Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
(2S*,4R*)-2-exo-(1-Naphthyl)-2,3,4,5-tetra­hydro-1H-1,4-epoxy-1-benzazepine, C20H17NO, (I), crystallizes with Z′ = 2 in the space group P21; the two independent mol­ecules have the same absolute configuration, although this configuration is indeterminate. The mol­ecules of each type are linked by a combination of C—H...O and C—H...π(arene) hydrogen bonds to form two independent sheets, each containing only one type of mol­ecule. (2SR,4RS)-7-Methyl-2-exo-(1-naphthyl)-2,3,4,5-tetra­hydro-1H-1,4-ep­oxy-1-benzazepine, C21H19NO, (II), crystallizes as a true racemate in the space group P21/c, and a combination of C—H...N, C—H...O and C—H...π(arene) hydrogen bonds links the mol­ecules into sheets, each containing equal numbers of the two enantio­morphs. (2S*,4R*)-2-exo-(1-Naphthyl)-7-trifluoro­methyl-2,3,4,5-tetra­hydro-1H-1,4-ep­oxy-1-benzazepine, C21H16F3NO2, (III), crystallizes as a single enantio­morph, as for (I), but now with Z′ = 1 in the space group P212121; again, the absolute configuration is indeterminate. A single C—H...π(arene) hydrogen bond links the mol­ecules of (III) into simple chains. (2S,4R)-8-Chloro-9-methyl-2-exo-(1-naphthyl)-2,3,4,5-tetra­hydro-1H-1,4-ep­oxy-1-benzazepine, C21H18ClNO, (IV), crystallizes as a single enanti­omorph of well defined configuration, in the space group P212121, where two independent C—H...π(arene) hydrogen bonds link the mol­ecules into a single three-dimensional framework structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110038230/gg3246sup1.cif
Contains datablocks global, I, II, III, IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110038230/gg3246Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110038230/gg3246IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110038230/gg3246IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110038230/gg3246IVsup5.hkl
Contains datablock IV

CCDC references: 804125; 804126; 804127; 804128

Comment top

We report here the structures of four substituted 2-exo-(1-naphthyl)-2,3,4,5-tetrahydro-1H-1,4-epoxy-1- benzazepines, compounds (I)-(IV), carrying different simple substituents in the fused aryl ring (Figs. 1–4), and we compare these with the 7-chloro analogue compound, (V) (Gómez et al., 2008). The work reported here is a continuation of an extensive study of benzazepine derivatives of this general type, involving wide variations in both the aromatic moiety fused to the azepine ring and the substituent present at position 2 (Acosta et al., 2008, 2010a,b; Gómez et al., 2008, 2009, 2010; Blanco et al., 2008, 2009; Palma et al., 2009).

The compounds reported here were all prepared using appropriate variations of the synthetic method described previously (Acosta et al., 2008), in which an N-substituted 2-allylaniline is oxidized with aqueous hydrogen peroxide solution in the presence of sodium tungstate as catalyst, yielding the fused tricyclic product in a one-pot process. Although the products all contain two stereogenic C atoms, there are no reagents employed in the synthetic procedure which are capable of inducing stereoselectivity or enantioselectivity in the final products. Despite this, only (II) crystallizes as a racemic mixture of (2S,4R) and (2R,4S) enantiomers, in space group P21/c. In contrast, (IV) crystallizes as a single enantiomer in space group P212121, with the configuration (2S,4R) in the crystal selected for data collection, as shown by the values of the Flack x parameter (Flack, 1983) and the Hooft y parameter (Hooft et al., 2008), 0.02 (7) and 0.01 (3), respectively. Compounds (I), where Z' = 2, and (III) crystallize in the Sohnke space groups P21 and P212121, respectively, indicating the presence of only a single enantiomer in a given crystal, provided that inversion twinning is absent. However, in the absence of significant resonant scattering, the absolute stereochemistry of (I) and (III) remains unknown, although the relative stereochemistry at C2 and C4 is unambiguous.

The analogous compound, (V) (Gómez et al., 2008), which differs from (II) only in the notional replacement of the 7-methyl substituent in (II) by a 7-chloro substituent in (V), is neither isomorphous nor isostructural with the racemic compound, (II). Instead, (V) crystallizes as a single enantiomorph in space group P212121, having the (2S,4R) configuration in the crystal selected for data collection, just as for (IV).

These observations on (IV) and (V) prompted us to review briefly the crystallization characteristics of other compounds of this general type. Including the four compounds reported here, we have now determined the structures of 35 examples, and of these, 21 crystallize as genuine racemates in space groups containing reflection and/or inversion operators. A further five examples crystallize as inversion twins. In two of these, both in space group P212121, the twin fractions are equal to 0.5 within experimental uncertainly, indicating that these two compounds are also racemic, but in three other examples of inversion twins, all of them in space group P21, one enantiomorph predominates in the crystals selected for data collection. However, in addition to (II) and (V), there are three other examples, namely compounds (VI) (Gómez et al., 2009), (VII) (Gómez et al., 2008) and (VIII) (Blanco et al., 2008), which all crystallize as single enantiomorphs, in space group P21 for compounds (VI) and (VIII) and in P212121 for compound (VII), and which all have the (2S,4R) configuration in the crystals used for data collection. Finally, there are four examples, including (I) and (III) reported here, for which the absolute configuration could not be established because of insignificant resonant scattering. Hence, overall, we have 21 true racemates, five single enantiomers, five inversion twins and four structures where the configuration is indeterminate. To be sure, five examples crystallizing as single enantiomorphs from a total population of 35 compounds is only a small sample, but it is interesting that the absolute configuration was unambiguously established as (2S,4R) in each of these five examples.

The molecular conformations of (I), (II) and (IV) are fully defined by the shapes of the fused ring system and the orientation of the 2-(1-naphthyl) substituent relative to the fused system. In (III), full definition of the conformation also requires specification of the orientation of the CF3O– substituent. The shapes of the fused ring systems are conveniently defined in terms of the ring-puckering parameters (Cremer & Pople, 1975) for the fused five-and six-membered heterocyclic rings, which are compared in Table 1 with the corresponding values for the related compound, (V) (Gómez et al., 2008). These parameters not only confirm that the reference molecules selected for (I)-(IV) all have the same absolute configuration, as do the two independent molecules in (I), but, when compared with those of the previously reported analogues, they show that the shape of the fused heterocyclic ring system is essentially invariant to the nature of the peripheral substituents. On the other hand, the naphthyl group appears to adopt one of two quite distinct orientations, with the naphthyl group in (II) having an orientation which is almost orthogonal to those in (I) and (III)–(V) (Table 1). In all of (I)–(V), one or other of the rings in the naphthyl substituent acts as an acceptor in C—H···π hydrogen bonds (see below), and these interactions may be influential in determining the orientation of this substituent. In (III), the dihedral angle between the planes C5a/C6–C9/C9a and C7/O7/C71 is 86.9 (2)°.

Just as (I)–(IV) all exhibit different crystallization characteristics, so too they all adopt different modes of supramolecular aggregation, with hydrogen-bonded systems which are one-dimensional in (II), two-dimensional in (I) and (II), and three-dimensional in (IV). The dominant intermolecular interactions (Table 2) are of C—H···O and C—H···π(arene) types, with a single occurrence of a C—H···N hydrogen bond in (II). However, aromatic ππ stacking interactions are absent from the structures of (I)–(V). We have excluded from consideration as being structurally significant those C—H···π(arene) contacts having an H···Cg distance greater than 2.85 Å, a C···Cg distance greater than 3.70 Å or a C—H···Cg angle less than 130° (Cg represents a ring centroid). This last is consistent with a recent recommendation for intermolecular hydrogen bonds, based on database analysis and intermolecular energy calculations (Wood et al., 2009) for conventional hydrogen bonds of the general type D—H···A, where D represents C, N or O and A represents N or O.

In (I), each of the two independent molecules forms a hydrogen-bonded sheet. These two sheets are similar in overall architecture but different in detail, although there are no significant direction-specific interactions between adjacent sheets. Molecules of type 1, containing atom N11 (Fig. 1a), are linked by a combination of one C—H···O hydrogen bond and one C—H···π(arene) hydrogen bond, having atoms C14 and C18 as the donors, into a sheet lying parallel to (001) in the domain -0.3 < z < 0.3 and containing the 21 screw axes at z = 0 (Fig. 5). Molecules of type 2, containing atom N21, are also linked into sheets, but now by means of three hydrogen bonds, one of C—H···O type and two of C—H···π(arene) type having atoms C24, C26 and C28 as the donors. This sheet also lies parallel to (001), in the domain 0.2 < z < 0.8, and it contains the 21 screw axes at z = 1/2 (Fig. 6). The corresponding pairs of intermolecular interactions involving atoms C14 and C24 on the one hand, and atoms C18 and C28 on the other, both have recognisably similar sets of dimensions, although with differences which are sufficient to preclude the possibility of any additional crystallographic symmetry. However, the corresponding pair of contacts involving atoms C16 and C26 has very different dimensions, such that while the contact involving C26 must be regarded as a structurally significant hydrogen bond, that involving C16, by contrast, is probably no more than an adventitious short contact.

The aggregation in (II) is determined by a combination of C—H···N, C—H···O and C—H···π(arene) hydrogen bonds which link molecules related by the 21 screw axis along (1/2, y, 3/4) into a complex chain running parallel to the [010] direction (Fig. 7). Chains of this type are linked via a centrosymmetric motif containing inversion-related pairs of a second, weaker, C—H···π(arene) hydrogen bond, so forming a sheet parallel to (100) (Fig. 7).

The hydrogen-bonded structure of (III) is very simple, as a single C—H···π(arene) hydrogen bond links molecules related by the 21 screw axis along (1/4, 1/2, z) into simple chains parallel to [001] (Fig. 8). There are no direction-specific interactions between adjacent chains so that, unlike the hydrogen-bonded structures of (I) and (II), that of (III) is only one-dimensional.

In the crystal structure of (IV), just two independent C—H···π(arene) hydrogen bonds link the molecules into a continuous three-dimensional framework structure. It is convenient to analyse the formation of this structure in terms of the actions of the individual hydrogen bonds, firstly when each is acting alone and then when they act in combination. Acting alone, the hydrogen bond having atom C6 as the donor links molecules related by the 21 screw axis along (3/4, 1/2, z) into a chain running parallel to [001] (Fig. 9), and that having atom C27 as the donor links molecules related by the 21 screw axis along (x, 3/4, 1/2) into a second chain, this time running parallel to [100] (Fig. 10). Finally, the combination of these two hydrogen bonds, acting alternately, generates a chain running parallel to the [010] direction (Fig. 11). The combination of these distinct chain motifs parallel to [100], [010] and [001], respectively, suffices to generate a continuous three-dimensional structure.

Although different donor atoms and acceptor rings are involved in the hydrogen bonding in (III) and (IV), nevertheless the overall architectures of the chains parallel to [001] in these two compounds are strikingly similar, as shown in Figs. 8 and 9, which also illustrate the rather different values of the cell-vector ratio c/b in (III) and (IV).

In (V) (Gómez et al., 2008), a combination of one C—H···O and two C—H···π(arene) hydrogen bonds links the molecules into a continuous three-dimensional structure which is significantly different from that formed by (IV). Whereas the three-dimensional structure of (IV) is best analysed in terms of three separate one-dimensional substructures, in the hydrogen-bonded structure of (V) two substructures can be identified. The C—H···O hydrogen bond in (V) forms a one-dimensional substructure, while the two C—H···π(arene) hydrogen bonds form a two-dimensional substructure.

Experimental top

For the preparation of (I)–(IV), 30% aqueous hydrogen peroxide solution (0.30 mol) was added dropwise to sodium tungstate dihydrate (7 mol%), and then this mixture was added to a stirred solution of the appropriately substituted 2-allyl-N-(naphth-1-ylmethyl)aniline (0.10 mol) in methanol (20 ml). The resulting mixtures were then stirred at ambient temperature for 72 h. Each mixture was filtered and the solvent removed under reduced pressure. Toluene (25 ml) was added to the organic residue and the resulting solution was heated at 333 K for periods ranging from 6 to 24 h. After cooling each solution to ambient temperature, the solvent was removed under reduced pressure and the crude product was purified by chromatography on silica gel using heptane–ethyl acetate as eluent (compositions ranged from 40:1 to 15:1 v/v). Crystallization from heptane gave colourless crystals of (I)–(IV) suitable for single-crystal X-ray diffraction. Analysis for (I): m.p. 402–403 K, yield 67%; MS (70 eV) m/z (%): 287 (M+, 61), 270 (38), 258 (18), 244 (22), 154 (100), 153 (80), 127 (18), 105 (38), 104 (55). Analysis for (II): m.p. 463–464 K, yield 65%; MS (70 eV) m/z (%): 301 (M+, 56), 284 (25), 272 (16), 258 (16), 154 (60), 153 (64), 127 (16), 119 (81), 118 (100). Analysis for (III): m.p. 397–398 K, yield 70%; MS (70 eV) m/z (%): 371 (M+, 24), 354 (14), 342 (7), 328 (7), 189 (33), 188 (51), 154 (100), 153 (70), 127 (14). Analysis for (IV): m.p. 453–454 K, yield 63%; MS (70 eV) m/z (%): 335 (M+, 35Cl, 13), 318 (7), 306 (3), 292 (3), 154 (100), 153 (64), 152 (25), 127 (11).

Refinement top

All H atoms were located in difference maps and then treated as riding atoms in geometrically idealized positions, with C—H = 0.95 (aromatic), 0.98 (CH3), 0.99 (CH2) or 1.00 Å (aliphatic CH) and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms. Compound (IV) crystallized as a single enantiomorph in space group P212121 and, for the crystal selected for data collection, the (2S,4R) configuration was established by means of the Flack x parameter (Flack, 1983) of 0.02 (7) and the Hooft y parameter (Hooft et al., 2008) of 0.01 (3), calculated for 1581 Bijvoet pairs (99% coverage). Compound (II) crystallized as a racemic mixture in the centrosymmetric space group P21/c and the reference molecule was selected as one having the (2S,4R) configuration, to be consistent with (IV). In the absence of significant resonant scattering for (I) and (III), Friedel-equivalent reflections were merged prior to the final refinements and again the reference molecules were specified as having the (2S,4R) configuration. The two independent molecules of (I) have the same configuration.

Computing details top

For all compounds, data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The two independent molecules of (I), showing the atom-labelling scheme. (a) A type 1 molecule and (b) a type 2 molecule, both shown as the (2S,4R) enantiomorph. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The (2S,4R) enantiomorph of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. The molecular structure of (III), showing the atom-labelling scheme. The (2S,4R) enantiomorph is shown and the displacement ellipsoids are drawn at the 30% probability level.
[Figure 4] Fig. 4. The molecular structure of (IV), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 5] Fig. 5. A stereoview of part of the crystal structure of (I), showing the formation of a hydrogen-bonded sheet parallel to (001) and containing only type 1 molecules. All molecules are shown in the (2S,4R) configuration and H atoms not involved in the motifs shown have been omitted.
[Figure 6] Fig. 6. A stereoview of part of the crystal structure of (I), showing the formation of a hydrogen-bonded sheet parallel to (001) and containing only type 2 molecules. All molecules are shown in the (2S,4R) configuration and H atoms not involved in the motifs shown have been omitted.
[Figure 7] Fig. 7. A stereoview of part of the crystal structure of (II), showing the formation of a hydrogen-bonded sheet parallel to (100). H atoms not involved in the motifs shown have been omitted.
[Figure 8] Fig. 8. Part of the crystal structure of (III), showing the formation of a hydrogen-bonded chain parallel to [001]. H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*), a hash symbol (#), a dollar sign ($) or an ampersand (&) are at the symmetry positions (1/2 - x, 1 - y, 1/2 + z), (x, y, 1 + z), (1/2 - x, 1 - y, -1/2 + z) and (x, y, -1 + z), respectively.
[Figure 9] Fig. 9. Part of the crystal structure of (IV), showing the formation of a hydrogen-bonded chain parallel to [001] and containing only one type of hydrogen bond. H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*), a hash symbol (#), a dollar sign ($) or an ampersand (&) are at the symmetry positions (3/2 - x, 1 - y, 1/2 + z), (x, y, 1 + z), (3/2 - x, 1 - y, -1/2 + z) and (x, y, -1 + z), respectively.
[Figure 10] Fig. 10. Part of the crystal structure of (IV), showing the formation of a hydrogen-bonded chain parallel to [100] and containing only one type of hydrogen bond. H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*), a hash symbol (#), a dollar sign ($) or an ampersand (&) are at the symmetry positions (1/2 + x, 3/2 - y, 1 - z), (1 + x, y, z), (-1/2 + x, 3/2 - y, 1 - z) and (- 1 + x, y, z), respectively.
[Figure 11] Fig. 11. A stereoview of part of the crystal structure of (IV), showing the formation of a hydrogen-bonded chain parallel to [010] and containing two types of hydrogen bond. H atoms not involved in the motifs shown have been omitted.
(I) (2S*,4R*)-2-exo-(1-Naphthyl)-2,3,4,5-tetrahydro- 1H-1,4-epoxy-1-benzazepine top
Crystal data top
C20H17NOF(000) = 608
Mr = 287.35Dx = 1.309 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3589 reflections
a = 8.974 (4) Åθ = 3.4–27.5°
b = 7.1817 (8) ŵ = 0.08 mm1
c = 22.718 (9) ÅT = 120 K
β = 95.39 (3)°Block, colourless
V = 1457.7 (9) Å30.38 × 0.21 × 0.14 mm
Z = 4
Data collection top
Bruker-Nonius KappaCCD area-detector
diffractometer
3589 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode3064 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.4°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 99
Tmin = 0.961, Tmax = 0.989l = 2929
20821 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0359P)2 + 0.5587P]
where P = (Fo2 + 2Fc2)/3
3589 reflections(Δ/σ)max = 0.001
397 parametersΔρmax = 0.22 e Å3
1 restraintΔρmin = 0.27 e Å3
Crystal data top
C20H17NOV = 1457.7 (9) Å3
Mr = 287.35Z = 4
Monoclinic, P21Mo Kα radiation
a = 8.974 (4) ŵ = 0.08 mm1
b = 7.1817 (8) ÅT = 120 K
c = 22.718 (9) Å0.38 × 0.21 × 0.14 mm
β = 95.39 (3)°
Data collection top
Bruker-Nonius KappaCCD area-detector
diffractometer
3589 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3064 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.989Rint = 0.051
20821 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.099H-atom parameters constrained
S = 1.14Δρmax = 0.22 e Å3
3589 reflectionsΔρmin = 0.27 e Å3
397 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.3423 (2)0.4475 (3)0.07890 (9)0.0166 (5)
C120.4368 (3)0.4073 (4)0.13436 (11)0.0150 (5)
H120.37350.40950.16830.018*
C130.4935 (3)0.2063 (4)0.12554 (12)0.0179 (6)
H13A0.60330.19800.13490.021*
H13B0.44410.11670.15050.021*
C140.4495 (3)0.1705 (4)0.05996 (11)0.0183 (6)
H140.53340.10860.04150.022*
C150.3058 (3)0.0619 (4)0.04667 (12)0.0190 (6)
H15A0.29550.02340.00460.023*
H15B0.30850.05180.07140.023*
C15a0.1745 (3)0.1798 (4)0.05915 (11)0.0174 (6)
C160.0292 (3)0.1124 (4)0.05410 (12)0.0200 (6)
H160.01000.01060.03990.024*
C170.0879 (3)0.2206 (4)0.06929 (12)0.0228 (6)
H170.18690.17250.06520.027*
C180.0612 (3)0.3999 (4)0.09057 (12)0.0220 (6)
H180.14100.47260.10300.026*
C190.0808 (3)0.4714 (4)0.09355 (11)0.0200 (6)
H190.09900.59560.10670.024*
C19a0.1970 (3)0.3633 (4)0.07757 (11)0.0157 (5)
O1140.4234 (2)0.3547 (3)0.03570 (8)0.0181 (4)
C1210.5591 (3)0.5510 (4)0.14434 (11)0.0160 (5)
C1220.5836 (3)0.6756 (4)0.10117 (12)0.0174 (6)
H1220.52210.67160.06480.021*
C1230.6970 (3)0.8094 (4)0.10896 (12)0.0194 (6)
H1230.71400.89160.07750.023*
C1240.7827 (3)0.8224 (4)0.16129 (12)0.0211 (6)
H1240.85680.91690.16680.025*
C1250.7626 (3)0.6972 (4)0.20730 (12)0.0184 (6)
C1260.8508 (3)0.7083 (4)0.26199 (13)0.0247 (7)
H1260.92490.80260.26780.030*
C1270.8318 (3)0.5866 (5)0.30637 (12)0.0257 (7)
H1270.89310.59500.34270.031*
C1280.7216 (3)0.4489 (5)0.29844 (12)0.0234 (6)
H1280.70810.36460.32970.028*
C1290.6334 (3)0.4340 (4)0.24654 (12)0.0201 (6)
H1290.55940.33910.24200.024*
C1300.6506 (3)0.5582 (4)0.19935 (11)0.0157 (5)
N210.6826 (2)0.0780 (3)0.41048 (9)0.0179 (5)
C220.5817 (3)0.0150 (4)0.36486 (11)0.0170 (6)
H220.64030.05830.33210.020*
C230.5237 (3)0.1866 (4)0.39770 (12)0.0202 (6)
H23A0.41360.19830.39030.024*
H23B0.57090.30290.38520.024*
C240.5703 (3)0.1441 (5)0.46245 (12)0.0227 (6)
H240.48640.16990.48730.027*
C250.7106 (3)0.2452 (5)0.48618 (13)0.0239 (6)
H25A0.72930.22430.52930.029*
H25B0.69830.38060.47920.029*
C25a0.8409 (3)0.1743 (4)0.45562 (11)0.0198 (6)
C260.9804 (3)0.2585 (4)0.46314 (12)0.0215 (6)
H260.99490.36340.48850.026*
C271.0980 (3)0.1927 (5)0.43451 (12)0.0245 (7)
H271.19330.25100.44050.029*
C281.0775 (3)0.0422 (5)0.39710 (12)0.0243 (6)
H281.15820.00200.37670.029*
C290.9405 (3)0.0444 (4)0.38918 (12)0.0224 (6)
H290.92650.14820.36330.027*
C29a0.8234 (3)0.0196 (4)0.41879 (11)0.0185 (6)
O2140.6063 (2)0.0523 (3)0.46288 (8)0.0216 (4)
C2210.4559 (3)0.1097 (4)0.33997 (12)0.0168 (6)
C2220.4260 (3)0.2766 (4)0.36491 (12)0.0202 (6)
H2220.48670.31760.39890.024*
C2230.3072 (3)0.3891 (4)0.34129 (13)0.0227 (6)
H2230.28780.50400.35980.027*
C2240.2202 (3)0.3358 (4)0.29256 (12)0.0222 (6)
H2240.14160.41460.27650.027*
C2250.2453 (3)0.1635 (4)0.26527 (12)0.0180 (6)
C2260.1544 (3)0.1027 (4)0.21496 (12)0.0204 (6)
H2260.07560.18020.19830.024*
C2270.1780 (3)0.0653 (4)0.18995 (12)0.0218 (6)
H2270.11530.10510.15630.026*
C2280.2941 (3)0.1793 (5)0.21368 (12)0.0249 (6)
H2280.30980.29670.19600.030*
C2290.3854 (3)0.1248 (4)0.26182 (12)0.0205 (6)
H2290.46420.20430.27720.025*
C2300.3644 (3)0.0483 (4)0.28916 (11)0.0164 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0142 (11)0.0192 (12)0.0160 (10)0.0004 (10)0.0002 (8)0.0013 (9)
C120.0148 (12)0.0139 (13)0.0162 (12)0.0003 (11)0.0011 (10)0.0014 (10)
C130.0161 (13)0.0147 (14)0.0228 (14)0.0010 (11)0.0011 (11)0.0003 (11)
C140.0173 (13)0.0181 (14)0.0193 (13)0.0021 (12)0.0009 (10)0.0012 (11)
C150.0195 (13)0.0158 (13)0.0216 (13)0.0006 (12)0.0012 (10)0.0033 (12)
C15a0.0177 (13)0.0184 (14)0.0151 (12)0.0014 (12)0.0032 (10)0.0006 (11)
C160.0203 (14)0.0170 (14)0.0219 (13)0.0048 (12)0.0023 (11)0.0011 (11)
C170.0161 (14)0.0255 (17)0.0262 (15)0.0037 (13)0.0016 (11)0.0067 (13)
C180.0162 (13)0.0240 (16)0.0253 (14)0.0037 (12)0.0012 (10)0.0013 (12)
C190.0210 (14)0.0175 (14)0.0207 (13)0.0017 (12)0.0024 (11)0.0014 (12)
C19a0.0144 (13)0.0177 (14)0.0144 (12)0.0003 (11)0.0019 (9)0.0018 (11)
O1140.0188 (9)0.0185 (10)0.0173 (9)0.0007 (8)0.0028 (7)0.0014 (8)
C1210.0138 (12)0.0152 (13)0.0192 (13)0.0020 (11)0.0029 (10)0.0023 (11)
C1220.0154 (13)0.0155 (13)0.0205 (13)0.0027 (11)0.0016 (10)0.0003 (11)
C1230.0194 (14)0.0128 (13)0.0258 (14)0.0009 (11)0.0011 (11)0.0038 (11)
C1240.0186 (14)0.0130 (13)0.0318 (15)0.0017 (12)0.0035 (11)0.0021 (12)
C1250.0158 (13)0.0182 (14)0.0213 (13)0.0019 (12)0.0018 (10)0.0045 (11)
C1260.0195 (14)0.0282 (17)0.0263 (15)0.0041 (13)0.0012 (11)0.0072 (13)
C1270.0197 (14)0.0375 (19)0.0191 (14)0.0014 (14)0.0031 (11)0.0042 (13)
C1280.0225 (14)0.0290 (16)0.0185 (13)0.0009 (14)0.0013 (11)0.0024 (13)
C1290.0166 (13)0.0221 (15)0.0217 (13)0.0024 (12)0.0030 (10)0.0007 (12)
C1300.0140 (12)0.0151 (13)0.0181 (12)0.0017 (11)0.0022 (10)0.0039 (11)
N210.0169 (11)0.0209 (12)0.0160 (11)0.0006 (10)0.0016 (9)0.0013 (10)
C220.0155 (12)0.0176 (14)0.0176 (12)0.0008 (11)0.0004 (10)0.0012 (11)
C230.0163 (13)0.0169 (14)0.0268 (14)0.0012 (12)0.0019 (11)0.0031 (12)
C240.0186 (14)0.0268 (16)0.0235 (14)0.0005 (13)0.0053 (11)0.0070 (13)
C250.0205 (14)0.0289 (16)0.0223 (14)0.0012 (13)0.0016 (11)0.0082 (12)
C25a0.0209 (14)0.0228 (15)0.0153 (12)0.0002 (12)0.0003 (10)0.0027 (12)
C260.0235 (14)0.0224 (15)0.0178 (13)0.0028 (13)0.0033 (11)0.0013 (11)
C270.0179 (14)0.0326 (17)0.0220 (14)0.0038 (13)0.0024 (11)0.0029 (13)
C280.0160 (13)0.0341 (17)0.0227 (14)0.0058 (13)0.0019 (11)0.0026 (13)
C290.0204 (14)0.0251 (15)0.0212 (14)0.0039 (13)0.0012 (11)0.0012 (12)
C29a0.0165 (13)0.0214 (15)0.0169 (12)0.0015 (12)0.0016 (10)0.0042 (12)
O2140.0227 (10)0.0242 (11)0.0185 (9)0.0016 (9)0.0048 (8)0.0021 (8)
C2210.0149 (13)0.0153 (14)0.0205 (13)0.0006 (11)0.0039 (10)0.0008 (11)
C2220.0188 (14)0.0214 (15)0.0204 (14)0.0055 (12)0.0014 (11)0.0017 (11)
C2230.0240 (15)0.0150 (14)0.0292 (15)0.0034 (12)0.0038 (11)0.0038 (12)
C2240.0175 (14)0.0175 (14)0.0315 (15)0.0027 (12)0.0011 (11)0.0027 (13)
C2250.0176 (13)0.0171 (14)0.0199 (13)0.0002 (11)0.0041 (10)0.0031 (11)
C2260.0167 (13)0.0208 (15)0.0229 (14)0.0000 (12)0.0019 (11)0.0048 (12)
C2270.0214 (14)0.0263 (16)0.0169 (12)0.0046 (13)0.0018 (11)0.0027 (12)
C2280.0255 (15)0.0250 (16)0.0244 (14)0.0013 (14)0.0031 (12)0.0054 (13)
C2290.0179 (13)0.0216 (15)0.0214 (13)0.0045 (12)0.0002 (10)0.0023 (12)
C2300.0143 (12)0.0166 (13)0.0186 (13)0.0042 (11)0.0032 (10)0.0017 (11)
Geometric parameters (Å, º) top
N11—C19a1.434 (3)N21—O2141.440 (3)
N11—O1141.439 (3)N21—C29a1.442 (3)
N11—C121.480 (3)N21—C221.471 (3)
C12—C1211.508 (4)C22—C2211.509 (4)
C12—C131.549 (4)C22—C231.555 (4)
C12—H121.0000C22—H221.0000
C13—C141.527 (4)C23—C241.522 (4)
C13—H13A0.9900C23—H23A0.9900
C13—H13B0.9900C23—H23B0.9900
C14—O1141.444 (3)C24—O2141.447 (4)
C14—C151.513 (4)C24—C251.509 (4)
C14—H141.0000C24—H241.0000
C15—C15a1.500 (4)C25—C25a1.504 (4)
C15—H15A0.9900C25—H25A0.9900
C15—H15B0.9900C25—H25B0.9900
C15a—C161.386 (4)C25a—C261.386 (4)
C15a—C19a1.392 (4)C25a—C29a1.391 (4)
C16—C171.376 (4)C26—C271.375 (4)
C16—H160.9500C26—H260.9500
C17—C181.388 (4)C27—C281.377 (4)
C17—H170.9500C27—H270.9500
C18—C191.370 (4)C28—C291.375 (4)
C18—H180.9500C28—H280.9500
C19—C19a1.376 (4)C29—C29a1.379 (4)
C19—H190.9500C29—H290.9500
C121—C1221.361 (4)C221—C2221.364 (4)
C121—C1301.430 (4)C221—C2301.422 (4)
C122—C1231.399 (4)C222—C2231.403 (4)
C122—H1220.9500C222—H2220.9500
C123—C1241.357 (4)C223—C2241.349 (4)
C123—H1230.9500C223—H2230.9500
C124—C1251.403 (4)C224—C2251.411 (4)
C124—H1240.9500C224—H2240.9500
C125—C1261.411 (4)C225—C2261.409 (4)
C125—C1301.416 (4)C225—C2301.419 (4)
C126—C1271.357 (4)C226—C2271.359 (4)
C126—H1260.9500C226—H2260.9500
C127—C1281.398 (4)C227—C2281.393 (4)
C127—H1270.9500C227—H2270.9500
C128—C1291.361 (4)C228—C2291.361 (4)
C128—H1280.9500C228—H2280.9500
C129—C1301.414 (4)C229—C2301.410 (4)
C129—H1290.9500C229—H2290.9500
C19a—N11—O114107.9 (2)O214—N21—C29a107.9 (2)
C19a—N11—C12112.5 (2)O214—N21—C22102.43 (19)
O114—N11—C12101.75 (18)C29a—N21—C22110.2 (2)
N11—C12—C121110.2 (2)N21—C22—C221112.6 (2)
N11—C12—C13103.9 (2)N21—C22—C23103.5 (2)
C121—C12—C13114.4 (2)C221—C22—C23112.2 (2)
N11—C12—H12109.4N21—C22—H22109.5
C121—C12—H12109.4C221—C22—H22109.5
C13—C12—H12109.4C23—C22—H22109.5
C14—C13—C12103.0 (2)C24—C23—C22103.4 (2)
C14—C13—H13A111.2C24—C23—H23A111.1
C12—C13—H13A111.2C22—C23—H23A111.1
C14—C13—H13B111.2C24—C23—H23B111.1
C12—C13—H13B111.2C22—C23—H23B111.1
H13A—C13—H13B109.1H23A—C23—H23B109.1
O114—C14—C15106.9 (2)O214—C24—C25106.7 (2)
O114—C14—C13103.6 (2)O214—C24—C23104.1 (2)
C15—C14—C13114.8 (2)C25—C24—C23113.1 (3)
O114—C14—H14110.4O214—C24—H24110.9
C15—C14—H14110.4C25—C24—H24110.9
C13—C14—H14110.4C23—C24—H24110.9
C15a—C15—C14110.0 (2)C25a—C25—C24109.3 (2)
C15a—C15—H15A109.7C25a—C25—H25A109.8
C14—C15—H15A109.7C24—C25—H25A109.8
C15a—C15—H15B109.7C25a—C25—H25B109.8
C14—C15—H15B109.7C24—C25—H25B109.8
H15A—C15—H15B108.2H25A—C25—H25B108.3
C16—C15a—C19a117.7 (3)C26—C25a—C29a118.2 (3)
C16—C15a—C15122.5 (3)C26—C25a—C25121.8 (3)
C19a—C15a—C15119.8 (2)C29a—C25a—C25120.0 (2)
C17—C16—C15a121.1 (3)C27—C26—C25a121.1 (3)
C17—C16—H16119.5C27—C26—H26119.5
C15a—C16—H16119.5C25a—C26—H26119.5
C16—C17—C18120.0 (3)C26—C27—C28119.8 (3)
C16—C17—H17120.0C26—C27—H27120.1
C18—C17—H17120.0C28—C27—H27120.1
C19—C18—C17119.6 (3)C29—C28—C27120.1 (3)
C19—C18—H18120.2C29—C28—H28119.9
C17—C18—H18120.2C27—C28—H28119.9
C18—C19—C19a120.1 (3)C28—C29—C29a119.9 (3)
C18—C19—H19120.0C28—C29—H29120.0
C19a—C19—H19120.0C29a—C29—H29120.0
C19—C19a—C15a121.4 (3)C29—C29a—C25a120.8 (3)
C19—C19a—N11117.8 (3)C29—C29a—N21118.2 (3)
C15a—C19a—N11120.8 (2)C25a—C29a—N21121.0 (2)
N11—O114—C14103.81 (18)N21—O214—C24104.1 (2)
C122—C121—C130119.2 (2)C222—C221—C230119.2 (3)
C122—C121—C12120.4 (2)C222—C221—C22122.4 (2)
C130—C121—C12120.4 (2)C230—C221—C22118.3 (2)
C121—C122—C123121.7 (2)C221—C222—C223121.3 (3)
C121—C122—H122119.1C221—C222—H222119.4
C123—C122—H122119.1C223—C222—H222119.4
C124—C123—C122120.2 (3)C224—C223—C222120.7 (3)
C124—C123—H123119.9C224—C223—H223119.6
C122—C123—H123119.9C222—C223—H223119.6
C123—C124—C125120.4 (3)C223—C224—C225120.4 (3)
C123—C124—H124119.8C223—C224—H224119.8
C125—C124—H124119.8C225—C224—H224119.8
C124—C125—C126121.3 (3)C226—C225—C224121.6 (3)
C124—C125—C130119.7 (2)C226—C225—C230119.2 (3)
C126—C125—C130119.0 (3)C224—C225—C230119.3 (2)
C127—C126—C125121.2 (3)C227—C226—C225120.9 (3)
C127—C126—H126119.4C227—C226—H226119.6
C125—C126—H126119.4C225—C226—H226119.6
C126—C127—C128119.8 (3)C226—C227—C228120.0 (3)
C126—C127—H127120.1C226—C227—H227120.0
C128—C127—H127120.1C228—C227—H227120.0
C129—C128—C127120.9 (3)C229—C228—C227120.9 (3)
C129—C128—H128119.5C229—C228—H228119.5
C127—C128—H128119.5C227—C228—H228119.5
C128—C129—C130120.7 (3)C228—C229—C230120.8 (3)
C128—C129—H129119.6C228—C229—H229119.6
C130—C129—H129119.6C230—C229—H229119.6
C129—C130—C125118.4 (2)C229—C230—C225118.2 (2)
C129—C130—C121123.0 (2)C229—C230—C221122.7 (2)
C125—C130—C121118.6 (2)C225—C230—C221119.1 (3)
C19a—N11—C12—C121158.4 (2)O214—N21—C22—C22184.0 (2)
O114—N11—C12—C12186.4 (2)C29a—N21—C22—C221161.3 (2)
C19a—N11—C12—C1378.5 (2)O214—N21—C22—C2337.3 (2)
O114—N11—C12—C1336.7 (2)C29a—N21—C22—C2377.3 (3)
N11—C12—C13—C1411.4 (2)N21—C22—C23—C2413.3 (3)
C121—C12—C13—C14108.9 (2)C221—C22—C23—C24108.4 (2)
C12—C13—C14—O11418.0 (2)C22—C23—C24—O21415.4 (3)
C12—C13—C14—C1598.3 (3)C22—C23—C24—C25100.0 (3)
O114—C14—C15—C15a44.0 (3)O214—C24—C25—C25a47.9 (3)
C13—C14—C15—C15a70.3 (3)C23—C24—C25—C25a65.9 (3)
C14—C15—C15a—C16176.2 (2)C24—C25—C25a—C26171.6 (3)
C14—C15—C15a—C19a2.6 (3)C24—C25—C25a—C29a8.6 (4)
C19a—C15a—C16—C172.8 (4)C29a—C25a—C26—C270.8 (4)
C15—C15a—C16—C17176.0 (2)C25—C25a—C26—C27179.5 (3)
C15a—C16—C17—C180.6 (4)C25a—C26—C27—C280.8 (4)
C16—C17—C18—C193.2 (4)C26—C27—C28—C291.2 (4)
C17—C18—C19—C19a2.4 (4)C27—C28—C29—C29a0.0 (4)
C18—C19—C19a—C15a1.1 (4)C28—C29—C29a—C25a1.6 (4)
C18—C19—C19a—N11177.2 (2)C28—C29—C29a—N21178.4 (3)
C16—C15a—C19a—C193.7 (4)C26—C25a—C29a—C292.0 (4)
C15—C15a—C19a—C19175.2 (2)C25—C25a—C29a—C29178.3 (3)
C16—C15a—C19a—N11174.6 (2)C26—C25a—C29a—N21178.1 (2)
C15—C15a—C19a—N116.6 (4)C25—C25a—C29a—N211.7 (4)
O114—N11—C19a—C19151.9 (2)O214—N21—C29a—C29152.5 (2)
C12—N11—C19a—C1996.7 (3)C22—N21—C29a—C2996.3 (3)
O114—N11—C19a—C15a26.4 (3)O214—N21—C29a—C25a27.5 (3)
C12—N11—C19a—C15a85.0 (3)C22—N21—C29a—C25a83.6 (3)
C19a—N11—O114—C1468.6 (2)C29a—N21—O214—C2467.4 (2)
C12—N11—O114—C1449.9 (2)C22—N21—O214—C2448.9 (2)
C15—C14—O114—N1179.4 (2)C25—C24—O214—N2180.2 (2)
C13—C14—O114—N1142.2 (2)C23—C24—O214—N2139.7 (2)
N11—C12—C121—C1229.4 (3)N21—C22—C221—C22210.9 (4)
C13—C12—C121—C122107.2 (3)C23—C22—C221—C222105.4 (3)
N11—C12—C121—C130170.4 (2)N21—C22—C221—C230170.0 (2)
C13—C12—C121—C13072.9 (3)C23—C22—C221—C23073.7 (3)
C130—C121—C122—C1230.7 (4)C230—C221—C222—C2230.2 (4)
C12—C121—C122—C123179.5 (2)C22—C221—C222—C223179.3 (3)
C121—C122—C123—C1242.4 (4)C221—C222—C223—C2240.9 (4)
C122—C123—C124—C1252.5 (4)C222—C223—C224—C2251.4 (4)
C123—C124—C125—C126179.9 (3)C223—C224—C225—C226178.8 (3)
C123—C124—C125—C1300.9 (4)C223—C224—C225—C2300.9 (4)
C124—C125—C126—C127179.7 (3)C224—C225—C226—C227178.6 (3)
C130—C125—C126—C1271.1 (4)C230—C225—C226—C2271.2 (4)
C125—C126—C127—C1280.9 (5)C225—C226—C227—C2280.6 (4)
C126—C127—C128—C1290.4 (5)C226—C227—C228—C2290.1 (4)
C127—C128—C129—C1300.3 (4)C227—C228—C229—C2300.3 (4)
C128—C129—C130—C1250.5 (4)C228—C229—C230—C2250.3 (4)
C128—C129—C130—C121178.8 (3)C228—C229—C230—C221179.1 (3)
C124—C125—C130—C129179.9 (3)C226—C225—C230—C2291.0 (4)
C126—C125—C130—C1290.9 (4)C224—C225—C230—C229178.8 (2)
C124—C125—C130—C1210.8 (4)C226—C225—C230—C221179.9 (2)
C126—C125—C130—C121178.4 (2)C224—C225—C230—C2210.1 (4)
C122—C121—C130—C129179.8 (2)C222—C221—C230—C229178.1 (2)
C12—C121—C130—C1290.3 (4)C22—C221—C230—C2290.9 (4)
C122—C121—C130—C1250.9 (4)C222—C221—C230—C2250.7 (4)
C12—C121—C130—C125179.0 (2)C22—C221—C230—C225179.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O114i1.002.583.411 (4)140
C24—H24···O214ii1.002.483.263 (4)135
C16—H16···Cg1iii0.952.963.736 (3)139
C26—H26···Cg2iv0.952.613.550 (3)170
C18—H18···Cg3v0.952.613.553 (3)170
C28—H28···Cg4vi0.952.723.634 (4)163
Symmetry codes: (i) x+1, y1/2, z; (ii) x+1, y1/2, z+1; (iii) x, y1/2, z; (iv) x+2, y1/2, z+1; (v) x1, y, z; (vi) x+1, y, z.
(II) (2SR,4RS)-7-Methyl-2-exo-(1-naphthyl)-2,3,4,5-tetrahydro- 1H-1,4-epoxy-1-benzazepine top
Crystal data top
C21H19NOF(000) = 640
Mr = 301.37Dx = 1.354 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3390 reflections
a = 10.7760 (13) Åθ = 3.0–27.5°
b = 8.9612 (11) ŵ = 0.08 mm1
c = 15.4241 (15) ÅT = 120 K
β = 96.799 (10)°Block, colourless
V = 1479.0 (3) Å30.30 × 0.28 × 0.24 mm
Z = 4
Data collection top
Bruker-Nonius KappaCCD area-detector
diffractometer
2744 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1737 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
Detector resolution: 9.091 pixels mm-1θmax = 25.5°, θmin = 3.0°
ϕ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1010
Tmin = 0.965, Tmax = 0.980l = 1818
19719 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0804P)2 + 0.8442P]
where P = (Fo2 + 2Fc2)/3
2744 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C21H19NOV = 1479.0 (3) Å3
Mr = 301.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.7760 (13) ŵ = 0.08 mm1
b = 8.9612 (11) ÅT = 120 K
c = 15.4241 (15) Å0.30 × 0.28 × 0.24 mm
β = 96.799 (10)°
Data collection top
Bruker-Nonius KappaCCD area-detector
diffractometer
2744 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1737 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.980Rint = 0.067
19719 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.167H-atom parameters constrained
S = 1.09Δρmax = 0.30 e Å3
2744 reflectionsΔρmin = 0.31 e Å3
209 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.54567 (19)0.6701 (2)0.65191 (13)0.0225 (5)
C20.4638 (2)0.5357 (3)0.63922 (16)0.0241 (6)
H20.43320.52470.57580.029*
C30.5528 (2)0.4056 (3)0.66801 (17)0.0265 (6)
H3A0.51400.33570.70660.032*
H3B0.57630.35010.61690.032*
C40.6657 (2)0.4831 (3)0.71704 (17)0.0266 (6)
H40.69270.43150.77360.032*
C50.7730 (2)0.4966 (3)0.66300 (16)0.0272 (6)
H5A0.84770.53540.69960.033*
H5B0.79360.39710.64070.033*
C5a0.7372 (2)0.6006 (3)0.58776 (16)0.0234 (6)
C60.8110 (2)0.6207 (3)0.52150 (16)0.0266 (6)
H60.88640.56520.52310.032*
C70.7798 (3)0.7185 (3)0.45266 (17)0.0279 (6)
C710.8622 (3)0.7363 (3)0.38225 (18)0.0350 (7)
H71A0.94190.68570.39930.052*
H71B0.87730.84270.37310.052*
H71C0.82140.69230.32800.052*
C80.6699 (3)0.7984 (3)0.45219 (17)0.0289 (6)
H80.64620.86620.40580.035*
C90.5942 (2)0.7822 (3)0.51721 (16)0.0257 (6)
H90.51950.83890.51590.031*
C9a0.6274 (2)0.6826 (3)0.58492 (16)0.0220 (6)
O140.62210 (16)0.63238 (19)0.73193 (10)0.0277 (5)
C210.3542 (2)0.5588 (3)0.68948 (16)0.0228 (6)
C220.3486 (2)0.4965 (3)0.76946 (16)0.0256 (6)
H220.41600.43620.79450.031*
C230.2458 (3)0.5189 (3)0.81588 (17)0.0292 (6)
H230.24390.47250.87110.035*
C240.1493 (2)0.6063 (3)0.78264 (17)0.0280 (6)
H240.07980.61980.81440.034*
C250.1510 (2)0.6776 (3)0.70114 (16)0.0253 (6)
C260.0540 (2)0.7732 (3)0.66774 (17)0.0285 (6)
H260.01500.78830.69970.034*
C270.0573 (3)0.8444 (3)0.59035 (17)0.0304 (7)
H270.00900.90910.56840.036*
C280.1589 (3)0.8218 (3)0.54326 (17)0.0296 (6)
H280.16140.87220.48930.036*
C290.2539 (2)0.7291 (3)0.57335 (17)0.0268 (6)
H290.32110.71430.53960.032*
C2100.2545 (2)0.6543 (3)0.65400 (16)0.0224 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0253 (12)0.0233 (11)0.0188 (11)0.0003 (9)0.0018 (9)0.0010 (9)
C20.0265 (14)0.0213 (14)0.0253 (14)0.0032 (11)0.0063 (11)0.0015 (11)
C30.0275 (14)0.0239 (14)0.0290 (14)0.0003 (11)0.0075 (11)0.0009 (11)
C40.0316 (15)0.0227 (14)0.0256 (14)0.0023 (11)0.0038 (12)0.0007 (11)
C50.0285 (15)0.0256 (14)0.0272 (14)0.0026 (11)0.0024 (12)0.0016 (11)
C5a0.0234 (14)0.0229 (14)0.0238 (14)0.0041 (11)0.0018 (11)0.0023 (11)
C60.0255 (14)0.0259 (14)0.0285 (14)0.0023 (11)0.0038 (11)0.0035 (12)
C70.0299 (15)0.0296 (15)0.0250 (14)0.0091 (12)0.0060 (12)0.0038 (11)
C710.0356 (17)0.0396 (17)0.0310 (16)0.0099 (13)0.0093 (13)0.0000 (13)
C80.0338 (16)0.0303 (15)0.0220 (14)0.0074 (12)0.0012 (12)0.0016 (11)
C90.0266 (14)0.0225 (14)0.0275 (14)0.0026 (11)0.0015 (11)0.0007 (11)
C9a0.0228 (14)0.0210 (13)0.0227 (13)0.0047 (11)0.0046 (11)0.0017 (10)
O140.0319 (11)0.0273 (10)0.0232 (10)0.0020 (8)0.0006 (8)0.0000 (8)
C210.0247 (14)0.0197 (13)0.0242 (14)0.0021 (11)0.0035 (11)0.0030 (11)
C220.0273 (15)0.0244 (14)0.0254 (14)0.0017 (11)0.0039 (12)0.0013 (11)
C230.0328 (16)0.0292 (15)0.0269 (14)0.0021 (12)0.0093 (12)0.0035 (12)
C240.0280 (14)0.0267 (14)0.0310 (15)0.0010 (12)0.0106 (12)0.0030 (12)
C250.0282 (15)0.0209 (13)0.0275 (14)0.0031 (11)0.0064 (12)0.0034 (11)
C260.0249 (15)0.0273 (15)0.0338 (15)0.0003 (12)0.0056 (12)0.0026 (12)
C270.0296 (15)0.0272 (15)0.0331 (16)0.0025 (12)0.0015 (12)0.0005 (12)
C280.0351 (16)0.0286 (15)0.0248 (14)0.0003 (12)0.0015 (12)0.0023 (12)
C290.0274 (15)0.0262 (14)0.0269 (14)0.0012 (12)0.0037 (11)0.0012 (11)
C2100.0250 (14)0.0191 (13)0.0225 (13)0.0036 (11)0.0005 (11)0.0026 (10)
Geometric parameters (Å, º) top
N1—C9a1.440 (3)C71—H71C0.9800
N1—O141.441 (3)C8—C91.373 (4)
N1—C21.492 (3)C8—H80.9500
C2—C211.503 (3)C9—C9a1.388 (3)
C2—C31.541 (4)C9—H90.9500
C2—H21.0000C21—C221.362 (3)
C3—C41.522 (4)C21—C2101.430 (3)
C3—H3A0.9900C22—C231.403 (4)
C3—H3B0.9900C22—H220.9500
C4—O141.445 (3)C23—C241.353 (4)
C4—C51.508 (4)C23—H230.9500
C4—H41.0000C24—C251.412 (4)
C5—C5a1.503 (3)C24—H240.9500
C5—H5A0.9900C25—C261.401 (4)
C5—H5B0.9900C25—C2101.418 (3)
C5a—C61.379 (3)C26—C271.358 (4)
C5a—C9a1.389 (3)C26—H260.9500
C6—C71.387 (4)C27—C281.399 (4)
C6—H60.9500C27—H270.9500
C7—C81.384 (4)C28—C291.357 (4)
C7—C711.490 (4)C28—H280.9500
C71—H71A0.9800C29—C2101.413 (3)
C71—H71B0.9800C29—H290.9500
C9a—N1—O14107.27 (18)H71B—C71—H71C109.5
C9a—N1—C2111.79 (18)C9—C8—C7121.6 (2)
O14—N1—C2101.07 (17)C9—C8—H8119.2
N1—C2—C21108.06 (19)C7—C8—H8119.2
N1—C2—C3103.61 (19)C8—C9—C9a119.7 (2)
C21—C2—C3117.1 (2)C8—C9—H9120.2
N1—C2—H2109.2C9a—C9—H9120.2
C21—C2—H2109.2C9—C9a—C5a120.5 (2)
C3—C2—H2109.2C9—C9a—N1117.7 (2)
C4—C3—C2103.4 (2)C5a—C9a—N1121.8 (2)
C4—C3—H3A111.1N1—O14—C4104.16 (17)
C2—C3—H3A111.1C22—C21—C210118.7 (2)
C4—C3—H3B111.1C22—C21—C2122.2 (2)
C2—C3—H3B111.1C210—C21—C2119.1 (2)
H3A—C3—H3B109.1C21—C22—C23121.7 (2)
O14—C4—C5107.4 (2)C21—C22—H22119.1
O14—C4—C3104.2 (2)C23—C22—H22119.1
C5—C4—C3112.5 (2)C24—C23—C22120.5 (2)
O14—C4—H4110.8C24—C23—H23119.8
C5—C4—H4110.8C22—C23—H23119.8
C3—C4—H4110.8C23—C24—C25120.6 (2)
C5a—C5—C4109.4 (2)C23—C24—H24119.7
C5a—C5—H5A109.8C25—C24—H24119.7
C4—C5—H5A109.8C26—C25—C24121.1 (2)
C5a—C5—H5B109.8C26—C25—C210120.0 (2)
C4—C5—H5B109.8C24—C25—C210118.9 (2)
H5A—C5—H5B108.2C27—C26—C25121.0 (2)
C6—C5a—C9a118.1 (2)C27—C26—H26119.5
C6—C5a—C5122.4 (2)C25—C26—H26119.5
C9a—C5a—C5119.5 (2)C26—C27—C28119.5 (3)
C5a—C6—C7122.7 (2)C26—C27—H27120.3
C5a—C6—H6118.6C28—C27—H27120.3
C7—C6—H6118.6C29—C28—C27121.1 (2)
C8—C7—C6117.4 (2)C29—C28—H28119.4
C8—C7—C71121.6 (2)C27—C28—H28119.5
C6—C7—C71120.9 (2)C28—C29—C210121.1 (3)
C7—C71—H71A109.5C28—C29—H29119.4
C7—C71—H71B109.5C210—C29—H29119.4
H71A—C71—H71B109.5C29—C210—C25117.4 (2)
C7—C71—H71C109.5C29—C210—C21123.1 (2)
H71A—C71—H71C109.5C25—C210—C21119.5 (2)
C9a—N1—C2—C21160.1 (2)C9a—N1—O14—C467.6 (2)
O14—N1—C2—C2186.0 (2)C2—N1—O14—C449.6 (2)
C9a—N1—C2—C375.0 (2)C5—C4—O14—N179.6 (2)
O14—N1—C2—C338.9 (2)C3—C4—O14—N139.9 (2)
N1—C2—C3—C415.0 (2)N1—C2—C21—C2299.7 (3)
C21—C2—C3—C4103.8 (2)C3—C2—C21—C2216.7 (3)
C2—C3—C4—O1414.2 (2)N1—C2—C21—C21077.6 (3)
C2—C3—C4—C5101.8 (2)C3—C2—C21—C210165.9 (2)
O14—C4—C5—C5a47.4 (3)C210—C21—C22—C232.5 (4)
C3—C4—C5—C5a66.7 (3)C2—C21—C22—C23179.9 (2)
C4—C5—C5a—C6172.1 (2)C21—C22—C23—C241.2 (4)
C4—C5—C5a—C9a9.3 (3)C22—C23—C24—C250.7 (4)
C9a—C5a—C6—C70.2 (4)C23—C24—C25—C26177.4 (2)
C5—C5a—C6—C7178.8 (2)C23—C24—C25—C2101.0 (4)
C5a—C6—C7—C80.3 (4)C24—C25—C26—C27178.4 (2)
C5a—C6—C7—C71179.8 (2)C210—C25—C26—C270.0 (4)
C6—C7—C8—C90.0 (4)C25—C26—C27—C280.1 (4)
C71—C7—C8—C9179.8 (2)C26—C27—C28—C290.4 (4)
C7—C8—C9—C9a0.5 (4)C27—C28—C29—C2101.1 (4)
C8—C9—C9a—C5a0.7 (4)C28—C29—C210—C251.2 (4)
C8—C9—C9a—N1179.6 (2)C28—C29—C210—C21178.2 (2)
C6—C5a—C9a—C90.3 (4)C26—C25—C210—C290.7 (4)
C5—C5a—C9a—C9178.4 (2)C24—C25—C210—C29179.1 (2)
C6—C5a—C9a—N1179.2 (2)C26—C25—C210—C21178.8 (2)
C5—C5a—C9a—N10.5 (4)C24—C25—C210—C210.4 (3)
O14—N1—C9a—C9149.4 (2)C22—C21—C210—C29177.3 (2)
C2—N1—C9a—C9100.6 (3)C2—C21—C210—C290.1 (4)
O14—N1—C9a—C5a29.5 (3)C22—C21—C210—C252.1 (4)
C2—N1—C9a—C5a80.5 (3)C2—C21—C210—C25179.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O14i0.992.593.552 (3)164
C22—H22···N1i0.952.543.316 (3)139
C2—H2···Cg5ii1.002.813.558 (3)132
C4—H4···Cg6i1.002.713.626 (3)153
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1, z+1.
(III) (2S*,4R*)-2-exo-(1-Naphthyl)-7-trifluoromethyl-2,3,4,5- tetrahydro-1H-1,4-epoxy-1-benzazepine top
Crystal data top
C21H16F3NO2F(000) = 768
Mr = 371.35Dx = 1.480 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2193 reflections
a = 7.2209 (5) Åθ = 3.1–27.5°
b = 13.140 (2) ŵ = 0.12 mm1
c = 17.559 (2) ÅT = 120 K
V = 1666.0 (3) Å3Block, colourless
Z = 40.21 × 0.20 × 0.14 mm
Data collection top
Bruker-Nonius KappaCCD area-detector
diffractometer
2193 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1899 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1617
Tmin = 0.957, Tmax = 0.984l = 2222
20342 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0334P)2 + 0.5461P]
where P = (Fo2 + 2Fc2)/3
2193 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C21H16F3NO2V = 1666.0 (3) Å3
Mr = 371.35Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.2209 (5) ŵ = 0.12 mm1
b = 13.140 (2) ÅT = 120 K
c = 17.559 (2) Å0.21 × 0.20 × 0.14 mm
Data collection top
Bruker-Nonius KappaCCD area-detector
diffractometer
2193 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1899 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.984Rint = 0.038
20342 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.18Δρmax = 0.18 e Å3
2193 reflectionsΔρmin = 0.25 e Å3
244 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4649 (3)0.53538 (15)0.65449 (11)0.0223 (4)
C20.5316 (3)0.58817 (18)0.58600 (12)0.0207 (5)
H20.55340.66170.59770.025*
C30.7178 (3)0.5351 (2)0.56863 (14)0.0272 (6)
H3A0.73010.52000.51360.033*
H3B0.82380.57760.58500.033*
C40.7060 (4)0.4379 (2)0.61518 (15)0.0327 (6)
H40.74140.37770.58360.039*
C50.8168 (4)0.4404 (2)0.68826 (15)0.0342 (7)
H5A0.81600.37240.71250.041*
H5B0.94680.45920.67720.041*
C5a0.7312 (4)0.51751 (18)0.74093 (13)0.0235 (5)
C60.8150 (4)0.54313 (18)0.80913 (13)0.0227 (5)
H60.92300.50820.82560.027*
C70.7408 (3)0.61918 (18)0.85249 (12)0.0209 (5)
O70.8235 (2)0.64146 (13)0.92370 (8)0.0242 (4)
C710.9577 (4)0.71102 (19)0.92242 (13)0.0260 (6)
F711.0164 (3)0.72417 (13)0.99247 (8)0.0445 (5)
F721.1013 (2)0.68440 (13)0.88031 (9)0.0367 (4)
F730.9012 (2)0.80003 (11)0.89604 (9)0.0389 (4)
C80.5827 (4)0.67079 (18)0.83186 (13)0.0237 (5)
H80.53600.72480.86220.028*
C90.4946 (4)0.64182 (18)0.76608 (12)0.0224 (5)
H90.38320.67480.75130.027*
C9a0.5667 (3)0.56517 (17)0.72132 (12)0.0205 (5)
O140.5137 (3)0.43151 (13)0.63794 (10)0.0294 (4)
C210.3953 (3)0.57850 (17)0.52122 (12)0.0197 (5)
C220.2493 (4)0.5131 (2)0.52548 (13)0.0248 (5)
H220.23090.47460.57060.030*
C230.1255 (4)0.5014 (2)0.46459 (14)0.0291 (6)
H230.02540.45480.46880.035*
C240.1475 (4)0.5560 (2)0.39974 (14)0.0281 (6)
H240.06230.54780.35890.034*
C250.2949 (3)0.62437 (19)0.39263 (13)0.0239 (5)
C260.3213 (4)0.6812 (2)0.32503 (14)0.0300 (6)
H260.23710.67310.28390.036*
C270.4646 (4)0.7468 (2)0.31808 (15)0.0330 (6)
H270.48040.78420.27220.040*
C280.5894 (4)0.7596 (2)0.37814 (15)0.0318 (6)
H280.68930.80620.37290.038*
C290.5695 (4)0.70616 (19)0.44418 (14)0.0263 (5)
H290.65580.71570.48440.032*
C2100.4226 (3)0.63695 (17)0.45338 (13)0.0204 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0256 (11)0.0200 (9)0.0212 (10)0.0022 (9)0.0004 (9)0.0009 (8)
C20.0211 (11)0.0221 (11)0.0188 (10)0.0012 (10)0.0031 (9)0.0044 (9)
C30.0186 (12)0.0415 (15)0.0215 (12)0.0022 (11)0.0026 (10)0.0095 (11)
C40.0372 (15)0.0311 (14)0.0297 (13)0.0114 (12)0.0110 (12)0.0133 (12)
C50.0404 (16)0.0329 (15)0.0292 (13)0.0126 (13)0.0119 (12)0.0108 (12)
C5a0.0278 (13)0.0204 (11)0.0225 (11)0.0003 (11)0.0022 (11)0.0021 (9)
C60.0257 (12)0.0217 (12)0.0208 (11)0.0011 (10)0.0012 (10)0.0023 (9)
C70.0285 (12)0.0208 (11)0.0135 (10)0.0050 (10)0.0013 (10)0.0012 (9)
O70.0322 (9)0.0265 (9)0.0138 (8)0.0071 (8)0.0009 (7)0.0022 (7)
C710.0346 (14)0.0259 (12)0.0175 (11)0.0042 (11)0.0005 (11)0.0006 (10)
F710.0605 (12)0.0527 (11)0.0203 (7)0.0228 (10)0.0078 (8)0.0059 (7)
F720.0268 (8)0.0473 (9)0.0361 (8)0.0025 (8)0.0036 (7)0.0060 (8)
F730.0457 (10)0.0218 (7)0.0493 (10)0.0029 (8)0.0009 (9)0.0030 (7)
C80.0293 (13)0.0238 (11)0.0181 (11)0.0028 (11)0.0077 (11)0.0014 (9)
C90.0226 (12)0.0259 (11)0.0187 (11)0.0035 (11)0.0038 (11)0.0031 (9)
C9a0.0234 (12)0.0194 (11)0.0187 (11)0.0036 (10)0.0001 (9)0.0019 (9)
O140.0377 (10)0.0186 (8)0.0320 (9)0.0009 (8)0.0083 (8)0.0043 (7)
C210.0180 (10)0.0228 (11)0.0183 (10)0.0018 (10)0.0005 (9)0.0064 (9)
C220.0256 (12)0.0295 (13)0.0191 (11)0.0016 (11)0.0005 (11)0.0044 (10)
C230.0212 (12)0.0365 (15)0.0294 (13)0.0023 (11)0.0001 (11)0.0100 (11)
C240.0213 (12)0.0373 (14)0.0258 (12)0.0046 (11)0.0080 (10)0.0092 (11)
C250.0238 (12)0.0257 (12)0.0221 (11)0.0091 (10)0.0006 (10)0.0069 (10)
C260.0367 (15)0.0303 (13)0.0231 (12)0.0113 (13)0.0064 (12)0.0023 (11)
C270.0506 (17)0.0272 (12)0.0211 (12)0.0075 (14)0.0036 (12)0.0036 (10)
C280.0407 (16)0.0281 (13)0.0268 (13)0.0047 (13)0.0049 (13)0.0023 (11)
C290.0311 (14)0.0274 (12)0.0204 (11)0.0021 (11)0.0005 (11)0.0055 (10)
C2100.0199 (11)0.0219 (11)0.0193 (11)0.0037 (10)0.0003 (9)0.0057 (9)
Geometric parameters (Å, º) top
N1—C9a1.439 (3)C71—F731.322 (3)
N1—O141.439 (3)C8—C91.373 (3)
N1—C21.469 (3)C8—H80.9500
C2—C211.509 (3)C9—C9a1.379 (3)
C2—C31.545 (3)C9—H90.9500
C2—H21.0000C21—C221.363 (3)
C3—C41.519 (4)C21—C2101.431 (3)
C3—H3A0.9900C22—C231.402 (3)
C3—H3B0.9900C22—H220.9500
C4—O141.447 (3)C23—C241.355 (4)
C4—C51.513 (4)C23—H230.9500
C4—H41.0000C24—C251.399 (4)
C5—C5a1.505 (3)C24—H240.9500
C5—H5A0.9900C25—C261.415 (4)
C5—H5B0.9900C25—C2101.419 (3)
C5a—C61.383 (3)C26—C271.352 (4)
C5a—C9a1.386 (3)C26—H260.9500
C6—C71.366 (3)C27—C281.398 (4)
C6—H60.9500C27—H270.9500
C7—C81.376 (4)C28—C291.364 (4)
C7—O71.416 (3)C28—H280.9500
O7—C711.332 (3)C29—C2101.407 (3)
C71—F711.312 (3)C29—H290.9500
C71—F721.321 (3)
C9a—N1—O14107.33 (18)F73—C71—O7112.9 (2)
C9a—N1—C2111.83 (18)C9—C8—C7118.0 (2)
O14—N1—C2101.68 (17)C9—C8—H8121.0
N1—C2—C21111.32 (19)C7—C8—H8121.0
N1—C2—C3103.50 (19)C8—C9—C9a120.5 (2)
C21—C2—C3112.36 (18)C8—C9—H9119.8
N1—C2—H2109.8C9a—C9—H9119.8
C21—C2—H2109.8C9—C9a—C5a120.8 (2)
C3—C2—H2109.8C9—C9a—N1118.1 (2)
C4—C3—C2103.0 (2)C5a—C9a—N1121.1 (2)
C4—C3—H3A111.2N1—O14—C4103.59 (18)
C2—C3—H3A111.2C22—C21—C210119.4 (2)
C4—C3—H3B111.2C22—C21—C2121.1 (2)
C2—C3—H3B111.2C210—C21—C2119.5 (2)
H3A—C3—H3B109.1C21—C22—C23121.4 (2)
O14—C4—C5105.9 (2)C21—C22—H22119.3
O14—C4—C3104.6 (2)C23—C22—H22119.3
C5—C4—C3114.1 (2)C24—C23—C22120.6 (2)
O14—C4—H4110.6C24—C23—H23119.7
C5—C4—H4110.6C22—C23—H23119.7
C3—C4—H4110.6C23—C24—C25120.3 (2)
C5a—C5—C4108.6 (2)C23—C24—H24119.9
C5a—C5—H5A110.0C25—C24—H24119.9
C4—C5—H5A110.0C24—C25—C26121.1 (2)
C5a—C5—H5B110.0C24—C25—C210120.1 (2)
C4—C5—H5B110.0C26—C25—C210118.8 (2)
H5A—C5—H5B108.4C27—C26—C25121.0 (2)
C6—C5a—C9a118.7 (2)C27—C26—H26119.5
C6—C5a—C5121.1 (2)C25—C26—H26119.5
C9a—C5a—C5120.2 (2)C26—C27—C28120.2 (2)
C7—C6—C5a119.3 (2)C26—C27—H27119.9
C7—C6—H6120.4C28—C27—H27119.9
C5a—C6—H6120.4C29—C28—C27120.7 (3)
C6—C7—C8122.6 (2)C29—C28—H28119.6
C6—C7—O7118.6 (2)C27—C28—H28119.6
C8—C7—O7118.7 (2)C28—C29—C210120.7 (2)
C71—O7—C7115.70 (17)C28—C29—H29119.7
F71—C71—F72107.8 (2)C210—C29—H29119.7
F71—C71—F73108.1 (2)C29—C210—C25118.6 (2)
F72—C71—F73106.3 (2)C29—C210—C21123.1 (2)
F71—C71—O7108.03 (19)C25—C210—C21118.3 (2)
F72—C71—O7113.5 (2)
C9a—N1—C2—C21164.99 (19)O14—N1—C9a—C5a24.8 (3)
O14—N1—C2—C2180.8 (2)C2—N1—C9a—C5a85.9 (3)
C9a—N1—C2—C374.1 (2)C9a—N1—O14—C467.8 (2)
O14—N1—C2—C340.1 (2)C2—N1—O14—C449.7 (2)
N1—C2—C3—C416.6 (2)C5—C4—O14—N182.2 (2)
C21—C2—C3—C4103.7 (2)C3—C4—O14—N138.7 (2)
C2—C3—C4—O1412.9 (2)N1—C2—C21—C2210.7 (3)
C2—C3—C4—C5102.4 (3)C3—C2—C21—C22104.9 (3)
O14—C4—C5—C5a47.8 (3)N1—C2—C21—C210170.98 (19)
C3—C4—C5—C5a66.7 (3)C3—C2—C21—C21073.4 (3)
C4—C5—C5a—C6173.5 (3)C210—C21—C22—C230.3 (3)
C4—C5—C5a—C9a5.8 (3)C2—C21—C22—C23178.0 (2)
C9a—C5a—C6—C74.5 (4)C21—C22—C23—C240.6 (4)
C5—C5a—C6—C7174.8 (2)C22—C23—C24—C250.4 (4)
C5a—C6—C7—C81.3 (4)C23—C24—C25—C26179.3 (2)
C5a—C6—C7—O7177.3 (2)C23—C24—C25—C2100.0 (4)
C6—C7—O7—C7190.0 (3)C24—C25—C26—C27179.6 (2)
C8—C7—O7—C7193.8 (3)C210—C25—C26—C270.3 (4)
C7—O7—C71—F71178.7 (2)C25—C26—C27—C280.1 (4)
C7—O7—C71—F7261.8 (3)C26—C27—C28—C290.4 (4)
C7—O7—C71—F7359.2 (3)C27—C28—C29—C2100.1 (4)
C6—C7—C8—C92.0 (4)C28—C29—C210—C250.3 (3)
O7—C7—C8—C9174.1 (2)C28—C29—C210—C21179.7 (2)
C7—C8—C9—C9a1.9 (3)C24—C25—C210—C29179.8 (2)
C8—C9—C9a—C5a1.4 (4)C26—C25—C210—C290.5 (3)
C8—C9—C9a—N1177.7 (2)C24—C25—C210—C210.2 (3)
C6—C5a—C9a—C94.6 (4)C26—C25—C210—C21179.5 (2)
C5—C5a—C9a—C9174.7 (2)C22—C21—C210—C29180.0 (2)
C6—C5a—C9a—N1174.5 (2)C2—C21—C210—C291.7 (3)
C5—C5a—C9a—N16.1 (3)C22—C21—C210—C250.1 (3)
O14—N1—C9a—C9154.4 (2)C2—C21—C210—C25178.4 (2)
C2—N1—C9a—C994.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C24—H24···Cg5i0.952.743.539 (3)143
Symmetry code: (i) x+1/2, y+1, z1/2.
(IV) (2S,4R)-8-Chloro-9-methyl-2-exo-(1-naphthyl)-2,3,4,5- tetrahydro-1H-1,4-epoxy-1-benzazepine top
Crystal data top
C21H18ClNOF(000) = 704
Mr = 335.81Dx = 1.366 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3731 reflections
a = 7.4394 (7) Åθ = 2.8–27.5°
b = 14.498 (3) ŵ = 0.24 mm1
c = 15.136 (3) ÅT = 120 K
V = 1632.5 (5) Å3Block, colourless
Z = 40.24 × 0.17 × 0.16 mm
Data collection top
Bruker-Nonius KappaCCD area-detector
diffractometer
3731 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode3028 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.8°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1818
Tmin = 0.935, Tmax = 0.963l = 1917
16529 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0339P)2 + 0.5177P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
3731 reflectionsΔρmax = 0.21 e Å3
218 parametersΔρmin = 0.29 e Å3
0 restraintsAbsolute structure: Flack (1983), with 1581 Bijvoet pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (7)
Crystal data top
C21H18ClNOV = 1632.5 (5) Å3
Mr = 335.81Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.4394 (7) ŵ = 0.24 mm1
b = 14.498 (3) ÅT = 120 K
c = 15.136 (3) Å0.24 × 0.17 × 0.16 mm
Data collection top
Bruker-Nonius KappaCCD area-detector
diffractometer
3731 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3028 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.963Rint = 0.046
16529 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.090Δρmax = 0.21 e Å3
S = 1.09Δρmin = 0.29 e Å3
3731 reflectionsAbsolute structure: Flack (1983), with 1581 Bijvoet pairs
218 parametersAbsolute structure parameter: 0.02 (7)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5192 (2)0.52750 (12)0.69290 (12)0.0200 (4)
C20.5617 (3)0.57593 (14)0.60970 (13)0.0183 (5)
H20.58820.64220.62280.022*
C30.7352 (3)0.52799 (15)0.57749 (14)0.0224 (5)
H3A0.72830.51350.51370.027*
H3B0.84200.56710.58840.027*
C40.7419 (3)0.44006 (16)0.63295 (15)0.0251 (5)
H40.76790.38500.59530.030*
C50.8709 (3)0.44584 (16)0.70933 (15)0.0279 (5)
H5A0.87570.38580.74050.033*
H5B0.99300.46040.68740.033*
C5a0.8090 (3)0.51987 (15)0.77174 (14)0.0201 (5)
C60.9179 (3)0.55212 (16)0.83783 (14)0.0232 (5)
H61.03270.52490.84650.028*
C70.8641 (3)0.62276 (16)0.89147 (15)0.0248 (5)
H70.94070.64480.93700.030*
C80.6971 (3)0.66155 (15)0.87851 (15)0.0217 (5)
Cl80.63590 (9)0.75263 (4)0.94652 (4)0.03721 (17)
C90.5796 (3)0.63166 (15)0.81420 (13)0.0190 (5)
C910.3981 (3)0.67419 (16)0.80117 (15)0.0259 (5)
H91A0.34030.68320.85870.039*
H91B0.32380.63330.76480.039*
H91C0.41140.73390.77150.039*
C9a0.6396 (3)0.55917 (14)0.76138 (13)0.0184 (4)
O140.5653 (2)0.43378 (10)0.67212 (10)0.0263 (4)
C210.4128 (3)0.57041 (14)0.54312 (14)0.0186 (5)
C220.2809 (3)0.50465 (15)0.54812 (15)0.0219 (5)
H220.27960.46300.59650.026*
C230.1483 (3)0.49801 (15)0.48300 (16)0.0262 (5)
H230.05950.45110.48710.031*
C240.1447 (3)0.55753 (16)0.41417 (16)0.0262 (5)
H240.05200.55300.37120.031*
C250.2777 (3)0.62603 (15)0.40581 (14)0.0215 (5)
C260.2803 (3)0.68700 (16)0.33314 (15)0.0265 (6)
H260.18910.68260.28940.032*
C270.4105 (3)0.75167 (17)0.32454 (14)0.0279 (5)
H270.41030.79200.27510.034*
C280.5453 (3)0.75888 (16)0.38853 (14)0.0250 (5)
H280.63590.80460.38250.030*
C290.5480 (3)0.70087 (14)0.45955 (14)0.0218 (5)
H290.64100.70650.50220.026*
C2100.4147 (3)0.63280 (14)0.47045 (13)0.0185 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0233 (10)0.0157 (9)0.0209 (9)0.0009 (8)0.0007 (8)0.0004 (7)
C20.0191 (11)0.0164 (11)0.0193 (10)0.0016 (9)0.0017 (10)0.0007 (8)
C30.0209 (12)0.0266 (12)0.0198 (11)0.0012 (10)0.0001 (10)0.0048 (9)
C40.0239 (13)0.0232 (12)0.0282 (12)0.0066 (10)0.0008 (10)0.0056 (10)
C50.0288 (13)0.0241 (12)0.0308 (12)0.0099 (11)0.0041 (11)0.0007 (10)
C5a0.0217 (12)0.0189 (11)0.0197 (11)0.0033 (9)0.0012 (9)0.0058 (9)
C60.0203 (12)0.0261 (12)0.0232 (11)0.0031 (10)0.0017 (10)0.0093 (10)
C70.0282 (13)0.0268 (12)0.0195 (11)0.0046 (11)0.0035 (11)0.0060 (9)
C80.0277 (13)0.0198 (11)0.0177 (11)0.0009 (9)0.0017 (10)0.0024 (9)
Cl80.0470 (4)0.0363 (3)0.0283 (3)0.0087 (3)0.0045 (3)0.0120 (3)
C90.0204 (12)0.0204 (11)0.0163 (10)0.0014 (9)0.0037 (9)0.0065 (9)
C910.0222 (13)0.0290 (12)0.0265 (12)0.0033 (10)0.0040 (10)0.0015 (10)
C9a0.0218 (11)0.0192 (10)0.0142 (10)0.0045 (10)0.0008 (9)0.0054 (8)
O140.0310 (9)0.0158 (8)0.0323 (9)0.0018 (7)0.0009 (8)0.0011 (7)
C210.0171 (11)0.0173 (10)0.0213 (11)0.0017 (8)0.0005 (9)0.0056 (9)
C220.0192 (11)0.0228 (11)0.0236 (11)0.0002 (9)0.0017 (10)0.0046 (10)
C230.0166 (11)0.0254 (12)0.0367 (13)0.0035 (10)0.0000 (11)0.0108 (10)
C240.0171 (11)0.0294 (12)0.0321 (12)0.0045 (11)0.0058 (11)0.0129 (10)
C250.0171 (11)0.0214 (11)0.0260 (12)0.0080 (9)0.0009 (10)0.0102 (9)
C260.0285 (13)0.0293 (13)0.0216 (11)0.0109 (11)0.0068 (10)0.0072 (10)
C270.0376 (14)0.0259 (12)0.0203 (10)0.0125 (12)0.0023 (10)0.0003 (10)
C280.0303 (13)0.0191 (11)0.0256 (11)0.0008 (10)0.0003 (10)0.0014 (10)
C290.0231 (12)0.0209 (11)0.0213 (11)0.0002 (9)0.0046 (10)0.0027 (9)
C2100.0188 (12)0.0191 (10)0.0176 (10)0.0055 (9)0.0001 (9)0.0064 (8)
Geometric parameters (Å, º) top
N1—O141.436 (2)C9—C9a1.394 (3)
N1—C9a1.445 (3)C9—C911.497 (3)
N1—C21.476 (3)C91—H91A0.9800
C2—C211.500 (3)C91—H91B0.9800
C2—C31.545 (3)C91—H91C0.9800
C2—H21.0000C21—C221.370 (3)
C3—C41.527 (3)C21—C2101.424 (3)
C3—H3A0.9900C22—C231.398 (3)
C3—H3B0.9900C22—H220.9500
C4—O141.445 (3)C23—C241.353 (3)
C4—C51.505 (3)C23—H230.9500
C4—H41.0000C24—C251.407 (3)
C5—C5a1.502 (3)C24—H240.9500
C5—H5A0.9900C25—C261.411 (3)
C5—H5B0.9900C25—C2101.417 (3)
C5a—C61.369 (3)C26—C271.354 (4)
C5a—C9a1.392 (3)C26—H260.9500
C6—C71.367 (3)C27—C281.398 (3)
C6—H60.9500C27—H270.9500
C7—C81.377 (3)C28—C291.365 (3)
C7—H70.9500C28—H280.9500
C8—C91.378 (3)C29—C2101.408 (3)
C8—Cl81.735 (2)C29—H290.9500
O14—N1—C9a108.06 (16)C9a—C9—C91121.6 (2)
O14—N1—C2102.25 (16)C9—C91—H91A109.5
C9a—N1—C2109.15 (16)C9—C91—H91B109.5
N1—C2—C21112.92 (17)H91A—C91—H91B109.5
N1—C2—C3103.54 (17)C9—C91—H91C109.5
C21—C2—C3112.41 (17)H91A—C91—H91C109.5
N1—C2—H2109.3H91B—C91—H91C109.5
C21—C2—H2109.3C5a—C9a—C9122.3 (2)
C3—C2—H2109.3C5a—C9a—N1120.79 (19)
C4—C3—C2103.26 (18)C9—C9a—N1116.9 (2)
C4—C3—H3A111.1N1—O14—C4104.32 (16)
C2—C3—H3A111.1C22—C21—C210119.5 (2)
C4—C3—H3B111.1C22—C21—C2121.9 (2)
C2—C3—H3B111.1C210—C21—C2118.53 (18)
H3A—C3—H3B109.1C21—C22—C23121.0 (2)
O14—C4—C5105.56 (18)C21—C22—H22119.5
O14—C4—C3104.39 (18)C23—C22—H22119.5
C5—C4—C3113.4 (2)C24—C23—C22120.8 (2)
O14—C4—H4111.1C24—C23—H23119.6
C5—C4—H4111.1C22—C23—H23119.6
C3—C4—H4111.1C23—C24—C25120.4 (2)
C5a—C5—C4109.12 (19)C23—C24—H24119.8
C5a—C5—H5A109.9C25—C24—H24119.8
C4—C5—H5A109.9C24—C25—C26121.5 (2)
C5a—C5—H5B109.9C24—C25—C210119.5 (2)
C4—C5—H5B109.9C26—C25—C210119.0 (2)
H5A—C5—H5B108.3C27—C26—C25121.2 (2)
C6—C5a—C9a118.6 (2)C27—C26—H26119.4
C6—C5a—C5121.5 (2)C25—C26—H26119.4
C9a—C5a—C5120.0 (2)C26—C27—C28119.9 (2)
C7—C6—C5a121.1 (2)C26—C27—H27120.1
C7—C6—H6119.4C28—C27—H27120.1
C5a—C6—H6119.4C29—C28—C27120.7 (2)
C6—C7—C8119.0 (2)C29—C28—H28119.7
C6—C7—H7120.5C27—C28—H28119.7
C8—C7—H7120.5C28—C29—C210120.9 (2)
C7—C8—C9123.0 (2)C28—C29—H29119.5
C7—C8—Cl8117.58 (18)C210—C29—H29119.5
C9—C8—Cl8119.45 (18)C29—C210—C25118.3 (2)
C8—C9—C9a116.0 (2)C29—C210—C21122.9 (2)
C8—C9—C91122.4 (2)C25—C210—C21118.8 (2)
O14—N1—C2—C2183.36 (19)O14—N1—C9a—C9156.09 (17)
C9a—N1—C2—C21162.36 (17)C2—N1—C9a—C993.5 (2)
O14—N1—C2—C338.48 (19)C9a—N1—O14—C466.58 (19)
C9a—N1—C2—C375.8 (2)C2—N1—O14—C448.49 (19)
N1—C2—C3—C415.3 (2)C5—C4—O14—N181.67 (19)
C21—C2—C3—C4106.9 (2)C3—C4—O14—N138.1 (2)
C2—C3—C4—O1413.1 (2)N1—C2—C21—C2219.3 (3)
C2—C3—C4—C5101.2 (2)C3—C2—C21—C2297.4 (2)
O14—C4—C5—C5a50.4 (2)N1—C2—C21—C210163.82 (18)
C3—C4—C5—C5a63.2 (3)C3—C2—C21—C21079.5 (2)
C4—C5—C5a—C6167.4 (2)C210—C21—C22—C230.1 (3)
C4—C5—C5a—C9a10.7 (3)C2—C21—C22—C23176.90 (19)
C9a—C5a—C6—C71.5 (3)C21—C22—C23—C241.3 (3)
C5—C5a—C6—C7176.6 (2)C22—C23—C24—C251.5 (3)
C5a—C6—C7—C80.2 (3)C23—C24—C25—C26177.9 (2)
C6—C7—C8—C90.8 (3)C23—C24—C25—C2100.5 (3)
C6—C7—C8—Cl8178.68 (17)C24—C25—C26—C27178.7 (2)
C7—C8—C9—C9a0.5 (3)C210—C25—C26—C270.3 (3)
Cl8—C8—C9—C9a179.04 (15)C25—C26—C27—C280.1 (3)
C7—C8—C9—C91179.7 (2)C26—C27—C28—C290.5 (3)
Cl8—C8—C9—C910.8 (3)C27—C28—C29—C2100.4 (3)
C6—C5a—C9a—C91.8 (3)C28—C29—C210—C250.0 (3)
C5—C5a—C9a—C9176.24 (19)C28—C29—C210—C21179.6 (2)
C6—C5a—C9a—N1179.80 (19)C24—C25—C210—C29178.8 (2)
C5—C5a—C9a—N12.1 (3)C26—C25—C210—C290.3 (3)
C8—C9—C9a—C5a0.9 (3)C24—C25—C210—C210.8 (3)
C91—C9—C9a—C5a179.0 (2)C26—C25—C210—C21179.3 (2)
C8—C9—C9a—N1179.31 (18)C22—C21—C210—C29178.5 (2)
C91—C9—C9a—N10.6 (3)C2—C21—C210—C291.6 (3)
O14—N1—C9a—C5a25.5 (3)C22—C21—C210—C251.1 (3)
C2—N1—C9a—C5a85.0 (2)C2—C21—C210—C25178.00 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Cg7i0.952.753.522 (2)139
C27—H27···Cg5ii0.952.573.432 (3)151
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x1/2, y+3/2, z+1.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC20H17NOC21H19NOC21H16F3NO2C21H18ClNO
Mr287.35301.37371.35335.81
Crystal system, space groupMonoclinic, P21Monoclinic, P21/cOrthorhombic, P212121Orthorhombic, P212121
Temperature (K)120120120120
a, b, c (Å)8.974 (4), 7.1817 (8), 22.718 (9)10.7760 (13), 8.9612 (11), 15.4241 (15)7.2209 (5), 13.140 (2), 17.559 (2)7.4394 (7), 14.498 (3), 15.136 (3)
α, β, γ (°)90, 95.39 (3), 9090, 96.799 (10), 9090, 90, 9090, 90, 90
V3)1457.7 (9)1479.0 (3)1666.0 (3)1632.5 (5)
Z4444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.080.080.120.24
Crystal size (mm)0.38 × 0.21 × 0.140.30 × 0.28 × 0.240.21 × 0.20 × 0.140.24 × 0.17 × 0.16
Data collection
DiffractometerBruker-Nonius KappaCCD area-detector
diffractometer
Bruker-Nonius KappaCCD area-detector
diffractometer
Bruker-Nonius KappaCCD area-detector
diffractometer
Bruker-Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.961, 0.9890.965, 0.9800.957, 0.9840.935, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
20821, 3589, 3064 19719, 2744, 1737 20342, 2193, 1899 16529, 3731, 3028
Rint0.0510.0670.0380.046
(sin θ/λ)max1)0.6500.6060.6490.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.099, 1.14 0.059, 0.167, 1.09 0.040, 0.086, 1.18 0.046, 0.090, 1.09
No. of reflections3589274421933731
No. of parameters397209244218
No. of restraints1000
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.270.30, 0.310.18, 0.250.21, 0.29
Absolute structure???Flack (1983), with 1581 Bijvoet pairs
Absolute structure parameter???0.02 (7)

Computer programs: COLLECT (Nonius, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected conformational parameters for (I)–(V) top
Ring-puckering parameters (Å, °)
Five-membered ringSix-membered ring
Q2ϕ2Qθϕ
(I), molecule 10.449 (3)194.0 (4)0.632 (2)56.1 (3)347.7 (3)
(I), molecule 20.438 (3)197.0 (4)0.622 (3)52.5 (3)344.5 (3)
(II)0.449 (2)199.1 (3)0.615 (2)51.4 (2)346.1 (3)
(III)0.449 (2)200.9 (3)0.643 (2)55.1 (3)343.6 (3)
(IV)0.434 (2)199.9 (3)0.628 (2)52.4 (2)341.0 (3)
(V)0.440 (3)188.7 (4)0.630 (3)54.7 (3)347.5 (4)
Torsion angles (°) Nx1—Cx2—Cx21—Cx22
(I)x = 1-9.4 (3)
(I)x = 2-10.9 (4)
(II)x = nul-99.7 (3)
(III)x = nul-10.7 (3)
(IV)x = nul-19.3 (3)
(V)x = nul-5.9 (4)
Notes: data for (V) are taken from Gómez et al. (2008). Puckering parameters for five-membered rings are defined for the atom sequence Ox14—Nx1—Cx2—Cx3—Cx4. Puckering parameters for six-membered rings are defined by the atom sequence Ox14—Nx1—Cx9A—Cx5A—Cx5—Cx4.
Hydrogen bonds and short intramolecular contacts (Å, °) for (I)–(IV) top
CompoundD—H···AD—HH···AD···AD—H···A
(I)C14—H14···O114i1.002.583.411 (4)140
C24—H24···O214ii1.002.483.263 (4)135
C16—H16···Cg1a,iii0.952.963.736 (3)139
C26—H26···Cg2b,iv0.952.613.550 (3)170
C18—H18···Cg3c,v0.952.613.553 (3)170
C28—H28···Cg4d,vi0.952.723.634 (4)163
(II)C3—H3A···O14vii0.992.593.552 (3)164
C22—H22···N1vii0.952.543.316 (3)139
C2—H2···Cg5e,viii1.002.813.558 (3)132
C4—H4···Cg6f,vii1.002.713.626 (3)153
(III)C24—H24···Cg5e,ix0.952.743.539 (3)143
(IV)C6—H6···Cg7g,x0.952.753.522 (2)139
C27—H27···Cg5e,xi0.952.573.432 (3)151
Notes: (a) Cg1 represents the centroid of the C15a/C16–C19/C19a ring; (b) Cg2 represents the centroid of the C25a/C26–C29]C29a ring; (c) Cg3 represents the centroid of the C121–C125/C130 ring; (d) Cg4 represents the centroid of the C221–C225/C230 ring; (e) Cg5 represents the centroid of the C5a/C6–C9/C9a ring; (f) Cg6 represents the centroid of the C25–C210 ring; (g) Cg7 represents the centroid of the C21–C25/C210 ring. Symmetry codes: (i) -x + 1, y - 1/2, -z; (ii) -x + 1, y - 1/2, -z + 1; (iii) -x, y - 1/2, -z; (iv) -x + 2, y - 1/2, -z + 1; (v) x - 1, y, z; (vi) x + 1, y, z; (vii) -x, y - 1/2, -z + 3/2; (viii) -x + 1, -y + 1, -z + 1; (ix) -x + 1/2, -y + 1, z - 1/2; (x) -x + 3/2, -y + 1, z + 1/2; (xi) x - 1/2, -y + 3/2, -z + 1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds