Download citation
Download citation
link to html
The title compound, C48H20F19N4O3P, prepared by the nucleo­philic attack of triethyl phosphite on one of the 4-fluoro atoms of 5,10,15,20-tetra­kis­(penta­fluoro­phenyl)por­phy­rin, contains a single mol­ecule in the asymmetric unit. The porphyrin unit is almost planar [largest non-H atom deviation = 0.174 (6) Å], and has the planes of the neighbouring benzene rings oriented at angles ranging from 64.3 (2) to 89.6 (3)° relative to the porphyrin core. The P=O group is almost coplanar with the attached benzene ring, subtending an angle of 4.0 (3)°. Several weak supra­molecular inter­actions, namely C—H...π, C—F...π, P=O...π, C—H...(O,F) and F...F contacts, contribute to the crystal packing.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112002934/gg3269sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112002934/gg3269Isup2.hkl
Contains datablock I

CCDC reference: 873888

Comment top

New synthetic strategies and primary building blocks have been developed for the specific design of multidimensional coordination polymers which combine a myriad metallic centres with ligands having multiple binding sites. For this purpose, porphyrin macrocycles can be designed having several coordination-capable groups located at the periphery of their core, which may ultimately also allow fine tuning of the framework topology (Natarajan & Mahata, 2009; Choi et al., 2009). Compared with carboxylate-based ligands, phosphonates are less commonly used to prepare coordination polymers, due to three main factors: (i) dense layered materials are usually formed, compared with the more interesting porous frameworks which may exhibit high surface areas; (ii) the growth of single crystals with phosphonates is generally more difficult because they often precipitate rapidly as less ordered and insoluble phases; (iii) the coordination chemistry of phosphonate groups is more complex due to their various stages of deprotonation (Natarajan & Mahata, 2009; Shimizu et al., 2009). Despite all these limitations, phosphonate-based ligands are still highly attractive molecules to prepare hybrid materials with different structures and interesting properties. A search of the literature yields only a handful of phosphorylporphyrins (Atefi et al., 2006; Enakieva et al., 2009; Matano et al., 2007) which may be employed as precursor structural building blocks for multiporphyrin arrays and networks (Natarajan & Mahata, 2009; Shimizu et al., 2009). Following our research interest in the use of phosphonate-based organic ligands for the construction of coordination polymers (Cunha-Silva, Lima et al., 2009; Cunha-Silva, Ananias et al., 2009; Cunha-Silva et al., 2007; Shi et al., 2008; Silva et al., 2011), we report herein the synthesis, structural characterization and crystallographic details of an isolated intermediate molecule, namely 5-[4-(diethoxyphosphoryl)-2,3,5,6-tetrafluorophenyl]-10,15,20-tris(pentafluorophenyl)porphyrin, (I), obtained in our quest to isolate phosphonic acid-based porphyrin molecules for self-assembly with metallic centres.

The asymmetric unit of (I) comprises a single molecule of the porphyrin derivative (Fig. 1). The porphyrin central core is approximately planar, with the largest distance from one atom (C14) to the average plane being 0.174 (6) Å. The substituent benzene rings subtend angles with the porphyrin core in the range 64.3 (2)–89.6 (3)°. These values agree well with those typically observed in related materials [a search of the Cambridge Structural Database (Version 5.32; Allen, 2002) yields 66 hits, with all of the angles being in the range ca 60–90°, mean 77.5°], and allow a minimization of the steric repulsion between the F atoms and the porphyrin core. It is noteworthy that the F atoms are almost coplanar with their respective aromatic rings, with the overall deviation being less than 0.084 (5) Å (for F17).

The PO group of the phosphoryl moiety is located in the approximate average plane of the benzene ring to which it is attached [the ring···PO angle is about 4.0 (3)°]. This conformation of the phosphoryl group enables a significant reduction of the steric impediment associated with the presence of the two pendant and highly flexible ethyl groups (Fig. 1). The conformational arrangements of the two ethyl substituents are different. Firstly, while methylene atom C1 forms an antiperiplanar angle with its neighbouring O3—P1—C28 group, for methylene atom C3 the antiperiplanar angle is instead formed with its neighbouring O2—P1—O3 group. Secondly, the two torsion angles involving the terminal methyl groups are also not similar, being (-)-synclinal for P1—O2—C1—C2 and (+)-antiperiplanar for P1—O3—C3—C4 (Table 1).

The molecule of (I) lacks typical hydrogen-bonding donors, and therefore strong supramolecular interactions mediating the crystal packing are absent. In addition, the asymmetric nature of the molecule also seems to avoid the presence of typical ππ interactions. Thus, the crystal packing is ensured by weak interactions such as C—H···π, C—F···π, PO···π, C—H···(O,F) and F···F contacts (Fig. 2; see Table 2 for geometric details of all these interactions). Molecules of (I) form supramolecular layers in the ab plane of the unit cell, having essentially C—H···π contacts between the cores of adjacent porphyrin rings. The bulky phosphonate groups point towards these interlayer spaces and are engaged in a number of weak C—H···O and C—H···F interactions (Fig. 2 and Table 2).

It is noteworthy that the crystal structure contains a small void volume of ca 46 Å3 (Fig. 2). Although this empty space is suitable for the inclusion of a small solvent molecule, such as water, the total electron density found within the cavity is less than four electrons and highly smeared out, thus avoiding a sensible location and refinement of additional molecular entities within the crystal structure.

Related literature top

For related literature, see: Allen (2002); Atefi et al. (2006); Choi et al. (2009); Cunha-Silva, Ananias, Carlos, Paz & Rocha (2009); Cunha-Silva, Lima, Ananias, Silva, Mafra, Carlos, Pillinger, Valente, Paz & Rocha (2009); Cunha-Silva, Mafra, Ananias, Carlos, Rocha & Paz (2007); Enakieva et al. (2009); Matano et al. (2007); Natarajan & Mahata (2009); Shi et al. (2008); Shimizu et al. (2009); Silva et al. (2011); Tomé et al. (2005).

Experimental top

Chemicals and solvents were purchased from commercial sources and used as received. 5,10,15,20-Tetrakis(pentafluorophenyl)porphyrin (TPPF20) was prepared according to a published procedure (Tomé et al., 2005). To a solution of TPPF20 (25 mg, 25.7 µmol) in dry toluene (2.5 ml; Riedel-de Haën, 99,7%), triethyl phosphite was added in excess (1.0 ml, 5.8 mmol; Sigma–Aldrich, 98%) and the mixture was stirred at reflux for 48 h under a nitrogen atmosphere. Toluene and the excess of triethyl phosphite were distilled off under reduced pressure. The crude mixture was purified by column chromatography using dichloromethane as eluent. Compound (I) was recrystallized from a mixture of dichloromethane and methanol [Solvent ratio?] at ambient temperature (yield 22%). Spectroscopic analysis: 1H NMR (300 MHz, CDCl3, δ, p.p.m.): 8.93 (d, J = 3.3 Hz, 8H, β-H), 4.66–4.44 (m, 4H, CH2), 1.59 (t, J = 7.0 Hz, 6H, CH3), -2.92 (s, 2H, NH); 19F NMR (282 MHz, CDCl3, δ, p.p.m.): -155.26 (dd, J = 23.7 and 13.6 Hz, 2F, 5-Ar-o-F), -158.79 to -159.02 (m, 2F, 5-Ar-m-F), -160.02 (dd, J = 24.3 and 7.4 Hz, 6F, 10,15,20-Ar-o-F), -174.70 (t, J = 20.9 Hz, 3F, 10,15,20-Ar-p-F), -184.63 to -184.96 (m, 6F, 10,15,20-Ar-m-F); 31P NMR (121 MHz, CDCl3, δ, p.p.m.): 5.80 (s, R–PO3Et2).

Refinement top

H atoms bound to C and N atoms were placed at their idealized positions and included in the final structural model in the riding-motion approximation, with C—H = 0.95 (aromatic), 0.99 (methylene) or 0.98 Å (methyl) and N—H = 0.88 Å. The isotropic displacement parameters for these atoms were fixed at 1.5Ueq(C) for methyl H atoms and 1.2Ueq(parent) otherwise.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A schematic representation of the crystal packing of (I), viewed in perspective along the [010] direction of the unit cell. H atoms not engaged in supramolecular interactions (dashed lines) have been omitted for clarity [in the electronic version of the paper, C—H···(N,O) interactions are orange dashed lines and C—H···π interactions are blue dashed lines]. The void volumes within the crystal structure are depicted schematically as transparent (blue) spheres.
5-[4-(Diethoxyphosphoryl)-2,3,5,6-tetrafluorophenyl]-10,15,20- tris(pentafluorophenyl)porphyrin top
Crystal data top
C48H20F19N4O3PF(000) = 2184
Mr = 1092.65Dx = 1.599 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5493 reflections
a = 15.530 (2) Åθ = 2.2–24.6°
b = 11.2539 (17) ŵ = 0.19 mm1
c = 26.375 (3) ÅT = 150 K
β = 100.024 (9)°Block, red
V = 4539.3 (11) Å30.08 × 0.05 × 0.03 mm
Z = 4
Data collection top
Bruker APEXII X8 Kappa CCD area-detector
diffractometer
8275 independent reflections
Radiation source: fine-focus sealed tube3504 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.115
ω and ϕ scansθmax = 25.4°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1518
Tmin = 0.985, Tmax = 0.994k = 1213
32626 measured reflectionsl = 3031
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.271H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.1428P)2]
where P = (Fo2 + 2Fc2)/3
8275 reflections(Δ/σ)max < 0.001
678 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C48H20F19N4O3PV = 4539.3 (11) Å3
Mr = 1092.65Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.530 (2) ŵ = 0.19 mm1
b = 11.2539 (17) ÅT = 150 K
c = 26.375 (3) Å0.08 × 0.05 × 0.03 mm
β = 100.024 (9)°
Data collection top
Bruker APEXII X8 Kappa CCD area-detector
diffractometer
8275 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
3504 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.994Rint = 0.115
32626 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0840 restraints
wR(F2) = 0.271H-atom parameters constrained
S = 0.99Δρmax = 0.42 e Å3
8275 reflectionsΔρmin = 0.34 e Å3
678 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.16439 (12)0.33648 (17)0.46670 (6)0.0652 (6)
O10.1598 (3)0.2804 (4)0.41705 (15)0.0719 (13)
O20.0863 (3)0.4204 (4)0.47212 (15)0.0707 (13)
O30.2468 (3)0.4131 (4)0.48763 (17)0.0868 (16)
F10.1924 (2)0.0838 (3)0.54643 (12)0.0649 (10)
F20.1613 (2)0.0599 (3)0.46667 (11)0.0669 (10)
F30.1806 (3)0.3904 (3)0.57991 (13)0.0807 (12)
F40.2058 (3)0.2426 (3)0.65892 (12)0.0731 (11)
F50.0266 (2)0.5186 (3)0.66925 (13)0.0673 (10)
F60.1342 (3)0.6132 (4)0.64182 (15)0.0882 (12)
F70.2752 (2)0.5047 (4)0.66976 (14)0.0885 (13)
F80.2534 (2)0.3073 (4)0.72954 (14)0.0816 (12)
F90.0921 (2)0.2125 (3)0.75712 (13)0.0701 (10)
F100.3384 (3)0.6298 (3)0.84165 (14)0.0870 (12)
F110.3764 (3)0.7932 (4)0.91557 (16)0.0953 (13)
F120.3993 (3)0.7278 (4)1.01585 (15)0.0971 (14)
F130.3848 (3)0.4970 (4)1.04133 (13)0.0877 (13)
F140.3393 (3)0.3333 (4)0.96711 (12)0.0749 (11)
F150.6237 (3)0.1375 (4)0.75765 (16)0.0873 (12)
F160.7822 (3)0.0394 (4)0.7903 (2)0.1208 (18)
F170.8006 (3)0.1359 (5)0.8611 (2)0.132 (2)
F180.6577 (4)0.2269 (6)0.8920 (3)0.171 (3)
F190.4985 (3)0.1341 (5)0.8574 (2)0.145 (2)
N10.1609 (3)0.1585 (4)0.70239 (15)0.0414 (11)
N20.1990 (3)0.3254 (4)0.78848 (15)0.0444 (11)
H20.22780.26850.77580.053*
N30.3714 (3)0.2208 (4)0.81267 (16)0.0464 (12)
N40.3350 (3)0.0582 (4)0.72488 (16)0.0460 (12)
H40.30530.11290.73840.055*
C10.0037 (4)0.3951 (7)0.4477 (3)0.074 (2)
H1A0.03720.47040.44370.089*
H1B0.00350.36260.41290.089*
C20.0486 (5)0.3094 (7)0.4773 (3)0.095 (2)
H2A0.04650.33900.51240.142*
H2B0.10970.30070.46050.142*
H2C0.01930.23210.47840.142*
C30.2754 (5)0.5152 (7)0.4624 (3)0.090 (2)
H3A0.27410.49770.42550.108*
H3B0.23590.58320.46500.108*
C40.3669 (6)0.5454 (8)0.4880 (4)0.114 (3)
H4A0.40350.47410.49000.171*
H4B0.39080.60650.46790.171*
H4C0.36610.57550.52280.171*
C50.0818 (4)0.2156 (5)0.69625 (19)0.0442 (14)
C60.0604 (3)0.3071 (5)0.72770 (19)0.0424 (14)
C70.1153 (4)0.3562 (5)0.76999 (19)0.0449 (14)
C80.0934 (4)0.4527 (6)0.8017 (2)0.0560 (16)
H80.03890.49290.79780.067*
C90.1640 (4)0.4752 (6)0.8375 (2)0.0560 (16)
H90.16810.53400.86370.067*
C100.2323 (4)0.3948 (5)0.8295 (2)0.0509 (15)
C110.3161 (4)0.3847 (5)0.85936 (19)0.0482 (15)
C120.3793 (4)0.3005 (5)0.8522 (2)0.0453 (14)
C130.4612 (4)0.2863 (6)0.8868 (2)0.0531 (16)
H130.48220.33230.91660.064*
C140.5024 (4)0.1945 (5)0.8682 (2)0.0528 (16)
H140.55760.16220.88290.063*
C150.4466 (4)0.1550 (5)0.8221 (2)0.0455 (14)
C160.4693 (4)0.0632 (5)0.7899 (2)0.0471 (14)
C170.4182 (4)0.0218 (5)0.7452 (2)0.0492 (15)
C180.4415 (4)0.0647 (6)0.7108 (2)0.0592 (17)
H180.49580.10560.71470.071*
C190.3746 (4)0.0793 (6)0.6718 (2)0.0593 (16)
H190.37340.13120.64330.071*
C200.3050 (4)0.0027 (5)0.6808 (2)0.0479 (14)
C210.2211 (4)0.0068 (5)0.65156 (19)0.0485 (15)
C220.1532 (4)0.0812 (5)0.66182 (19)0.0439 (14)
C230.0671 (4)0.0888 (5)0.6306 (2)0.0486 (15)
H230.04610.04390.60050.058*
C240.0226 (4)0.1707 (5)0.6520 (2)0.0461 (14)
H240.03620.19470.64050.055*
C250.2015 (4)0.0746 (5)0.6055 (2)0.0483 (14)
C260.1893 (4)0.0347 (5)0.5558 (2)0.0503 (15)
C270.1738 (4)0.1092 (6)0.5137 (2)0.0514 (15)
C280.1727 (4)0.2326 (6)0.5202 (2)0.0543 (16)
C290.1841 (4)0.2716 (6)0.5702 (2)0.0582 (16)
C300.1964 (4)0.1962 (5)0.6119 (2)0.0516 (15)
C310.0288 (4)0.3623 (5)0.71366 (19)0.0439 (14)
C320.0416 (4)0.4645 (5)0.6848 (2)0.0509 (15)
C330.1236 (5)0.5140 (6)0.6701 (2)0.0599 (17)
C340.1937 (4)0.4599 (7)0.6847 (2)0.0618 (18)
C350.1836 (4)0.3604 (6)0.7142 (2)0.0565 (17)
C360.1015 (4)0.3105 (6)0.7285 (2)0.0520 (16)
C370.3387 (4)0.4742 (6)0.9018 (2)0.0532 (16)
C380.3487 (4)0.5943 (6)0.8903 (2)0.0636 (18)
C390.3683 (5)0.6778 (6)0.9283 (3)0.0703 (19)
C400.3803 (4)0.6445 (7)0.9787 (3)0.0676 (19)
C410.3728 (4)0.5294 (7)0.9919 (2)0.0656 (19)
C420.3503 (4)0.4462 (6)0.9528 (2)0.0577 (16)
C430.5571 (4)0.0040 (6)0.8070 (2)0.0517 (15)
C440.6306 (4)0.0473 (7)0.7901 (3)0.0611 (17)
C450.7121 (5)0.0020 (8)0.8070 (3)0.078 (2)
C460.7202 (6)0.0920 (10)0.8415 (4)0.087 (3)
C470.6500 (7)0.1388 (8)0.8575 (3)0.096 (3)
C480.5673 (5)0.0895 (7)0.8406 (3)0.084 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0666 (12)0.0658 (13)0.0601 (11)0.0103 (10)0.0028 (8)0.0159 (9)
O10.070 (3)0.088 (4)0.056 (2)0.001 (2)0.009 (2)0.015 (2)
O20.073 (3)0.065 (3)0.070 (3)0.003 (3)0.001 (2)0.007 (2)
O30.080 (3)0.087 (4)0.086 (3)0.030 (3)0.006 (3)0.039 (3)
F10.090 (3)0.052 (2)0.0554 (19)0.0117 (19)0.0192 (17)0.0056 (17)
F20.088 (3)0.068 (2)0.0454 (18)0.0150 (19)0.0137 (17)0.0033 (18)
F30.120 (3)0.046 (2)0.068 (2)0.004 (2)0.005 (2)0.0005 (18)
F40.117 (3)0.050 (2)0.0492 (19)0.001 (2)0.0055 (19)0.0046 (17)
F50.068 (2)0.052 (2)0.081 (2)0.0046 (18)0.0117 (19)0.0102 (18)
F60.106 (3)0.066 (3)0.091 (3)0.030 (2)0.011 (2)0.015 (2)
F70.066 (3)0.117 (4)0.083 (2)0.042 (2)0.013 (2)0.005 (2)
F80.061 (2)0.103 (3)0.085 (2)0.002 (2)0.025 (2)0.004 (2)
F90.068 (2)0.067 (3)0.081 (2)0.0026 (19)0.0283 (18)0.019 (2)
F100.137 (4)0.059 (3)0.065 (2)0.008 (2)0.019 (2)0.002 (2)
F110.124 (4)0.057 (3)0.106 (3)0.011 (2)0.023 (3)0.013 (2)
F120.117 (3)0.083 (3)0.078 (2)0.016 (3)0.018 (2)0.037 (2)
F130.109 (3)0.095 (3)0.053 (2)0.032 (3)0.0021 (19)0.009 (2)
F140.105 (3)0.063 (3)0.057 (2)0.010 (2)0.0155 (19)0.0069 (19)
F150.082 (3)0.083 (3)0.106 (3)0.011 (2)0.044 (2)0.011 (3)
F160.052 (3)0.124 (4)0.193 (5)0.016 (3)0.041 (3)0.076 (4)
F170.079 (3)0.140 (5)0.157 (4)0.062 (3)0.031 (3)0.077 (4)
F180.180 (6)0.163 (6)0.178 (5)0.103 (5)0.054 (4)0.082 (5)
F190.111 (4)0.125 (4)0.219 (6)0.043 (3)0.084 (4)0.108 (4)
N10.046 (3)0.036 (3)0.044 (2)0.001 (2)0.012 (2)0.001 (2)
N20.049 (3)0.044 (3)0.040 (2)0.006 (2)0.007 (2)0.008 (2)
N30.042 (3)0.043 (3)0.054 (3)0.000 (2)0.010 (2)0.001 (2)
N40.048 (3)0.041 (3)0.051 (3)0.001 (2)0.013 (2)0.008 (2)
C10.068 (5)0.085 (6)0.067 (4)0.009 (4)0.009 (4)0.006 (4)
C20.099 (6)0.077 (6)0.108 (6)0.006 (5)0.018 (5)0.013 (5)
C30.088 (6)0.067 (5)0.113 (6)0.002 (4)0.008 (5)0.030 (5)
C40.102 (7)0.068 (6)0.168 (8)0.032 (5)0.015 (6)0.008 (6)
C50.050 (4)0.046 (4)0.039 (3)0.006 (3)0.014 (3)0.001 (3)
C60.047 (3)0.043 (4)0.039 (3)0.000 (3)0.013 (2)0.003 (3)
C70.053 (4)0.041 (4)0.042 (3)0.005 (3)0.010 (3)0.001 (3)
C80.064 (4)0.058 (4)0.046 (3)0.013 (3)0.012 (3)0.008 (3)
C90.069 (4)0.053 (4)0.045 (3)0.011 (3)0.008 (3)0.013 (3)
C100.068 (4)0.046 (4)0.041 (3)0.002 (3)0.016 (3)0.001 (3)
C110.061 (4)0.041 (4)0.042 (3)0.004 (3)0.006 (3)0.004 (3)
C120.047 (4)0.046 (4)0.045 (3)0.008 (3)0.012 (3)0.002 (3)
C130.054 (4)0.058 (4)0.048 (3)0.006 (3)0.012 (3)0.005 (3)
C140.045 (4)0.055 (4)0.060 (4)0.003 (3)0.014 (3)0.008 (3)
C150.043 (3)0.047 (4)0.050 (3)0.009 (3)0.017 (3)0.007 (3)
C160.047 (4)0.041 (4)0.057 (3)0.010 (3)0.018 (3)0.004 (3)
C170.051 (4)0.046 (4)0.053 (3)0.001 (3)0.016 (3)0.004 (3)
C180.060 (4)0.056 (4)0.062 (4)0.012 (3)0.012 (3)0.006 (3)
C190.066 (4)0.055 (4)0.059 (4)0.010 (3)0.015 (3)0.011 (3)
C200.052 (4)0.045 (4)0.049 (3)0.003 (3)0.014 (3)0.002 (3)
C210.068 (4)0.039 (4)0.041 (3)0.001 (3)0.015 (3)0.005 (3)
C220.056 (4)0.033 (3)0.046 (3)0.001 (3)0.016 (3)0.002 (3)
C230.063 (4)0.046 (4)0.039 (3)0.002 (3)0.014 (3)0.004 (3)
C240.047 (3)0.043 (4)0.050 (3)0.004 (3)0.012 (3)0.000 (3)
C250.060 (4)0.042 (4)0.043 (3)0.015 (3)0.011 (3)0.001 (3)
C260.059 (4)0.032 (4)0.060 (4)0.011 (3)0.011 (3)0.009 (3)
C270.055 (4)0.057 (4)0.042 (3)0.012 (3)0.008 (3)0.001 (3)
C280.049 (4)0.055 (5)0.058 (4)0.009 (3)0.008 (3)0.001 (3)
C290.073 (4)0.040 (4)0.059 (4)0.007 (3)0.002 (3)0.001 (3)
C300.069 (4)0.045 (4)0.038 (3)0.009 (3)0.004 (3)0.001 (3)
C310.046 (4)0.042 (4)0.042 (3)0.002 (3)0.006 (3)0.007 (3)
C320.053 (4)0.047 (4)0.054 (3)0.003 (3)0.013 (3)0.008 (3)
C330.080 (5)0.050 (4)0.049 (3)0.014 (4)0.010 (3)0.001 (3)
C340.062 (5)0.068 (5)0.056 (4)0.021 (4)0.013 (3)0.007 (4)
C350.048 (4)0.067 (5)0.059 (4)0.002 (3)0.023 (3)0.015 (4)
C360.051 (4)0.059 (5)0.047 (3)0.006 (3)0.011 (3)0.004 (3)
C370.055 (4)0.056 (4)0.049 (3)0.007 (3)0.010 (3)0.004 (3)
C380.078 (5)0.058 (5)0.054 (4)0.004 (4)0.009 (3)0.002 (4)
C390.084 (5)0.049 (5)0.076 (5)0.004 (4)0.009 (4)0.005 (4)
C400.071 (5)0.062 (5)0.064 (4)0.009 (4)0.006 (3)0.021 (4)
C410.071 (5)0.075 (6)0.045 (4)0.015 (4)0.005 (3)0.007 (4)
C420.061 (4)0.053 (5)0.057 (4)0.011 (3)0.007 (3)0.001 (4)
C430.042 (4)0.049 (4)0.065 (4)0.000 (3)0.013 (3)0.005 (3)
C440.049 (4)0.067 (5)0.068 (4)0.005 (4)0.012 (3)0.022 (4)
C450.051 (5)0.083 (6)0.104 (6)0.009 (5)0.023 (4)0.045 (5)
C460.066 (6)0.092 (7)0.097 (6)0.032 (5)0.001 (5)0.048 (5)
C470.105 (7)0.089 (7)0.095 (6)0.042 (6)0.018 (5)0.024 (5)
C480.067 (5)0.088 (6)0.107 (6)0.019 (4)0.037 (4)0.029 (5)
Geometric parameters (Å, º) top
P1—O11.444 (5)C8—C91.341 (8)
P1—O31.562 (5)C8—H80.9500
P1—O21.564 (5)C9—C101.437 (8)
P1—C281.821 (6)C9—H90.9500
O2—C11.461 (7)C10—C111.404 (8)
O3—C31.436 (8)C11—C121.399 (8)
F1—C261.359 (6)C11—C371.502 (8)
F2—C271.342 (6)C12—C131.440 (8)
F3—C291.365 (7)C13—C141.351 (8)
F4—C301.329 (6)C13—H130.9500
F5—C321.346 (7)C14—C151.436 (8)
F6—C331.337 (7)C14—H140.9500
F7—C341.356 (7)C15—C161.419 (8)
F8—C351.360 (7)C16—C171.382 (8)
F9—C361.330 (7)C16—C431.513 (8)
F10—C381.327 (7)C17—C181.421 (8)
F11—C391.353 (8)C18—C191.338 (8)
F12—C401.351 (7)C18—H180.9500
F13—C411.335 (7)C19—C201.434 (8)
F14—C421.345 (7)C19—H190.9500
F15—C441.320 (8)C20—C211.398 (8)
F16—C451.328 (9)C21—C221.409 (8)
F17—C461.358 (8)C21—C251.510 (8)
F18—C471.336 (10)C22—C231.446 (7)
F19—C481.324 (8)C23—C241.335 (7)
N1—C221.368 (6)C23—H230.9500
N1—C51.371 (7)C24—H240.9500
N2—C71.352 (7)C25—C261.367 (7)
N2—C101.362 (7)C25—C301.384 (8)
N2—H20.8800C26—C271.378 (8)
N3—C121.365 (7)C27—C281.399 (8)
N3—C151.369 (7)C28—C291.371 (8)
N4—C201.361 (7)C29—C301.376 (8)
N4—C171.374 (7)C31—C321.375 (8)
N4—H40.8800C31—C361.386 (8)
C1—C21.488 (10)C32—C331.381 (8)
C1—H1A0.9900C33—C341.360 (9)
C1—H1B0.9900C34—C351.356 (9)
C2—H2A0.9800C35—C361.385 (8)
C2—H2B0.9800C37—C421.361 (8)
C2—H2C0.9800C37—C381.400 (9)
C3—C41.503 (10)C38—C391.370 (9)
C3—H3A0.9900C39—C401.360 (9)
C3—H3B0.9900C40—C411.353 (10)
C4—H4A0.9800C41—C421.392 (9)
C4—H4B0.9800C43—C481.368 (9)
C4—H4C0.9800C43—C441.385 (9)
C5—C61.398 (7)C44—C451.384 (10)
C5—C241.446 (7)C45—C461.353 (12)
C6—C71.395 (7)C46—C471.344 (12)
C6—C311.504 (7)C47—C481.399 (11)
C7—C81.446 (8)
O1—P1—O3118.0 (3)N4—C20—C19106.8 (5)
O1—P1—O2115.5 (2)C21—C20—C19127.7 (5)
O3—P1—O2103.6 (3)C20—C21—C22126.6 (5)
O1—P1—C28114.1 (3)C20—C21—C25115.8 (5)
O3—P1—C2897.9 (2)C22—C21—C25117.6 (5)
O2—P1—C28105.6 (3)N1—C22—C21124.2 (5)
C1—O2—P1122.7 (4)N1—C22—C23110.8 (5)
C3—O3—P1125.3 (4)C21—C22—C23125.1 (5)
C22—N1—C5104.5 (4)C24—C23—C22107.2 (5)
C7—N2—C10110.4 (5)C24—C23—H23126.4
C7—N2—H2124.8C22—C23—H23126.4
C10—N2—H2124.8C23—C24—C5106.2 (5)
C12—N3—C15104.9 (4)C23—C24—H24126.9
C20—N4—C17110.0 (5)C5—C24—H24126.9
C20—N4—H4125.0C26—C25—C30116.2 (5)
C17—N4—H4125.0C26—C25—C21123.2 (6)
O2—C1—C2113.3 (6)C30—C25—C21120.6 (5)
O2—C1—H1A108.9F1—C26—C25119.5 (5)
C2—C1—H1A108.9F1—C26—C27117.3 (5)
O2—C1—H1B108.9C25—C26—C27123.2 (6)
C2—C1—H1B108.9F2—C27—C26118.0 (6)
H1A—C1—H1B107.7F2—C27—C28121.4 (5)
C1—C2—H2A109.5C26—C27—C28120.6 (5)
C1—C2—H2B109.5C29—C28—C27115.7 (6)
H2A—C2—H2B109.5C29—C28—P1121.3 (5)
C1—C2—H2C109.5C27—C28—P1122.8 (4)
H2A—C2—H2C109.5F3—C29—C28119.5 (6)
H2B—C2—H2C109.5F3—C29—C30117.3 (5)
O3—C3—C4108.5 (6)C28—C29—C30123.2 (6)
O3—C3—H3A110.0F4—C30—C29118.8 (5)
C4—C3—H3A110.0F4—C30—C25120.2 (5)
O3—C3—H3B110.0C29—C30—C25121.0 (5)
C4—C3—H3B110.0C32—C31—C36117.5 (5)
H3A—C3—H3B108.4C32—C31—C6121.3 (5)
C3—C4—H4A109.5C36—C31—C6121.2 (5)
C3—C4—H4B109.5F5—C32—C31120.1 (5)
H4A—C4—H4B109.5F5—C32—C33117.9 (6)
C3—C4—H4C109.5C31—C32—C33122.0 (6)
H4A—C4—H4C109.5F6—C33—C34120.3 (6)
H4B—C4—H4C109.5F6—C33—C32120.8 (6)
N1—C5—C6125.2 (5)C34—C33—C32119.0 (6)
N1—C5—C24111.3 (5)F7—C34—C35118.8 (6)
C6—C5—C24123.5 (5)F7—C34—C33120.3 (7)
C7—C6—C5126.2 (5)C35—C34—C33120.9 (6)
C7—C6—C31116.2 (5)C34—C35—F8121.0 (6)
C5—C6—C31117.5 (5)C34—C35—C36120.0 (6)
N2—C7—C6127.0 (5)F8—C35—C36118.9 (6)
N2—C7—C8107.0 (5)F9—C36—C35119.8 (6)
C6—C7—C8126.0 (5)F9—C36—C31119.6 (5)
C9—C8—C7107.7 (5)C35—C36—C31120.6 (6)
C9—C8—H8126.2C42—C37—C38115.9 (6)
C7—C8—H8126.2C42—C37—C11123.7 (6)
C8—C9—C10108.2 (5)C38—C37—C11120.4 (5)
C8—C9—H9125.9F10—C38—C39118.4 (6)
C10—C9—H9125.9F10—C38—C37120.1 (6)
N2—C10—C11125.9 (5)C39—C38—C37121.5 (6)
N2—C10—C9106.8 (5)F11—C39—C40120.3 (6)
C11—C10—C9127.2 (5)F11—C39—C38119.7 (6)
C12—C11—C10125.6 (5)C40—C39—C38120.0 (7)
C12—C11—C37118.4 (5)F12—C40—C41119.6 (6)
C10—C11—C37115.9 (5)F12—C40—C39119.5 (7)
N3—C12—C11125.1 (5)C41—C40—C39120.8 (6)
N3—C12—C13111.3 (5)F13—C41—C40120.7 (6)
C11—C12—C13123.6 (5)F13—C41—C42121.0 (7)
C14—C13—C12106.1 (5)C40—C41—C42118.3 (6)
C14—C13—H13126.9F14—C42—C37119.7 (6)
C12—C13—H13126.9F14—C42—C41117.0 (6)
C13—C14—C15106.9 (5)C37—C42—C41123.3 (7)
C13—C14—H14126.6C48—C43—C44118.1 (6)
C15—C14—H14126.6C48—C43—C16121.9 (6)
N3—C15—C16125.4 (5)C44—C43—C16119.9 (6)
N3—C15—C14110.8 (5)F15—C44—C45118.9 (7)
C16—C15—C14123.7 (5)F15—C44—C43120.1 (6)
C17—C16—C15126.1 (5)C45—C44—C43121.0 (8)
C17—C16—C43117.4 (5)F16—C45—C46120.0 (9)
C15—C16—C43116.5 (5)F16—C45—C44120.7 (9)
N4—C17—C16126.5 (5)C46—C45—C44119.3 (8)
N4—C17—C18106.3 (5)C47—C46—C45121.3 (8)
C16—C17—C18127.2 (6)C47—C46—F17118.7 (10)
C19—C18—C17109.0 (5)C45—C46—F17120.0 (10)
C19—C18—H18125.5F18—C47—C46121.5 (9)
C17—C18—H18125.5F18—C47—C48118.7 (9)
C18—C19—C20107.8 (5)C46—C47—C48119.7 (8)
C18—C19—H19126.1F19—C48—C43119.9 (6)
C20—C19—H19126.1F19—C48—C47119.5 (8)
N4—C20—C21125.5 (5)C43—C48—C47120.5 (7)
O1—P1—O2—C136.7 (5)O2—P1—C28—C27127.4 (5)
O3—P1—O2—C1167.3 (4)C27—C28—C29—F3177.6 (5)
C28—P1—O2—C190.4 (5)P1—C28—C29—F36.5 (8)
O1—P1—O3—C359.0 (7)C27—C28—C29—C300.3 (9)
O2—P1—O3—C370.1 (6)P1—C28—C29—C30175.6 (5)
C28—P1—O3—C3178.3 (6)F3—C29—C30—F41.2 (9)
P1—O2—C1—C281.5 (7)C28—C29—C30—F4179.1 (5)
P1—O3—C3—C4166.7 (6)F3—C29—C30—C25179.4 (5)
C22—N1—C5—C6177.1 (5)C28—C29—C30—C252.7 (10)
C22—N1—C5—C241.9 (6)C26—C25—C30—F4178.6 (5)
N1—C5—C6—C70.6 (9)C21—C25—C30—F42.3 (9)
C24—C5—C6—C7178.2 (5)C26—C25—C30—C293.2 (9)
N1—C5—C6—C31177.7 (5)C21—C25—C30—C29175.9 (6)
C24—C5—C6—C311.1 (8)C7—C6—C31—C3281.8 (6)
C10—N2—C7—C6178.6 (5)C5—C6—C31—C3295.6 (6)
C10—N2—C7—C80.0 (6)C7—C6—C31—C3699.5 (6)
C5—C6—C7—N20.1 (9)C5—C6—C31—C3683.1 (6)
C31—C6—C7—N2177.0 (5)C36—C31—C32—F5179.9 (5)
C5—C6—C7—C8178.5 (5)C6—C31—C32—F51.3 (7)
C31—C6—C7—C81.3 (8)C36—C31—C32—C330.9 (8)
N2—C7—C8—C90.2 (7)C6—C31—C32—C33177.8 (5)
C6—C7—C8—C9178.8 (5)F5—C32—C33—F60.6 (8)
C7—C8—C9—C100.4 (7)C31—C32—C33—F6179.7 (5)
C7—N2—C10—C11177.5 (5)F5—C32—C33—C34179.0 (5)
C7—N2—C10—C90.3 (6)C31—C32—C33—C340.1 (9)
C8—C9—C10—N20.4 (7)F6—C33—C34—F71.3 (9)
C8—C9—C10—C11177.6 (6)C32—C33—C34—F7178.3 (5)
N2—C10—C11—C120.7 (9)F6—C33—C34—C35178.8 (5)
C9—C10—C11—C12175.9 (6)C32—C33—C34—C351.6 (9)
N2—C10—C11—C37178.3 (5)F7—C34—C35—F81.3 (8)
C9—C10—C11—C375.0 (8)C33—C34—C35—F8178.8 (5)
C15—N3—C12—C11178.3 (5)F7—C34—C35—C36177.8 (5)
C15—N3—C12—C130.9 (6)C33—C34—C35—C362.1 (9)
C10—C11—C12—N35.2 (9)C34—C35—C36—F9179.5 (5)
C37—C11—C12—N3173.8 (5)F8—C35—C36—F90.5 (8)
C10—C11—C12—C13173.9 (5)C34—C35—C36—C311.1 (8)
C37—C11—C12—C137.1 (8)F8—C35—C36—C31179.8 (5)
N3—C12—C13—C141.5 (6)C32—C31—C36—F9179.0 (5)
C11—C12—C13—C14177.8 (5)C6—C31—C36—F92.3 (8)
C12—C13—C14—C151.3 (6)C32—C31—C36—C350.4 (8)
C12—N3—C15—C16177.6 (5)C6—C31—C36—C35178.3 (5)
C12—N3—C15—C140.1 (6)C12—C11—C37—C4268.9 (8)
C13—C14—C15—N30.8 (6)C10—C11—C37—C42112.0 (6)
C13—C14—C15—C16176.8 (5)C12—C11—C37—C38111.4 (6)
N3—C15—C16—C172.8 (9)C10—C11—C37—C3867.7 (7)
C14—C15—C16—C17180.0 (5)C42—C37—C38—F10179.8 (6)
N3—C15—C16—C43178.4 (5)C11—C37—C38—F100.1 (9)
C14—C15—C16—C431.2 (8)C42—C37—C38—C390.5 (9)
C20—N4—C17—C16179.6 (5)C11—C37—C38—C39179.3 (6)
C20—N4—C17—C181.5 (6)F10—C38—C39—F110.1 (10)
C15—C16—C17—N42.9 (9)C37—C38—C39—F11179.2 (6)
C43—C16—C17—N4175.8 (5)F10—C38—C39—C40179.3 (6)
C15—C16—C17—C18175.8 (6)C37—C38—C39—C401.4 (11)
C43—C16—C17—C185.4 (9)F11—C39—C40—F120.8 (10)
N4—C17—C18—C190.3 (7)C38—C39—C40—F12179.8 (6)
C16—C17—C18—C19179.3 (6)F11—C39—C40—C41179.7 (6)
C17—C18—C19—C200.9 (7)C38—C39—C40—C410.3 (11)
C17—N4—C20—C21176.2 (5)F12—C40—C41—F130.7 (10)
C17—N4—C20—C192.0 (6)C39—C40—C41—F13179.8 (6)
C18—C19—C20—N41.8 (7)F12—C40—C41—C42177.9 (6)
C18—C19—C20—C21176.3 (6)C39—C40—C41—C421.6 (10)
N4—C20—C21—C220.8 (9)C38—C37—C42—F14178.1 (5)
C19—C20—C21—C22178.6 (6)C11—C37—C42—F141.7 (9)
N4—C20—C21—C25177.0 (5)C38—C37—C42—C411.5 (9)
C19—C20—C21—C250.8 (9)C11—C37—C42—C41178.8 (6)
C5—N1—C22—C21177.4 (5)F13—C41—C42—F141.6 (9)
C5—N1—C22—C231.3 (6)C40—C41—C42—F14177.0 (6)
C20—C21—C22—N11.5 (9)F13—C41—C42—C37178.9 (6)
C25—C21—C22—N1179.3 (5)C40—C41—C42—C372.5 (10)
C20—C21—C22—C23179.9 (5)C17—C16—C43—C4892.7 (7)
C25—C21—C22—C232.3 (8)C15—C16—C43—C4886.2 (8)
N1—C22—C23—C240.2 (6)C17—C16—C43—C4489.7 (7)
C21—C22—C23—C24178.4 (5)C15—C16—C43—C4491.4 (6)
C22—C23—C24—C50.9 (6)C48—C43—C44—F15179.9 (6)
N1—C5—C24—C231.8 (6)C16—C43—C44—F152.3 (9)
C6—C5—C24—C23177.2 (5)C48—C43—C44—C450.6 (9)
C20—C21—C25—C26111.5 (6)C16—C43—C44—C45177.1 (6)
C22—C21—C25—C2670.4 (7)F15—C44—C45—F161.0 (9)
C20—C21—C25—C3067.5 (7)C43—C44—C45—F16179.6 (6)
C22—C21—C25—C30110.6 (6)F15—C44—C45—C46177.9 (6)
C30—C25—C26—F1179.3 (5)C43—C44—C45—C461.5 (10)
C21—C25—C26—F11.7 (9)F16—C45—C46—C47177.4 (7)
C30—C25—C26—C270.8 (9)C44—C45—C46—C473.7 (11)
C21—C25—C26—C27178.2 (5)F16—C45—C46—F173.4 (10)
F1—C26—C27—F21.2 (8)C44—C45—C46—F17175.5 (6)
C25—C26—C27—F2178.9 (5)C45—C46—C47—F18179.4 (7)
F1—C26—C27—C28177.8 (5)F17—C46—C47—F180.2 (12)
C25—C26—C27—C282.1 (9)C45—C46—C47—C483.7 (13)
F2—C27—C28—C29178.4 (5)F17—C46—C47—C48175.5 (7)
C26—C27—C28—C292.6 (9)C44—C43—C48—F19179.4 (7)
F2—C27—C28—P15.8 (8)C16—C43—C48—F192.9 (11)
C26—C27—C28—P1173.2 (4)C44—C43—C48—C470.6 (11)
O1—P1—C28—C29175.2 (5)C16—C43—C48—C47177.1 (7)
O3—P1—C28—C2949.6 (6)F18—C47—C48—F192.7 (13)
O2—P1—C28—C2957.0 (6)C46—C47—C48—F19178.5 (8)
O1—P1—C28—C270.5 (6)F18—C47—C48—C43177.3 (8)
O3—P1—C28—C27126.0 (5)C46—C47—C48—C431.5 (13)

Experimental details

Crystal data
Chemical formulaC48H20F19N4O3P
Mr1092.65
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)15.530 (2), 11.2539 (17), 26.375 (3)
β (°) 100.024 (9)
V3)4539.3 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.08 × 0.05 × 0.03
Data collection
DiffractometerBruker APEXII X8 Kappa CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.985, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
32626, 8275, 3504
Rint0.115
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.084, 0.271, 0.99
No. of reflections8275
No. of parameters678
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.34

Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 2005), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).

Selected torsion angles (º) top
O3—P1—O2—C1167.3 (4)P1—O2—C1—C281.5 (7)
C28—P1—O3—C3178.3 (6)P1—O3—C3—C4166.7 (6)
Selected supramolecular interactions present in (I) top
C—H···AC—HH···AC···AC—H···A
C3—H3A···F7iii0.992.523.487 (9)167
C13—H13···F12iv0.952.423.062 (7)124
C24—H24···O1iii0.952.433.327 (7)157
C—F···F—CC—F/F—CF···FC—F···FF···F—C
C35—F8···(F15—C44)v1.360 (7)/1.320 (8)2.887 (6)164.6 (4)133.9 (4)
C39—F11···(F19—C48)vi1.353 (8)/1.324 (8)2.763 (7)121.6 (4)165.8 (4)
C—H···CgC—HH···CgC···CgC—H···Cg
C8—H8···Cg1i0.952.963.842 (7)155
C18—H18···Cg2ii0.952.833.552 (7)133
C—F···CgC—FF···CgC···CgC—F···Cg
C33—F6···Cg3i1.337 (7)3.576 (5)4.454 (7)123.4 (3)
C46—F17···Cg1ii1.358 (8)3.124 (6)4.157 (11)131.9 (5)
PO···CgPOO···CgP···CgPO···Cg
P1—O1···Cg4iii1.444 (5)3.372 (5)4.395 (3)127.0 (2)
Symmetry codes: (i) -x, y+1/2, -z+3/2; (ii) -x+1, y-1/2, -z+3/2; (iii) -x, -y, -z+1; (iv) -x+1, -y+1, -z+2; (v) x-1, y, z; (vi) x, y+1, z. Cg1, Cg2, Cg3 and Cg4 are the centroids of the rings N1/C5/C22–C24, N3/C12–C15, N2/C7–C10 and C31–C36, respectively.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds