563 (6)0.0959 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0837 (17)0.0490 (14)0.0567 (13)0.0021 (12)0.0467 (13)0.0001 (11)
C20.0610 (12)0.0377 (11)0.0381 (10)0.0020 (9)0.0245 (9)0.0068 (8)
C30.0423 (10)0.0353 (10)0.0344 (9)0.0025 (8)0.0137 (8)0.0059 (8)
C40.0494 (11)0.0343 (10)0.0374 (9)0.0048 (8)0.0196 (8)0.0061 (8)
C50.0461 (10)0.0332 (10)0.0357 (9)0.0047 (8)0.0206 (8)0.0080 (8)
C60.0533 (11)0.0345 (10)0.0375 (10)0.0000 (9)0.0236 (8)0.0034 (8)
C70.0495 (11)0.0363 (11)0.0432 (10)0.0065 (9)0.0255 (9)0.0121 (8)
C80.0583 (12)0.0453 (12)0.0431 (11)0.0087 (10)0.0265 (9)0.0156 (9)
C90.0683 (14)0.0641 (15)0.0459 (12)0.0118 (12)0.0313 (11)0.0083 (11)
C100.0610 (14)0.0774 (18)0.0461 (12)0.0138 (13)0.0148 (11)0.0228 (12)
C110.0482 (11)0.0379 (11)0.0382 (10)0.0074 (9)0.0214 (8)0.0092 (8)
C120.0480 (11)0.0435 (12)0.0450 (11)0.0100 (9)0.0211 (9)0.0103 (9)
C130.0475 (11)0.0547 (14)0.0446 (11)0.0017 (10)0.0174 (9)0.0104 (10)
C140.0561 (14)0.0755 (18)0.0646 (15)0.0006 (13)0.0296 (12)0.0099 (13)
C150.0562 (15)0.098 (2)0.0785 (19)0.0172 (16)0.0261 (14)0.0165 (17)
C160.0634 (16)0.080 (2)0.0665 (17)0.0250 (15)0.0085 (13)0.0184 (15)
C170.0619 (14)0.0559 (15)0.0437 (12)0.0120 (12)0.0013 (10)0.0098 (11)
C180.0522 (12)0.0469 (12)0.0339 (10)0.0031 (10)0.0070 (8)0.0089 (9)
C190.0538 (11)0.0418 (11)0.0307 (9)0.0047 (9)0.0102 (8)0.0047 (8)
C200.0686 (14)0.0511 (14)0.0378 (11)0.0050 (11)0.0128 (10)0.0024 (9)
C210.0901 (19)0.0516 (15)0.0433 (13)0.0025 (14)0.0040 (12)0.0094 (11)
C220.0867 (19)0.0518 (15)0.0507 (14)0.0143 (14)0.0040 (13)0.0002 (12)
C310.0463 (11)0.0370 (10)0.0442 (10)0.0038 (9)0.0183 (9)0.0072 (8)
C320.0364 (10)0.0361 (11)0.0516 (11)0.0050 (8)0.0143 (8)0.0130 (9)
C330.0468 (11)0.0374 (11)0.0657 (14)0.0074 (9)0.0296 (10)0.0090 (10)
C340.0510 (12)0.0341 (11)0.0902 (18)0.0091 (9)0.0362 (12)0.0152 (11)
C350.0541 (13)0.0483 (14)0.0783 (17)0.0040 (11)0.0201 (12)0.0310 (13)
C360.0576 (14)0.0638 (16)0.0494 (13)0.0051 (12)0.0070 (10)0.0232 (11)
C370.0497 (12)0.0445 (12)0.0492 (12)0.0017 (10)0.0076 (9)0.0136 (10)
C710.0522 (11)0.0390 (11)0.0464 (11)0.0013 (9)0.0282 (9)0.0126 (9)
C720.0518 (12)0.0490 (13)0.0521 (12)0.0009 (10)0.0301 (10)0.0098 (10)
C730.0576 (14)0.0672 (17)0.0669 (15)0.0173 (12)0.0389 (12)0.0098 (13)
C740.0791 (19)0.0475 (15)0.100 (2)0.0135 (13)0.0561 (17)0.0087 (14)
C750.0797 (18)0.0418 (13)0.0900 (19)0.0077 (12)0.0496 (16)0.0099 (13)
C760.0593 (13)0.0427 (12)0.0599 (13)0.0061 (10)0.0297 (11)0.0118 (10)
N10.0538 (10)0.0355 (9)0.0393 (8)0.0006 (7)0.0263 (7)0.0027 (7)
N20.0515 (10)0.0518 (11)0.0400 (9)0.0112 (8)0.0200 (8)0.0179 (8)
O10.0765 (11)0.0468 (9)0.0629 (10)0.0195 (8)0.0467 (9)0.0158 (7)
O20.0629 (10)0.0446 (9)0.0716 (11)0.0134 (8)0.0350 (8)0.0075 (8)
S10.0871 (5)0.0879 (5)0.0392 (3)0.0115 (4)0.0196 (3)0.0053 (3)
Cl10.1250 (7)0.0333 (3)0.1559 (8)0.0032 (4)0.0966 (6)0.0036 (4)
Cl20.1147 (6)0.0493 (4)0.0793 (5)0.0010 (3)0.0602 (4)0.0074 (3)
Cl30.0641 (4)0.0812 (5)0.0562 (3)0.0167 (3)0.0171 (3)0.0173 (3)
Cl40.0685 (4)0.1288 (8)0.0955 (6)0.0296 (5)0.0332 (4)0.0408 (5)
Geometric parameters (Å, º) top
C1—N11.459 (2)C14—H140.9300
C1—H1A0.9600C15—C161.361 (4)
C1—H1B0.9600C15—H150.9300
C1—H1C0.9600C16—C171.421 (4)
C2—N11.457 (3)C16—H160.9300
C2—C31.503 (3)C17—C181.404 (3)
C2—H2A0.9700C17—C221.407 (4)
C2—H2B0.9700C18—C191.414 (3)
C3—C311.335 (3)C19—C201.368 (3)
C3—C41.503 (2)C20—C211.414 (4)
C4—O11.208 (2)C20—H200.9300
C4—C51.539 (3)C21—C221.354 (4)
C5—C61.533 (3)C21—H210.9300
C5—C71.570 (2)C22—H220.9300
C5—C111.595 (3)C31—C321.470 (3)
C6—N11.452 (2)C31—H310.9300
C6—H6A0.9700C32—C371.395 (3)
C6—H6B0.9700C32—C331.398 (3)
C7—C711.511 (3)C33—C341.394 (3)
C7—C81.531 (3)C33—Cl21.726 (2)
C7—H70.9800C34—C351.370 (4)
C8—N21.451 (3)C34—Cl11.728 (3)
C8—C91.537 (3)C35—C361.367 (4)
C8—H80.9800C35—H350.9300
C9—S11.804 (3)C36—C371.386 (3)
C9—H9A0.9700C36—H360.9300
C9—H9B0.9700C37—H370.9300
C10—N21.437 (3)C71—C721.391 (3)
C10—S11.855 (3)C71—C761.395 (3)
C10—H10A0.9700C72—C731.394 (3)
C10—H10B0.9700C72—Cl31.734 (2)
C11—N21.473 (2)C73—C741.365 (4)
C11—C191.535 (3)C73—Cl41.733 (3)
C11—C121.588 (3)C74—C751.366 (4)
C12—O21.211 (3)C74—H740.9300
C12—C131.472 (3)C75—C761.384 (4)
C13—C141.370 (3)C75—H750.9300
C13—C181.399 (3)C76—H760.9300
C14—C151.408 (4)
N1—C1—H1A109.5C16—C15—H15118.9
N1—C1—H1B109.5C14—C15—H15118.9
H1A—C1—H1B109.5C15—C16—C17121.0 (3)
N1—C1—H1C109.5C15—C16—H16119.5
H1A—C1—H1C109.5C17—C16—H16119.5
H1B—C1—H1C109.5C18—C17—C22115.9 (2)
N1—C2—C3112.72 (15)C18—C17—C16116.0 (3)
N1—C2—H2A109.0C22—C17—C16128.1 (3)
C3—C2—H2A109.0C13—C18—C17122.5 (2)
N1—C2—H2B109.0C13—C18—C19113.43 (19)
C3—C2—H2B109.0C17—C18—C19124.1 (2)
H2A—C2—H2B107.8C20—C19—C18117.4 (2)
C31—C3—C2125.52 (17)C20—C19—C11133.3 (2)
C31—C3—C4115.49 (17)C18—C19—C11109.31 (17)
C2—C3—C4118.99 (16)C19—C20—C21119.3 (2)
O1—C4—C3120.65 (17)C19—C20—H20120.3
O1—C4—C5121.74 (16)C21—C20—H20120.3
C3—C4—C5117.61 (15)C22—C21—C20122.6 (2)
C6—C5—C4106.53 (15)C22—C21—H21118.7
C6—C5—C7113.74 (16)C20—C21—H21118.7
C4—C5—C7109.71 (15)C21—C22—C17120.6 (2)
C6—C5—C11111.09 (15)C21—C22—H22119.7
C4—C5—C11110.02 (16)C17—C22—H22119.7
C7—C5—C11105.77 (14)C3—C31—C32129.57 (19)
N1—C6—C5107.63 (16)C3—C31—H31115.2
N1—C6—H6A110.2C32—C31—H31115.2
C5—C6—H6A110.2C37—C32—C33117.51 (19)
N1—C6—H6B110.2C37—C32—C31123.03 (19)
C5—C6—H6B110.2C33—C32—C31119.35 (19)
H6A—C6—H6B108.5C34—C33—C32120.5 (2)
C71—C7—C8113.34 (16)C34—C33—Cl2118.97 (18)
C71—C7—C5114.06 (15)C32—C33—Cl2120.51 (16)
C8—C7—C5105.01 (16)C35—C34—C33120.6 (2)
C71—C7—H7108.1C35—C34—Cl1119.29 (18)
C8—C7—H7108.1C33—C34—Cl1120.1 (2)
C5—C7—H7108.1C36—C35—C34119.7 (2)
N2—C8—C7105.32 (15)C36—C35—H35120.2
N2—C8—C9108.56 (19)C34—C35—H35120.2
C7—C8—C9115.32 (18)C35—C36—C37120.5 (2)
N2—C8—H8109.2C35—C36—H36119.7
C7—C8—H8109.2C37—C36—H36119.7
C9—C8—H8109.2C36—C37—C32121.1 (2)
C8—C9—S1105.55 (16)C36—C37—H37119.4
C8—C9—H9A110.6C32—C37—H37119.4
S1—C9—H9A110.6C72—C71—C76117.4 (2)
C8—C9—H9B110.6C72—C71—C7120.84 (19)
S1—C9—H9B110.6C76—C71—C7121.8 (2)
H9A—C9—H9B108.8C71—C72—C73121.1 (2)
N2—C10—S1108.29 (16)C71—C72—Cl3120.10 (18)
N2—C10—H10A110.0C73—C72—Cl3118.84 (19)
S1—C10—H10A110.0C74—C73—C72120.0 (2)
N2—C10—H10B110.0C74—C73—Cl4119.0 (2)
S1—C10—H10B110.0C72—C73—Cl4121.0 (2)
H10A—C10—H10B108.4C73—C74—C75120.0 (3)
N2—C11—C19116.40 (16)C73—C74—H74120.0
N2—C11—C12107.49 (15)C75—C74—H74120.0
C19—C11—C12101.01 (16)C74—C75—C76120.6 (2)
N2—C11—C5103.67 (15)C74—C75—H75119.7
C19—C11—C5116.38 (15)C76—C75—H75119.7
C12—C11—C5111.81 (16)C75—C76—C71120.9 (2)
O2—C12—C13127.14 (19)C75—C76—H76119.6
O2—C12—C11124.14 (18)C71—C76—H76119.6
C13—C12—C11108.42 (18)C6—N1—C2110.74 (15)
C14—C13—C18120.2 (2)C6—N1—C1112.68 (16)
C14—C13—C12132.2 (2)C2—N1—C1110.85 (16)
C18—C13—C12107.62 (18)C10—N2—C8110.36 (16)
C13—C14—C15118.2 (3)C10—N2—C11120.12 (19)
C13—C14—H14120.9C8—N2—C11112.51 (15)
C15—C14—H14120.9C9—S1—C1092.41 (11)
C16—C15—C14122.1 (3)
N1—C2—C3—C31156.45 (19)C12—C11—C19—C20174.7 (2)
N1—C2—C3—C423.3 (3)C5—C11—C19—C2064.0 (3)
C31—C3—C4—O118.7 (3)N2—C11—C19—C18119.38 (18)
C2—C3—C4—O1161.5 (2)C12—C11—C19—C183.37 (19)
C31—C3—C4—C5161.80 (18)C5—C11—C19—C18117.89 (17)
C2—C3—C4—C518.0 (3)C18—C19—C20—C211.7 (3)
O1—C4—C5—C6142.8 (2)C11—C19—C20—C21179.7 (2)
C3—C4—C5—C636.6 (2)C19—C20—C21—C220.5 (4)
O1—C4—C5—C719.3 (3)C20—C21—C22—C170.7 (4)
C3—C4—C5—C7160.15 (17)C18—C17—C22—C210.4 (3)
O1—C4—C5—C1196.7 (2)C16—C17—C22—C21179.8 (2)
C3—C4—C5—C1183.9 (2)C2—C3—C31—C320.7 (4)
C4—C5—C6—N163.73 (19)C4—C3—C31—C32179.50 (19)
C7—C5—C6—N1175.29 (16)C3—C31—C32—C3732.4 (3)
C11—C5—C6—N156.1 (2)C3—C31—C32—C33151.6 (2)
C6—C5—C7—C7112.5 (2)C37—C32—C33—C340.3 (3)
C4—C5—C7—C71131.64 (18)C31—C32—C33—C34176.58 (19)
C11—C5—C7—C71109.73 (18)C37—C32—C33—Cl2178.69 (16)
C6—C5—C7—C8137.12 (17)C31—C32—C33—Cl25.1 (3)
C4—C5—C7—C8103.69 (18)C32—C33—C34—C350.1 (3)
C11—C5—C7—C814.93 (19)Cl2—C33—C34—C35178.45 (18)
C71—C7—C8—N299.21 (19)C32—C33—C34—Cl1179.40 (16)
C5—C7—C8—N225.9 (2)Cl2—C33—C34—Cl11.0 (3)
C71—C7—C8—C9141.15 (19)C33—C34—C35—C360.4 (4)
C5—C7—C8—C993.7 (2)Cl1—C34—C35—C36179.92 (18)
N2—C8—C9—S135.39 (19)C34—C35—C36—C370.7 (4)
C7—C8—C9—S1153.24 (15)C35—C36—C37—C320.4 (3)
C6—C5—C11—N2122.64 (16)C33—C32—C37—C360.1 (3)
C4—C5—C11—N2119.64 (16)C31—C32—C37—C36176.2 (2)
C7—C5—C11—N21.22 (19)C8—C7—C71—C72151.08 (18)
C6—C5—C11—C19108.20 (18)C5—C7—C71—C7288.8 (2)
C4—C5—C11—C199.5 (2)C8—C7—C71—C7628.6 (2)
C7—C5—C11—C19127.93 (16)C5—C7—C71—C7691.5 (2)
C6—C5—C11—C127.1 (2)C76—C71—C72—C730.3 (3)
C4—C5—C11—C12124.86 (16)C7—C71—C72—C73179.33 (18)
C7—C5—C11—C12116.72 (16)C76—C71—C72—Cl3179.60 (15)
N2—C11—C12—O247.1 (3)C7—C71—C72—Cl30.8 (2)
C19—C11—C12—O2169.6 (2)C71—C72—C73—C741.5 (3)
C5—C11—C12—O266.0 (2)Cl3—C72—C73—C74178.57 (18)
N2—C11—C12—C13126.97 (18)C71—C72—C73—Cl4178.42 (15)
C19—C11—C12—C134.5 (2)Cl3—C72—C73—Cl41.5 (2)
C5—C11—C12—C13119.88 (18)C72—C73—C74—C751.9 (4)
O2—C12—C13—C149.0 (4)Cl4—C73—C74—C75178.08 (19)
C11—C12—C13—C14177.1 (2)C73—C74—C75—C760.4 (4)
O2—C12—C13—C18169.7 (2)C74—C75—C76—C711.5 (3)
C11—C12—C13—C184.2 (2)C72—C71—C76—C751.8 (3)
C18—C13—C14—C150.1 (4)C7—C71—C76—C75177.82 (19)
C12—C13—C14—C15178.5 (2)C5—C6—N1—C274.49 (19)
C13—C14—C15—C160.9 (4)C5—C6—N1—C1160.69 (18)
C14—C15—C16—C170.5 (4)C3—C2—N1—C651.4 (2)
C15—C16—C17—C180.8 (4)C3—C2—N1—C1177.21 (18)
C15—C16—C17—C22179.4 (3)S1—C10—N2—C828.3 (2)
C14—C13—C18—C171.5 (3)S1—C10—N2—C11105.10 (18)
C12—C13—C18—C17177.43 (18)C7—C8—N2—C10166.02 (18)
C14—C13—C18—C19179.1 (2)C9—C8—N2—C1042.0 (2)
C12—C13—C18—C192.0 (2)C7—C8—N2—C1128.9 (2)
C22—C17—C18—C13178.4 (2)C9—C8—N2—C1195.2 (2)
C16—C17—C18—C131.8 (3)C19—C11—N2—C1022.0 (3)
C22—C17—C18—C191.0 (3)C12—C11—N2—C1090.3 (2)
C16—C17—C18—C19178.8 (2)C5—C11—N2—C10151.19 (18)
C13—C18—C19—C20177.38 (19)C19—C11—N2—C8110.5 (2)
C17—C18—C19—C202.1 (3)C12—C11—N2—C8137.21 (18)
C13—C18—C19—C111.1 (2)C5—C11—N2—C818.7 (2)
C17—C18—C19—C11179.47 (18)C8—C9—S1—C1016.34 (17)
N2—C11—C19—C2058.7 (3)N2—C10—S1—C95.83 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C74—H74···Cl1i0.932.823.497 (3)130
C2—H2B···Cl1ii0.972.863.784 (2)159
C9—H9B···O10.972.443.251 (3)141
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z.
(II) 5''-[(E)-4-fluorobenzylidene]-7'-(4-fluorophenyl)-1''-methyl- dispiro[acenaphthylene-1,5'-pyrrolo[1,2-c][1,3]thiazole-6',3''- piperidine]-2,4''-dione top
Crystal data top
C35H28F2N2O2SF(000) = 1208
Mr = 578.65Dx = 1.361 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2000 reflections
a = 14.8802 (5) Åθ = 1.5–26°
b = 9.6789 (3) ŵ = 0.16 mm1
c = 20.2209 (6) ÅT = 293 K
β = 104.155 (2)°Block, colourless
V = 2823.87 (15) Å30.21 × 0.14 × 0.11 mm
Z = 4
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
5494 independent reflections
Radiation source: fine-focus sealed tube3862 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 0 pixels mm-1θmax = 25.9°, θmin = 1.5°
ω and ϕ scansh = 1818
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1111
Tmin = 0.973, Tmax = 0.982l = 2424
26085 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0681P)2 + 0.8519P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
5494 reflectionsΔρmax = 0.48 e Å3
381 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0062 (9)
Crystal data top
C35H28F2N2O2SV = 2823.87 (15) Å3
Mr = 578.65Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.8802 (5) ŵ = 0.16 mm1
b = 9.6789 (3) ÅT = 293 K
c = 20.2209 (6) Å0.21 × 0.14 × 0.11 mm
β = 104.155 (2)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
5494 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3862 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.982Rint = 0.031
26085 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.08Δρmax = 0.48 e Å3
5494 reflectionsΔρmin = 0.22 e Å3
381 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.15305 (18)0.4448 (3)0.28225 (12)0.0628 (7)
H1A0.17070.50280.24270.094*
H1B0.13360.50140.32220.094*
H1C0.20500.38930.28610.094*
C20.04196 (17)0.2760 (3)0.33779 (11)0.0526 (6)
H2A0.09340.22890.34970.063*
H2B0.01540.33910.37470.063*
C30.03002 (15)0.1710 (2)0.33207 (10)0.0440 (5)
C40.03833 (15)0.1274 (2)0.26293 (10)0.0426 (5)
C50.00577 (14)0.2209 (2)0.20305 (10)0.0397 (5)
C60.09805 (15)0.2694 (2)0.21522 (10)0.0460 (5)
H6A0.13240.32180.17630.055*
H6B0.13520.19070.22180.055*
C70.01536 (15)0.1480 (2)0.13307 (10)0.0425 (5)
H70.03800.08610.13830.051*
C80.00041 (15)0.2671 (2)0.08807 (10)0.0434 (5)
H80.05290.32990.07840.052*
C90.03157 (17)0.2363 (3)0.02334 (11)0.0538 (6)
H9A0.02120.23230.01580.065*
H9B0.06430.14890.02730.065*
C100.11424 (17)0.4438 (2)0.10004 (11)0.0511 (6)
H10A0.17760.46640.12330.061*
H10B0.07600.52550.09830.061*
C110.06113 (14)0.3493 (2)0.20044 (10)0.0395 (5)
C120.01502 (16)0.4921 (2)0.20905 (11)0.0451 (5)
C130.07251 (16)0.5604 (2)0.27009 (11)0.0448 (5)
C140.06570 (19)0.6845 (2)0.30091 (13)0.0584 (6)
H140.01620.74390.28420.070*
C150.1360 (2)0.7188 (3)0.35860 (14)0.0653 (7)
H150.13160.80230.38040.078*
C160.21030 (19)0.6362 (3)0.38422 (13)0.0590 (6)
H160.25460.66360.42290.071*
C170.22073 (16)0.5089 (2)0.35240 (11)0.0475 (5)
C180.14907 (15)0.4749 (2)0.29564 (10)0.0408 (5)
C190.14965 (14)0.3552 (2)0.25671 (10)0.0391 (5)
C200.22503 (15)0.2704 (2)0.27270 (11)0.0469 (5)
H200.22860.19260.24640.056*
C210.29749 (16)0.3028 (3)0.32984 (12)0.0553 (6)
H210.34870.24460.34100.066*
C220.29525 (17)0.4159 (3)0.36932 (12)0.0547 (6)
H220.34330.43170.40770.066*
C310.08855 (15)0.1105 (2)0.38478 (11)0.0473 (5)
H310.13000.05030.37210.057*
C320.10033 (15)0.1204 (2)0.45840 (11)0.0481 (5)
C330.17584 (18)0.0539 (3)0.49983 (13)0.0620 (7)
H330.21700.00750.47960.074*
C340.1922 (2)0.0538 (3)0.56959 (14)0.0740 (8)
H340.24340.00840.59640.089*
C350.1319 (2)0.1217 (3)0.59849 (13)0.0746 (8)
C360.0567 (2)0.1887 (4)0.56072 (13)0.0825 (9)
H360.01670.23550.58190.099*
C370.04015 (17)0.1868 (3)0.49091 (12)0.0675 (7)
H370.01220.23070.46490.081*
C710.10051 (15)0.0609 (2)0.10814 (11)0.0462 (5)
C720.09766 (18)0.0775 (3)0.12764 (12)0.0564 (6)
H720.04340.11290.15560.068*
C730.1730 (2)0.1630 (3)0.10651 (14)0.0682 (7)
H730.17050.25520.11980.082*
C740.2504 (2)0.1093 (3)0.06597 (14)0.0680 (8)
C750.25793 (19)0.0247 (3)0.04460 (14)0.0726 (8)
H750.31270.05790.01640.087*
C760.18107 (17)0.1106 (3)0.06630 (13)0.0593 (6)
H760.18440.20240.05230.071*
N10.07726 (12)0.35567 (18)0.27589 (9)0.0449 (4)
N20.07968 (12)0.33167 (18)0.13352 (8)0.0420 (4)
O10.07782 (13)0.02157 (16)0.25485 (8)0.0607 (5)
O20.04921 (12)0.54203 (17)0.16689 (8)0.0586 (4)
F10.14657 (15)0.1233 (3)0.66720 (8)0.1217 (8)
F20.32629 (13)0.1920 (2)0.04365 (10)0.1034 (7)
S10.10793 (4)0.37798 (7)0.01481 (3)0.0552 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0607 (15)0.0769 (18)0.0505 (14)0.0242 (13)0.0131 (12)0.0035 (12)
C20.0560 (13)0.0648 (15)0.0383 (11)0.0108 (12)0.0136 (10)0.0034 (10)
C30.0480 (12)0.0453 (12)0.0404 (11)0.0011 (10)0.0138 (9)0.0038 (9)
C40.0470 (12)0.0398 (12)0.0417 (11)0.0001 (10)0.0126 (9)0.0022 (9)
C50.0454 (11)0.0393 (11)0.0348 (10)0.0023 (9)0.0104 (8)0.0021 (9)
C60.0454 (12)0.0537 (13)0.0381 (11)0.0031 (10)0.0089 (9)0.0017 (9)
C70.0466 (12)0.0436 (12)0.0374 (11)0.0009 (9)0.0106 (9)0.0036 (9)
C80.0453 (11)0.0482 (12)0.0349 (10)0.0007 (10)0.0063 (9)0.0025 (9)
C90.0581 (14)0.0673 (15)0.0351 (11)0.0061 (12)0.0096 (10)0.0057 (10)
C100.0577 (14)0.0544 (14)0.0416 (12)0.0057 (11)0.0131 (10)0.0016 (10)
C110.0464 (12)0.0401 (11)0.0318 (10)0.0051 (9)0.0091 (9)0.0003 (8)
C120.0549 (13)0.0422 (12)0.0398 (11)0.0069 (10)0.0146 (10)0.0051 (9)
C130.0582 (13)0.0355 (11)0.0435 (11)0.0006 (10)0.0181 (10)0.0006 (9)
C140.0753 (17)0.0395 (13)0.0657 (16)0.0041 (12)0.0274 (13)0.0011 (11)
C150.091 (2)0.0437 (14)0.0672 (16)0.0131 (14)0.0306 (15)0.0191 (12)
C160.0729 (17)0.0557 (15)0.0497 (13)0.0208 (13)0.0177 (12)0.0134 (11)
C170.0584 (14)0.0470 (12)0.0385 (11)0.0151 (11)0.0147 (10)0.0033 (9)
C180.0517 (12)0.0377 (11)0.0355 (10)0.0048 (9)0.0152 (9)0.0012 (8)
C190.0459 (11)0.0379 (11)0.0339 (10)0.0006 (9)0.0104 (9)0.0002 (8)
C200.0496 (12)0.0464 (12)0.0451 (12)0.0052 (10)0.0122 (10)0.0006 (10)
C210.0469 (13)0.0612 (15)0.0548 (14)0.0025 (11)0.0066 (11)0.0067 (12)
C220.0515 (13)0.0643 (15)0.0437 (12)0.0099 (12)0.0032 (10)0.0031 (11)
C310.0483 (12)0.0472 (12)0.0468 (12)0.0042 (10)0.0124 (10)0.0026 (10)
C320.0469 (12)0.0524 (13)0.0424 (12)0.0000 (10)0.0059 (10)0.0032 (10)
C330.0619 (15)0.0652 (16)0.0517 (14)0.0139 (13)0.0001 (12)0.0007 (12)
C340.0729 (18)0.0817 (19)0.0524 (15)0.0126 (15)0.0137 (13)0.0029 (14)
C350.0754 (18)0.102 (2)0.0390 (13)0.0051 (17)0.0005 (13)0.0028 (14)
C360.0679 (18)0.136 (3)0.0450 (14)0.0186 (19)0.0168 (13)0.0017 (16)
C370.0514 (14)0.104 (2)0.0466 (13)0.0177 (14)0.0109 (11)0.0116 (14)
C710.0516 (13)0.0489 (13)0.0403 (11)0.0025 (10)0.0152 (10)0.0103 (10)
C720.0661 (15)0.0523 (14)0.0533 (14)0.0057 (12)0.0194 (12)0.0063 (11)
C730.085 (2)0.0594 (16)0.0663 (17)0.0181 (15)0.0298 (15)0.0076 (13)
C740.0701 (18)0.078 (2)0.0645 (17)0.0332 (15)0.0325 (15)0.0230 (15)
C750.0543 (15)0.096 (2)0.0642 (17)0.0046 (15)0.0075 (13)0.0156 (16)
C760.0605 (15)0.0585 (15)0.0560 (14)0.0065 (12)0.0087 (12)0.0085 (12)
N10.0460 (10)0.0516 (11)0.0368 (9)0.0109 (8)0.0095 (8)0.0017 (8)
N20.0495 (10)0.0443 (10)0.0325 (9)0.0027 (8)0.0107 (7)0.0012 (7)
O10.0867 (13)0.0467 (9)0.0500 (9)0.0194 (9)0.0194 (9)0.0030 (7)
O20.0676 (11)0.0590 (10)0.0465 (9)0.0227 (8)0.0085 (8)0.0110 (8)
F10.1215 (16)0.193 (2)0.0394 (9)0.0317 (16)0.0007 (9)0.0023 (11)
F20.0879 (12)0.1247 (16)0.1008 (14)0.0592 (12)0.0295 (10)0.0228 (12)
S10.0614 (4)0.0676 (4)0.0389 (3)0.0014 (3)0.0164 (3)0.0049 (3)
Geometric parameters (Å, º) top
C1—N11.451 (3)C14—H140.9300
C1—H1A0.9600C15—C161.360 (4)
C1—H1B0.9600C15—H150.9300
C1—H1C0.9600C16—C171.416 (3)
C2—N11.455 (3)C16—H160.9300
C2—C31.502 (3)C17—C181.402 (3)
C2—H2A0.9700C17—C221.404 (3)
C2—H2B0.9700C18—C191.402 (3)
C3—C311.335 (3)C19—C201.364 (3)
C3—C41.494 (3)C20—C211.409 (3)
C4—O11.211 (2)C20—H200.9300
C4—C51.525 (3)C21—C221.360 (3)
C5—C61.527 (3)C21—H210.9300
C5—C71.556 (3)C22—H220.9300
C5—C111.602 (3)C31—C321.459 (3)
C6—N11.453 (3)C31—H310.9300
C6—H6A0.9700C32—C331.385 (3)
C6—H6B0.9700C32—C371.391 (3)
C7—C711.503 (3)C33—C341.371 (4)
C7—C81.522 (3)C33—H330.9300
C7—H70.9800C34—C351.354 (4)
C8—N21.448 (3)C34—H340.9300
C8—C91.521 (3)C35—F11.353 (3)
C8—H80.9800C35—C361.356 (4)
C9—S11.816 (2)C36—C371.372 (3)
C9—H9A0.9700C36—H360.9300
C9—H9B0.9700C37—H370.9300
C10—N21.439 (3)C71—C761.374 (3)
C10—S11.818 (2)C71—C721.394 (3)
C10—H10A0.9700C72—C731.375 (4)
C10—H10B0.9700C72—H720.9300
C11—N21.456 (2)C73—C741.345 (4)
C11—C191.517 (3)C73—H730.9300
C11—C121.571 (3)C74—C751.363 (4)
C12—O21.215 (3)C74—F21.368 (3)
C12—C131.475 (3)C75—C761.395 (4)
C13—C141.368 (3)C75—H750.9300
C13—C181.401 (3)C76—H760.9300
C14—C151.403 (4)
N1—C1—H1A109.5C16—C15—H15118.3
N1—C1—H1B109.5C14—C15—H15118.3
H1A—C1—H1B109.5C15—C16—C17120.5 (2)
N1—C1—H1C109.5C15—C16—H16119.7
H1A—C1—H1C109.5C17—C16—H16119.7
H1B—C1—H1C109.5C18—C17—C22116.5 (2)
N1—C2—C3114.02 (17)C18—C17—C16115.5 (2)
N1—C2—H2A108.7C22—C17—C16128.0 (2)
C3—C2—H2A108.7C13—C18—C17123.4 (2)
N1—C2—H2B108.7C13—C18—C19113.43 (19)
C3—C2—H2B108.7C17—C18—C19123.1 (2)
H2A—C2—H2B107.6C20—C19—C18118.83 (19)
C31—C3—C4115.86 (19)C20—C19—C11131.96 (18)
C31—C3—C2124.99 (19)C18—C19—C11109.18 (17)
C4—C3—C2119.14 (18)C19—C20—C21118.7 (2)
O1—C4—C3121.25 (19)C19—C20—H20120.6
O1—C4—C5121.54 (19)C21—C20—H20120.6
C3—C4—C5117.21 (18)C22—C21—C20122.5 (2)
C4—C5—C6106.49 (17)C22—C21—H21118.8
C4—C5—C7112.26 (16)C20—C21—H21118.8
C6—C5—C7113.58 (17)C21—C22—C17120.3 (2)
C4—C5—C11109.66 (16)C21—C22—H22119.9
C6—C5—C11110.91 (17)C17—C22—H22119.9
C7—C5—C11103.97 (15)C3—C31—C32132.7 (2)
N1—C6—C5107.38 (17)C3—C31—H31113.7
N1—C6—H6A110.2C32—C31—H31113.7
C5—C6—H6A110.2C33—C32—C37116.7 (2)
N1—C6—H6B110.2C33—C32—C31117.7 (2)
C5—C6—H6B110.2C37—C32—C31125.6 (2)
H6A—C6—H6B108.5C34—C33—C32122.4 (3)
C71—C7—C8117.72 (18)C34—C33—H33118.8
C71—C7—C5116.22 (17)C32—C33—H33118.8
C8—C7—C5101.95 (16)C35—C34—C33118.3 (2)
C71—C7—H7106.7C35—C34—H34120.9
C8—C7—H7106.7C33—C34—H34120.9
C5—C7—H7106.7F1—C35—C34119.4 (3)
N2—C8—C9104.97 (17)F1—C35—C36118.4 (3)
N2—C8—C799.68 (16)C34—C35—C36122.1 (2)
C9—C8—C7119.33 (19)C35—C36—C37119.2 (3)
N2—C8—H8110.7C35—C36—H36120.4
C9—C8—H8110.7C37—C36—H36120.4
C7—C8—H8110.7C36—C37—C32121.2 (2)
C8—C9—S1105.25 (15)C36—C37—H37119.4
C8—C9—H9A110.7C32—C37—H37119.4
S1—C9—H9A110.7C76—C71—C72118.2 (2)
C8—C9—H9B110.7C76—C71—C7123.2 (2)
S1—C9—H9B110.7C72—C71—C7118.7 (2)
H9A—C9—H9B108.8C73—C72—C71121.6 (3)
N2—C10—S1103.89 (15)C73—C72—H72119.2
N2—C10—H10A111.0C71—C72—H72119.2
S1—C10—H10A111.0C74—C73—C72117.9 (3)
N2—C10—H10B111.0C74—C73—H73121.0
S1—C10—H10B111.0C72—C73—H73121.0
H10A—C10—H10B109.0C73—C74—C75123.6 (3)
N2—C11—C19112.00 (16)C73—C74—F2119.3 (3)
N2—C11—C12113.18 (16)C75—C74—F2117.1 (3)
C19—C11—C12101.93 (16)C74—C75—C76118.0 (3)
N2—C11—C5101.54 (15)C74—C75—H75121.0
C19—C11—C5115.91 (16)C76—C75—H75121.0
C12—C11—C5112.78 (16)C71—C76—C75120.6 (3)
O2—C12—C13127.2 (2)C71—C76—H76119.7
O2—C12—C11124.19 (19)C75—C76—H76119.7
C13—C12—C11107.90 (17)C1—N1—C6114.01 (17)
C14—C13—C18119.7 (2)C1—N1—C2111.35 (17)
C14—C13—C12133.0 (2)C6—N1—C2112.30 (17)
C18—C13—C12107.25 (18)C10—N2—C8110.87 (16)
C13—C14—C15117.6 (2)C10—N2—C11121.29 (17)
C13—C14—H14121.2C8—N2—C11109.30 (16)
C15—C14—H14121.2C9—S1—C1093.62 (10)
C16—C15—C14123.3 (2)
N1—C2—C3—C31162.5 (2)C17—C18—C19—C202.9 (3)
N1—C2—C3—C418.0 (3)C13—C18—C19—C114.4 (2)
C31—C3—C4—O117.9 (3)C17—C18—C19—C11178.84 (18)
C2—C3—C4—O1161.6 (2)N2—C11—C19—C2051.1 (3)
C31—C3—C4—C5162.70 (19)C12—C11—C19—C20172.4 (2)
C2—C3—C4—C517.8 (3)C5—C11—C19—C2064.7 (3)
O1—C4—C5—C6139.2 (2)N2—C11—C19—C18126.79 (18)
C3—C4—C5—C640.2 (2)C12—C11—C19—C185.5 (2)
O1—C4—C5—C714.3 (3)C5—C11—C19—C18117.35 (18)
C3—C4—C5—C7165.13 (18)C18—C19—C20—C213.1 (3)
O1—C4—C5—C11100.8 (2)C11—C19—C20—C21179.2 (2)
C3—C4—C5—C1179.8 (2)C19—C20—C21—C220.4 (3)
C4—C5—C6—N165.8 (2)C20—C21—C22—C172.6 (4)
C7—C5—C6—N1170.16 (17)C18—C17—C22—C212.8 (3)
C11—C5—C6—N153.5 (2)C16—C17—C22—C21174.8 (2)
C4—C5—C7—C7185.1 (2)C4—C3—C31—C32177.4 (2)
C6—C5—C7—C7135.7 (3)C2—C3—C31—C322.1 (4)
C11—C5—C7—C71156.39 (18)C3—C31—C32—C33172.9 (3)
C4—C5—C7—C8145.50 (17)C3—C31—C32—C379.6 (4)
C6—C5—C7—C893.6 (2)C37—C32—C33—C340.8 (4)
C11—C5—C7—C827.04 (19)C31—C32—C33—C34178.4 (3)
C71—C7—C8—N2172.99 (17)C32—C33—C34—C350.1 (5)
C5—C7—C8—N244.58 (19)C33—C34—C35—F1179.9 (3)
C71—C7—C8—C973.7 (3)C33—C34—C35—C360.1 (5)
C5—C7—C8—C9157.93 (18)F1—C35—C36—C37179.2 (3)
N2—C8—C9—S134.8 (2)C34—C35—C36—C370.7 (5)
C7—C8—C9—S1145.30 (17)C35—C36—C37—C321.6 (5)
C4—C5—C11—N2119.78 (17)C33—C32—C37—C361.6 (4)
C6—C5—C11—N2122.89 (17)C31—C32—C37—C36179.1 (3)
C7—C5—C11—N20.45 (19)C8—C7—C71—C7628.9 (3)
C4—C5—C11—C191.8 (2)C5—C7—C71—C7692.4 (3)
C6—C5—C11—C19115.50 (18)C8—C7—C71—C72150.4 (2)
C7—C5—C11—C19122.06 (18)C5—C7—C71—C7288.3 (2)
C4—C5—C11—C12118.79 (18)C76—C71—C72—C730.5 (4)
C6—C5—C11—C121.5 (2)C7—C71—C72—C73179.8 (2)
C7—C5—C11—C12120.98 (17)C71—C72—C73—C740.1 (4)
N2—C11—C12—O245.7 (3)C72—C73—C74—C750.3 (4)
C19—C11—C12—O2166.1 (2)C72—C73—C74—F2179.5 (2)
C5—C11—C12—O268.9 (3)C73—C74—C75—C760.3 (4)
N2—C11—C12—C13125.37 (18)F2—C74—C75—C76179.4 (2)
C19—C11—C12—C134.9 (2)C72—C71—C76—C750.6 (4)
C5—C11—C12—C13120.06 (18)C7—C71—C76—C75179.8 (2)
O2—C12—C13—C148.9 (4)C74—C75—C76—C710.2 (4)
C11—C12—C13—C14179.6 (2)C5—C6—N1—C1161.16 (19)
O2—C12—C13—C18168.0 (2)C5—C6—N1—C271.0 (2)
C11—C12—C13—C182.7 (2)C3—C2—N1—C1174.0 (2)
C18—C13—C14—C151.5 (3)C3—C2—N1—C644.8 (3)
C12—C13—C14—C15178.1 (2)S1—C10—N2—C841.1 (2)
C13—C14—C15—C161.0 (4)S1—C10—N2—C11171.31 (15)
C14—C15—C16—C170.8 (4)C9—C8—N2—C1051.0 (2)
C15—C16—C17—C181.8 (3)C7—C8—N2—C10175.06 (17)
C15—C16—C17—C22175.7 (2)C9—C8—N2—C11172.74 (17)
C14—C13—C18—C170.3 (3)C7—C8—N2—C1148.7 (2)
C12—C13—C18—C17177.75 (19)C19—C11—N2—C1074.3 (2)
C14—C13—C18—C19176.45 (19)C12—C11—N2—C1040.2 (3)
C12—C13—C18—C191.0 (2)C5—C11—N2—C10161.40 (18)
C22—C17—C18—C13176.5 (2)C19—C11—N2—C8154.81 (17)
C16—C17—C18—C131.3 (3)C12—C11—N2—C890.6 (2)
C22—C17—C18—C190.0 (3)C5—C11—N2—C830.5 (2)
C16—C17—C18—C19177.8 (2)C8—C9—S1—C1011.06 (17)
C13—C18—C19—C20173.85 (19)N2—C10—S1—C915.56 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C33—H33···S1i0.932.873.716 (3)152
C37—H37···F2ii0.932.483.302 (3)147
C73—H73···O2iii0.932.683.454 (4)141
C10—H10B···O20.972.593.202 (3)122
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x1/2, y+1/2, z+1/2; (iii) x, y1, z.
(III) 5''-[(E)-4-bromobenzylidene]-7'-(4-bromophenyl)-1''-methyl- dispiro[acenaphthylene-1,5'-pyrrolo[1,2-c][1,3]thiazole-6',3''- piperidine]-2,4''-dione top
Crystal data top
C35H28Br2N2O2SF(000) = 1416
Mr = 700.47Dx = 1.519 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2000 reflections
a = 14.2275 (7) Åθ = 1.6–26.3°
b = 15.6753 (8) ŵ = 2.75 mm1
c = 15.3780 (7) ÅT = 293 K
β = 116.761 (2)°Block, colourless
V = 3062.3 (3) Å30.19 × 0.16 × 0.11 mm
Z = 4
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
6169 independent reflections
Radiation source: fine-focus sealed tube3897 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 0 pixels mm-1θmax = 26.3°, θmin = 1.6°
ω and ϕ scansh = 1517
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1919
Tmin = 0.599, Tmax = 0.739l = 1914
30894 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.0782P)2 + 0.813P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
6169 reflectionsΔρmax = 0.78 e Å3
382 parametersΔρmin = 0.98 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0009 (3)
Crystal data top
C35H28Br2N2O2SV = 3062.3 (3) Å3
Mr = 700.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.2275 (7) ŵ = 2.75 mm1
b = 15.6753 (8) ÅT = 293 K
c = 15.3780 (7) Å0.19 × 0.16 × 0.11 mm
β = 116.761 (2)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
6169 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3897 reflections with I > 2σ(I)
Tmin = 0.599, Tmax = 0.739Rint = 0.039
30894 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.00Δρmax = 0.78 e Å3
6169 reflectionsΔρmin = 0.98 e Å3
382 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0522 (3)0.7463 (2)0.3566 (2)0.0519 (9)
H1A0.06410.73430.30120.078*
H1B0.03730.80590.35760.078*
H1C0.00640.71330.35270.078*
C20.2342 (2)0.7785 (2)0.4580 (2)0.0407 (8)
H2A0.21720.83720.46520.049*
H2B0.24470.77520.40000.049*
C30.3348 (2)0.7545 (2)0.5448 (2)0.0354 (7)
C40.3478 (2)0.6663 (2)0.5823 (2)0.0342 (7)
C50.2472 (2)0.61677 (18)0.5600 (2)0.0313 (7)
C60.1717 (2)0.63488 (19)0.4531 (2)0.0346 (7)
H6A0.20510.62110.41200.041*
H6B0.10860.60050.43260.041*
C70.2676 (2)0.52039 (18)0.5842 (2)0.0336 (7)
H70.33650.51520.64120.040*
C80.1849 (2)0.49928 (18)0.6169 (2)0.0354 (7)
H80.11470.49940.56130.042*
C90.1985 (3)0.4224 (2)0.6800 (2)0.0468 (8)
H9A0.27210.41340.72480.056*
H9B0.17110.37150.64080.056*
C100.1294 (3)0.5631 (2)0.7277 (2)0.0463 (8)
H10A0.05990.58600.68690.056*
H10B0.15900.59290.78960.056*
C110.1964 (2)0.64933 (19)0.6283 (2)0.0335 (7)
C120.0836 (3)0.6875 (2)0.5678 (2)0.0404 (8)
C130.0850 (3)0.7771 (2)0.5966 (3)0.0498 (9)
C170.2135 (4)0.8732 (2)0.7188 (3)0.0637 (11)
C180.1846 (3)0.7935 (2)0.6715 (3)0.0464 (9)
C190.2516 (3)0.7227 (2)0.6968 (2)0.0382 (7)
C200.3488 (3)0.7292 (2)0.7742 (2)0.0499 (9)
H200.39420.68270.79470.060*
C210.3789 (4)0.8089 (3)0.8225 (3)0.0656 (12)
H210.44570.81390.87460.079*
C220.3155 (4)0.8777 (3)0.7968 (3)0.0746 (13)
H220.33930.92860.83080.090*
C310.4114 (3)0.8104 (2)0.5942 (2)0.0451 (8)
H310.47220.78840.64460.054*
C320.4099 (3)0.9021 (2)0.5777 (2)0.0473 (8)
C330.4422 (3)0.9576 (2)0.6551 (3)0.0574 (10)
H330.47320.93540.71800.069*
C340.4304 (4)1.0443 (3)0.6433 (3)0.0707 (12)
H340.45051.08040.69670.085*
C350.3880 (3)1.0763 (3)0.5503 (3)0.0741 (13)
C360.3618 (3)1.0239 (3)0.4717 (3)0.0770 (14)
H360.33671.04700.40960.092*
C370.3726 (3)0.9374 (3)0.4846 (3)0.0631 (11)
H370.35490.90190.43100.076*
C710.2699 (2)0.46532 (18)0.5044 (2)0.0354 (7)
C720.3626 (2)0.4520 (2)0.4980 (2)0.0412 (7)
H720.42440.47660.54440.049*
C730.3661 (3)0.4031 (2)0.4246 (3)0.0467 (8)
H730.42910.39520.42110.056*
C740.2754 (3)0.36683 (19)0.3575 (2)0.0448 (8)
C750.1838 (3)0.3760 (2)0.3631 (3)0.0553 (10)
H750.12310.34920.31780.066*
C760.1805 (3)0.4249 (2)0.4360 (3)0.0533 (9)
H760.11720.43100.43950.064*
N10.14538 (19)0.72429 (16)0.44495 (17)0.0358 (6)
N20.19680 (19)0.57135 (15)0.68065 (17)0.0365 (6)
O10.43404 (17)0.63497 (14)0.63004 (16)0.0464 (6)
O20.00690 (17)0.64512 (15)0.51719 (16)0.0505 (6)
S10.12300 (8)0.44882 (6)0.74531 (7)0.0602 (3)
Br10.27782 (4)0.30269 (3)0.25388 (3)0.0809 (2)
C140.0098 (4)0.8396 (3)0.5662 (3)0.0730 (12)
H140.05760.82920.51700.088*
C150.0372 (5)0.9195 (3)0.6112 (4)0.0981 (17)
H150.01300.96270.59070.118*
C160.1351 (6)0.9362 (3)0.6841 (4)0.0937 (16)
H160.15020.99050.71140.112*
Br20.36431 (6)1.19455 (3)0.53017 (6)0.1403 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.043 (2)0.053 (2)0.049 (2)0.0026 (17)0.0116 (17)0.0062 (17)
C20.0440 (19)0.0400 (18)0.0398 (18)0.0088 (14)0.0205 (16)0.0012 (14)
C30.0343 (17)0.0421 (18)0.0342 (16)0.0084 (14)0.0195 (15)0.0024 (14)
C40.0352 (18)0.0393 (17)0.0320 (16)0.0067 (14)0.0185 (15)0.0071 (13)
C50.0290 (16)0.0350 (16)0.0303 (15)0.0043 (12)0.0138 (13)0.0037 (12)
C60.0359 (17)0.0377 (17)0.0312 (16)0.0058 (13)0.0161 (14)0.0035 (13)
C70.0346 (17)0.0317 (16)0.0335 (16)0.0036 (13)0.0146 (14)0.0022 (12)
C80.0373 (17)0.0340 (17)0.0330 (16)0.0044 (13)0.0142 (14)0.0012 (13)
C90.056 (2)0.0407 (19)0.0434 (19)0.0095 (16)0.0226 (17)0.0021 (15)
C100.053 (2)0.050 (2)0.0432 (18)0.0112 (16)0.0290 (17)0.0028 (15)
C110.0359 (17)0.0354 (17)0.0338 (16)0.0040 (13)0.0197 (14)0.0024 (13)
C120.0402 (19)0.046 (2)0.0415 (18)0.0021 (16)0.0244 (16)0.0030 (15)
C130.058 (2)0.050 (2)0.054 (2)0.0077 (17)0.037 (2)0.0020 (17)
C170.104 (4)0.041 (2)0.071 (3)0.011 (2)0.062 (3)0.0117 (19)
C180.068 (3)0.0407 (19)0.048 (2)0.0059 (17)0.042 (2)0.0054 (15)
C190.048 (2)0.0411 (18)0.0373 (17)0.0111 (15)0.0294 (17)0.0070 (14)
C200.057 (2)0.059 (2)0.0402 (19)0.0170 (18)0.0275 (19)0.0129 (16)
C210.081 (3)0.071 (3)0.053 (2)0.037 (2)0.037 (2)0.029 (2)
C220.117 (4)0.058 (3)0.073 (3)0.036 (3)0.064 (3)0.035 (2)
C310.0414 (19)0.048 (2)0.0467 (19)0.0089 (15)0.0203 (16)0.0012 (15)
C320.045 (2)0.047 (2)0.0433 (19)0.0195 (16)0.0139 (16)0.0020 (16)
C330.070 (3)0.048 (2)0.042 (2)0.0191 (19)0.0139 (18)0.0026 (16)
C340.093 (3)0.048 (2)0.062 (3)0.021 (2)0.027 (2)0.0026 (19)
C350.076 (3)0.048 (2)0.074 (3)0.021 (2)0.012 (2)0.016 (2)
C360.078 (3)0.075 (3)0.049 (2)0.038 (2)0.002 (2)0.019 (2)
C370.071 (3)0.064 (3)0.045 (2)0.035 (2)0.0190 (19)0.0010 (18)
C710.0340 (17)0.0324 (16)0.0402 (17)0.0026 (13)0.0171 (15)0.0007 (13)
C720.0332 (17)0.0375 (18)0.0496 (19)0.0026 (13)0.0157 (15)0.0076 (14)
C730.044 (2)0.0388 (19)0.065 (2)0.0013 (15)0.0314 (18)0.0082 (16)
C740.055 (2)0.0334 (17)0.0503 (19)0.0015 (15)0.0269 (17)0.0111 (15)
C750.047 (2)0.060 (2)0.059 (2)0.0155 (17)0.0240 (19)0.0261 (18)
C760.038 (2)0.063 (2)0.062 (2)0.0124 (17)0.0255 (18)0.0220 (18)
N10.0329 (14)0.0388 (14)0.0329 (14)0.0056 (11)0.0122 (12)0.0006 (11)
N20.0421 (15)0.0365 (14)0.0362 (14)0.0073 (11)0.0222 (12)0.0031 (11)
O10.0334 (13)0.0482 (14)0.0546 (14)0.0037 (11)0.0171 (11)0.0005 (11)
O20.0354 (13)0.0621 (16)0.0531 (14)0.0072 (12)0.0192 (12)0.0044 (12)
S10.0801 (7)0.0590 (6)0.0525 (5)0.0222 (5)0.0396 (5)0.0010 (4)
Br10.0842 (4)0.0826 (4)0.0852 (4)0.0076 (2)0.0464 (3)0.0444 (2)
C140.085 (3)0.068 (3)0.077 (3)0.024 (2)0.046 (3)0.006 (2)
C150.134 (5)0.067 (3)0.115 (4)0.042 (3)0.074 (4)0.008 (3)
C160.155 (5)0.046 (3)0.110 (4)0.008 (3)0.086 (4)0.012 (3)
Br20.1586 (7)0.0538 (3)0.1495 (6)0.0125 (3)0.0172 (5)0.0345 (3)
Geometric parameters (Å, º) top
C1—N11.449 (4)C17—C181.410 (5)
C1—H1A0.9600C17—C161.403 (7)
C1—H1B0.9600C18—C191.399 (5)
C1—H1C0.9600C19—C201.363 (5)
C2—N11.460 (4)C20—C211.418 (5)
C2—C31.501 (4)C20—H200.9300
C2—H2A0.9700C21—C221.345 (6)
C2—H2B0.9700C21—H210.9300
C3—C311.336 (4)C22—H220.9300
C3—C41.478 (4)C31—C321.458 (5)
C4—O11.214 (4)C31—H310.9300
C4—C51.525 (4)C32—C331.376 (5)
C5—C61.532 (4)C32—C371.397 (5)
C5—C71.552 (4)C33—C341.372 (5)
C5—C111.604 (4)C33—H330.9300
C6—N11.442 (4)C34—C351.372 (5)
C6—H6A0.9700C34—H340.9300
C6—H6B0.9700C35—C361.367 (6)
C7—C81.510 (4)C35—Br21.885 (4)
C7—C711.513 (4)C36—C371.369 (6)
C7—H70.9800C36—H360.9300
C8—N21.455 (4)C37—H370.9300
C8—C91.505 (4)C71—C721.381 (4)
C8—H80.9800C71—C761.386 (4)
C9—S11.818 (3)C72—C731.384 (4)
C9—H9A0.9700C72—H720.9300
C9—H9B0.9700C73—C741.362 (5)
C10—N21.444 (4)C73—H730.9300
C10—S11.821 (3)C74—C751.353 (5)
C10—H10A0.9700C74—Br11.897 (3)
C10—H10B0.9700C75—C761.376 (5)
C11—N21.462 (4)C75—H750.9300
C11—C191.518 (4)C76—H760.9300
C11—C121.566 (4)C14—C151.399 (7)
C12—O21.214 (4)C14—H140.9300
C12—C131.470 (5)C15—C161.363 (7)
C13—C141.368 (5)C15—H150.9300
C13—C181.390 (5)C16—H160.9300
C17—C221.409 (7)
N1—C1—H1A109.5C13—C18—C17122.9 (4)
N1—C1—H1B109.5C19—C18—C17123.7 (4)
H1A—C1—H1B109.5C20—C19—C18118.7 (3)
N1—C1—H1C109.5C20—C19—C11131.8 (3)
H1A—C1—H1C109.5C18—C19—C11109.5 (3)
H1B—C1—H1C109.5C19—C20—C21118.1 (4)
N1—C2—C3113.4 (2)C19—C20—H20120.9
N1—C2—H2A108.9C21—C20—H20120.9
C3—C2—H2A108.9C22—C21—C20123.2 (4)
N1—C2—H2B108.9C22—C21—H21118.4
C3—C2—H2B108.9C20—C21—H21118.4
H2A—C2—H2B107.7C21—C22—C17120.5 (4)
C31—C3—C4117.7 (3)C21—C22—H22119.8
C31—C3—C2123.2 (3)C17—C22—H22119.8
C4—C3—C2118.9 (3)C3—C31—C32127.1 (3)
O1—C4—C3122.0 (3)C3—C31—H31116.5
O1—C4—C5121.4 (3)C32—C31—H31116.5
C3—C4—C5116.7 (3)C33—C32—C37117.5 (3)
C4—C5—C6106.3 (2)C33—C32—C31119.9 (3)
C4—C5—C7112.7 (2)C37—C32—C31122.5 (3)
C6—C5—C7113.8 (2)C34—C33—C32122.5 (3)
C4—C5—C11110.2 (2)C34—C33—H33118.7
C6—C5—C11109.8 (2)C32—C33—H33118.7
C7—C5—C11104.1 (2)C35—C34—C33118.1 (4)
N1—C6—C5107.6 (2)C35—C34—H34121.0
N1—C6—H6A110.2C33—C34—H34121.0
C5—C6—H6A110.2C36—C35—C34121.2 (4)
N1—C6—H6B110.2C36—C35—Br2119.2 (3)
C5—C6—H6B110.2C34—C35—Br2119.5 (3)
H6A—C6—H6B108.5C35—C36—C37120.0 (4)
C8—C7—C71116.7 (2)C35—C36—H36120.0
C8—C7—C5101.8 (2)C37—C36—H36120.0
C71—C7—C5115.5 (2)C36—C37—C32120.4 (4)
C8—C7—H7107.4C36—C37—H37119.8
C71—C7—H7107.4C32—C37—H37119.8
C5—C7—H7107.4C72—C71—C76117.2 (3)
N2—C8—C9104.2 (2)C72—C71—C7120.9 (3)
N2—C8—C7100.5 (2)C76—C71—C7121.9 (3)
C9—C8—C7119.8 (3)C73—C72—C71121.9 (3)
N2—C8—H8110.5C73—C72—H72119.1
C9—C8—H8110.5C71—C72—H72119.1
C7—C8—H8110.5C74—C73—C72118.6 (3)
C8—C9—S1103.7 (2)C74—C73—H73120.7
C8—C9—H9A111.0C72—C73—H73120.7
S1—C9—H9A111.0C75—C74—C73121.3 (3)
C8—C9—H9B111.0C75—C74—Br1119.5 (3)
S1—C9—H9B111.0C73—C74—Br1119.2 (2)
H9A—C9—H9B109.0C74—C75—C76119.9 (3)
N2—C10—S1104.5 (2)C74—C75—H75120.1
N2—C10—H10A110.8C76—C75—H75120.1
S1—C10—H10A110.8C75—C76—C71121.1 (3)
N2—C10—H10B110.8C75—C76—H76119.5
S1—C10—H10B110.8C71—C76—H76119.5
H10A—C10—H10B108.9C6—N1—C1113.9 (2)
N2—C11—C19112.3 (2)C6—N1—C2112.3 (2)
N2—C11—C12113.3 (2)C1—N1—C2111.1 (2)
C19—C11—C12101.2 (2)C10—N2—C8111.5 (2)
N2—C11—C5101.7 (2)C10—N2—C11120.8 (2)
C19—C11—C5116.8 (2)C8—N2—C11107.9 (2)
C12—C11—C5112.1 (2)C9—S1—C1093.49 (14)
O2—C12—C13127.0 (3)C13—C14—C15118.1 (5)
O2—C12—C11123.8 (3)C13—C14—H14121.0
C13—C12—C11108.4 (3)C15—C14—H14121.0
C14—C13—C18120.0 (4)C16—C15—C14122.2 (5)
C14—C13—C12132.7 (4)C16—C15—H15118.9
C18—C13—C12107.2 (3)C14—C15—H15118.9
C22—C17—C18115.7 (4)C15—C16—C17121.3 (4)
C22—C17—C16128.8 (4)C15—C16—H16119.3
C18—C17—C16115.5 (4)C17—C16—H16119.3
C13—C18—C19113.4 (3)
N1—C2—C3—C31151.8 (3)N2—C11—C19—C18126.9 (3)
N1—C2—C3—C424.0 (4)C12—C11—C19—C185.7 (3)
C31—C3—C4—O127.1 (4)C5—C11—C19—C18116.2 (3)
C2—C3—C4—O1156.9 (3)C18—C19—C20—C212.7 (4)
C31—C3—C4—C5151.5 (3)C11—C19—C20—C21178.2 (3)
C2—C3—C4—C524.5 (4)C19—C20—C21—C221.2 (5)
O1—C4—C5—C6137.9 (3)C20—C21—C22—C170.3 (6)
C3—C4—C5—C643.6 (3)C18—C17—C22—C210.2 (5)
O1—C4—C5—C712.6 (4)C16—C17—C22—C21177.0 (4)
C3—C4—C5—C7168.9 (2)C4—C3—C31—C32172.3 (3)
O1—C4—C5—C11103.2 (3)C2—C3—C31—C323.5 (5)
C3—C4—C5—C1175.4 (3)C3—C31—C32—C33133.3 (4)
C4—C5—C6—N165.5 (3)C3—C31—C32—C3744.0 (5)
C7—C5—C6—N1169.8 (2)C37—C32—C33—C345.8 (6)
C11—C5—C6—N153.7 (3)C31—C32—C33—C34171.7 (4)
C4—C5—C7—C8146.3 (2)C32—C33—C34—C352.3 (6)
C6—C5—C7—C892.6 (3)C33—C34—C35—C362.4 (7)
C11—C5—C7—C826.9 (3)C33—C34—C35—Br2177.1 (3)
C4—C5—C7—C7186.2 (3)C34—C35—C36—C373.5 (7)
C6—C5—C7—C7134.9 (3)Br2—C35—C36—C37176.1 (3)
C11—C5—C7—C71154.4 (2)C35—C36—C37—C320.2 (6)
C71—C7—C8—N2171.8 (2)C33—C32—C37—C364.6 (6)
C5—C7—C8—N245.1 (3)C31—C32—C37—C36172.7 (4)
C71—C7—C8—C975.0 (4)C8—C7—C71—C72151.2 (3)
C5—C7—C8—C9158.3 (3)C5—C7—C71—C7289.2 (3)
N2—C8—C9—S143.0 (3)C8—C7—C71—C7627.6 (4)
C7—C8—C9—S1154.2 (2)C5—C7—C71—C7692.0 (4)
C4—C5—C11—N2120.1 (2)C76—C71—C72—C732.4 (5)
C6—C5—C11—N2123.1 (2)C7—C71—C72—C73178.8 (3)
C7—C5—C11—N21.0 (3)C71—C72—C73—C740.5 (5)
C4—C5—C11—C192.5 (4)C72—C73—C74—C751.8 (5)
C6—C5—C11—C19114.3 (3)C72—C73—C74—Br1178.0 (2)
C7—C5—C11—C19123.6 (3)C73—C74—C75—C762.1 (6)
C4—C5—C11—C12118.5 (3)Br1—C74—C75—C76177.7 (3)
C6—C5—C11—C121.8 (3)C74—C75—C76—C710.1 (6)
C7—C5—C11—C12120.3 (3)C72—C71—C76—C752.1 (5)
N2—C11—C12—O244.4 (4)C7—C71—C76—C75179.1 (3)
C19—C11—C12—O2164.8 (3)C5—C6—N1—C1162.5 (2)
C5—C11—C12—O270.1 (4)C5—C6—N1—C270.1 (3)
N2—C11—C12—C13126.0 (3)C3—C2—N1—C647.1 (3)
C19—C11—C12—C135.5 (3)C3—C2—N1—C1176.0 (3)
C5—C11—C12—C13119.6 (3)S1—C10—N2—C833.1 (3)
O2—C12—C13—C1411.4 (6)S1—C10—N2—C11161.4 (2)
C11—C12—C13—C14178.7 (4)C9—C8—N2—C1051.4 (3)
O2—C12—C13—C18166.4 (3)C7—C8—N2—C10176.0 (2)
C11—C12—C13—C183.5 (3)C9—C8—N2—C11173.8 (2)
C14—C13—C18—C19177.8 (3)C7—C8—N2—C1149.1 (3)
C12—C13—C18—C190.3 (4)C19—C11—N2—C1073.9 (3)
C14—C13—C18—C170.3 (5)C12—C11—N2—C1040.0 (4)
C12—C13—C18—C17178.5 (3)C5—C11—N2—C10160.5 (2)
C22—C17—C18—C13176.5 (3)C19—C11—N2—C8156.3 (2)
C16—C17—C18—C131.0 (5)C12—C11—N2—C889.8 (3)
C22—C17—C18—C191.5 (5)C5—C11—N2—C830.7 (3)
C16—C17—C18—C19179.0 (3)C8—C9—S1—C1022.1 (2)
C13—C18—C19—C20175.1 (3)N2—C10—S1—C94.9 (2)
C17—C18—C19—C203.0 (5)C18—C13—C14—C151.2 (6)
C13—C18—C19—C114.1 (4)C12—C13—C14—C15178.8 (4)
C17—C18—C19—C11177.7 (3)C13—C14—C15—C160.7 (7)
N2—C11—C19—C2052.3 (4)C14—C15—C16—C170.7 (8)
C12—C11—C19—C20173.4 (3)C22—C17—C16—C15175.6 (5)
C5—C11—C19—C2064.7 (4)C18—C17—C16—C151.6 (7)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of WHICH? ring.
D—H···AD—HH···AD···AD—H···A
C34—H34···O1i0.932.573.440 (5)157
C76—H76···O2ii0.932.463.250 (5)143
C73—H73···O1iii0.932.453.361 (5)166
C9—H9B···O2ii0.972.623.298 (3)128
C10—H10A···O20.972.543.176 (4)123
C2—H2B···Cg1iv0.972.903.816 (3)159
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x, y1/2, z1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC35H26Cl4N2O2SC35H28F2N2O2SC35H28Br2N2O2S
Mr680.44578.65700.47
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/nMonoclinic, P21/c
Temperature (K)293293293
a, b, c (Å)13.4722 (6), 16.4269 (8), 14.8673 (7)14.8802 (5), 9.6789 (3), 20.2209 (6)14.2275 (7), 15.6753 (8), 15.3780 (7)
β (°) 108.243 (2) 104.155 (2) 116.761 (2)
V3)3124.9 (3)2823.87 (15)3062.3 (3)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.480.162.75
Crystal size (mm)0.19 × 0.16 × 0.110.21 × 0.14 × 0.110.19 × 0.16 × 0.11
Data collection
DiffractometerBruker Kappa APEXII area-detector
diffractometer
Bruker Kappa APEXII area-detector
diffractometer
Bruker Kappa APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.912, 0.9480.973, 0.9820.599, 0.739
No. of measured, independent and
observed [I > 2σ(I)] reflections
37631, 8258, 5375 26085, 5494, 3862 30894, 6169, 3897
Rint0.0340.0310.039
(sin θ/λ)max1)0.6810.6150.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.134, 1.02 0.043, 0.140, 1.08 0.044, 0.141, 1.00
No. of reflections825854946169
No. of parameters397381382
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.510.48, 0.220.78, 0.98

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C74—H74···Cl1i0.932.823.497 (3)130
C2—H2B···Cl1ii0.972.863.784 (2)159
C9—H9B···O10.972.443.251 (3)141
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C33—H33···S1i0.932.873.716 (3)152
C37—H37···F2ii0.932.483.302 (3)147
C73—H73···O2iii0.932.683.454 (4)141
C10—H10B···O20.972.593.202 (3)122
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x1/2, y+1/2, z+1/2; (iii) x, y1, z.
Hydrogen-bond geometry (Å, º) for (III) top
Cg1 is the centroid of WHICH? ring.
D—H···AD—HH···AD···AD—H···A
C34—H34···O1i0.932.573.440 (5)157
C76—H76···O2ii0.932.463.250 (5)143
C73—H73···O1iii0.932.453.361 (5)166
C9—H9B···O2ii0.972.623.298 (3)128
C10—H10A···O20.972.543.176 (4)123
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds