Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, piperidinium 6-amino-3-methyl-5-ni­troso-2,4-dioxo-1,2,3,4-tetra­hydro­pyrimidin-1-ide 6-amino-3-methyl-5-nitroso­pyrimidine-2,4(1H,3H)-dione, C5H12N+·C5H5N4O3·C5H6N4O3, (I), crystallizes with Z′ = 2 in the space group P\overline{1}. There is an intra­molecular N—H...O hydrogen bond in each pyrimidine unit and within the selected asymmetric unit the six independent components are linked by 11 hydrogen bonds, seven of the N—H...O type and four of the N—H...N type. These six-component aggregates are linked into sheets by five further hydrogen bonds, three of the N—H...O type and one each of the N—H...N and C—H...O types.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109014279/gg3200sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109014279/gg3200Isup2.hkl
Contains datablock I

CCDC reference: 735141

Comment top

We report here the structure of the 2:1 adduct, (I), formed between 6-amino-3-methyl-5-nitrosopyrimidine-2,4(1H,3H)-dione and piperidine, and compare this structure with those of the parent pyrimidinedione, (II) (Godino Salido et al., 2003), and the 1:1 salt, (III), formed with piperidine (Low et al., 1999), and also with those of the hydrated complexes formed with a number of metals (Cuesta et al., 2001; Low et al., 2003; López Garzón et al., 2003a,b).

In the course of our development of synthetic routes to 2-substituted 6-amino-5-nitrosopyrimidines for use as intermediates in the synthesis of fused pyrimidine derivatives, we have recently reported examples of the substitution by a variety of amino groups of methoxy (Melguizo et al., 2002) or methylsulfanyl (Orozco et al., 2008) groups at the 2-position in the pyrimidine ring. Such nitrosopyrimidine derivatives often form intramolecular N—H···O hydrogen bonds and are thus interesting purine mimics (Low et al., 2000). We have already introduced the morpholino group at C2 using the reactions of 6-amino-2-methylsulfanyl-5-nitrosopyrimidin-4(3H)-ones with morpholine (Orozco et al., 2008), and accordingly we have employed similar reaction conditions with the aim of synthesizing an analogous 6-amino-2-piperidino-5-nitrosopyrimidin-4(3H)-one. However, instead of the expected substitution product, the hydrolysis product 6-amino-3-methyl-5-nitrosopyrimidine-2,4(1H,3H)-dione was formed which crystallized as the 2:1 salt, (I), with piperidine. By contrast, the corresponding reaction using 6-amino-2-methoxy-5-nitrosopyrimidin-4(3H)-one and the same molar ratio of piperidine to the pyrimidine gave instead the 1:1 salt, (III) (Low et al., 1999).

Compound (I) contains a 1:2 ratio of the piperidine and pyrimidine components and crystallizes with Z' = 2 in the space group P1. Its constitution is that of a salt, in which a proton has been transferred to each of the piperidine units from two of the four pyrimidine units. With six independent molecular entities present in the structure, the selection of the asymmetric unit permits a considerable degree of choice. However, it is possible here to select a fairly compact asymmetric unit (Fig. 1) in which the six components are linked by 11 hydrogen bonds (Table 2), seven of the N—H···O type and four of the N—H···N type, where both piperidinium cations act as donors in three-centre N—H···(O,N) systems.

Within the selected asymmetric unit, there are two dioxopyrimidinide anions, with atom labels of type N1x/C1x and N2x/C2x, and two formally neutral pyrimidinedione units, with atom labels of type N3x/C3x and N4x/C4x. The anions of types 1 and 2 are linked to the neutral molecules of types 4 and 3, respectively, via three hydrogen bonds. Within each such pair, two antiparallel N—H···O hydrogen bonds are flanked by a central N—H···N hydrogen bond, producing a linkage reminiscent of the three-point recognition between cytosine and guanine in DNA. However, the N—H···N hydrogen bonds are somewhat unusual in that the bonded N—H distances are quite long, based upon the positions deduced from difference maps for atoms N31 and N41 (Table 2). The interatomic distances within the four pyrimidine units show no systematic differences between those units which are formally neutral and those which are formally anionic (Table 1). It is thus possible that the negative charges are dispersed very widely over the pyrimidine units. On the other hand, all of these components show the pattern of bond lengths typical of 6-amino-5-nitrosopyrimidines, namely having bonds Cx5—Cx6 and Cx6—Nx6 (where x = 1–4) which are, respectively, long and short for their formal types, and with a rather small difference in lengths between the bonds Cx5—Nx5 and Nx5—Ox5, pointing to the importance of polarized forms such as (Ia) and (Ib) as contributors to the overall electronic structure.

The planarity of each individual pyrimidine unit may be controlled by the intramolecular N—H···O hydrogen bonds, which give each such unit an overall shape somewhat similar to that of a purine. Each hydrogen-bonded pair of neutral and anionic units is essentially planar, apart from the methyl H atoms, with approximate but noncrystallographic 2/m (C2h) symmetry. However, this approximate 2/m symmetry is only local, as it is broken by the cations which are linked only to the anionic pyrimidinedionate units, in each case via an asymmetric three-centre N—H···(O,N) hydrogen bond, Moreover, the possibility of any additional crystallographic symmetry is precluded, not only by the location of the cations but also by the different orientations of the two independent cations relative to the adjacent pyrimidine rings (Fig. 1). The dihedral angle between the mean plane of the piperidine ring based on atom N51 and the adjacent pyrimidine ring containing atom N21 is 83.5 (2)°, while the corresponding dihedral angle for the rings containing atoms N61 and N11 is only 19.4 (2)°.

The asymmetric unit (Fig. 1) thus contains four intramolecular hydrogen bonds and 11 intermolecular hydrogen bonds. Five further hydrogen bonds, three of the N—H···O type and one each of the N—H···N and C—H···O types, link the six-component aggregates into sheets, the formation of which is readily analysed in terms of two one-dimensional substructures. In the simpler of the two substructures, atoms N36 and C66 at (x, y, z) act as hydrogen-bond donors to, respectively, atoms O15 at (1 + x, -1 + y, z) and O35 at (-1 + x, 1 + y, z), so forming a complex chain running parallel to the [110] direction (Fig. 2). Accordingly, atom N36 acts as donor in the three-centre N—H···(O)2 system, the longer component of which acts as the principal chain-forming interaction, just as atom N46 acts as donor in a similar three-centre interaction which links the two independent cation–anion–neutral aggregates within the asymmetric unit (Table 2 and Fig. 1). In the second substructure, atoms N51 and N61 at (x, y, z) act as hydrogen-bond donors to, respectively, atoms O44 and N45 at (1 - x, 1 - y, 2 - z), and atom O24 at (1 - x, 1 - y, 1 - z), so forming a complex chain of rings running parallel to the [001] direction (Fig. 3). The combination of chains along [001] and [110] suffices to generate a sheet lying parallel to (110).

The two-dimensional hydrogen-bonded structure of salt (I) may be contrasted both with the three-dimensional hydrogen-bonded structure found in the neutral pyrimidinedione, (II), which is built from only three intermolecular hydrogen bonds (Godino Salido et al., 2003), and with the one-dimensional aggregation in the 1:1 salt, (III) (Low et al., 1999). Compound (III), like compound (I), crystallizes in the space group P1, and a combination of four N—H···O hydrogen bonds and four N—H···N hydrogen bonds links the ionic components into a chain running parallel to the [101] direction (Fig. 4). Antiparallel pairs of such chains, related to one another by inversion, are linked by a single C—H···O hydrogen bond to form a tube-like structure. Thus, the hydrogen-bonded structures of the closely related compounds (I)–(III) are, respectively, two-, three- and one-dimensional, with no straightforward correlation between the dimensionality of the overall structure and the number of hydrogen bonds formed per molecular entity.

Similar structural variation is also observed in the hydrated metal complexes derived from compound (II). The Zn derivative contains a monomeric complex (López Garzón et al., 2003b), the Sr derivative contains a dimeric complex which is centrosymmtric (Low et al., 2003), while the Na and Ba derivatives both contain one-dimensional coordination polymers, taking the form of a simple chain in the Ba compound (López Garzón et al., 2003a) and a molecular ladder containing two types of rings between the uprights in the Na derivative (Cuesta et al., 2001). However, a structural feature shared by all of these metal derivatives is the linking of the metal-containing units into three-dimensional frameworks by extensive series of hydrogen bonds.

Experimental top

Piperidine (100 mmol) was added dropwise with stirring to a suspension of 6-amino-3-methyl-2-methylsulfanyl-5-nitrosopyrimidin-4(3H)-one (25 mmol) in methanol (80 ml). The reaction proceeded overnight with a change of colour from blue to violet and liberation of methanethiol. The resulting precipitate was collected by filtration and washed with cold methanol, yielding 3.51 g of a solid which was recrystallized from dimethylformamide–ethanol (10:1 v/v) to give red–violet crystals of (I) suitable for single-crystal X-ray diffraction.

Refinement top

All H atoms were located in difference maps and then treated as riding. Apart from atom H31, lying between atoms N21 and N31, and atom H41, lying between atoms N11 and N41, the H atoms were allowed to ride in geometrically idealized positions, with C—H = 0.98 (CH3) or 0.99 Å (CH2) and N—H = 0.88 (planar N) or 0.92 Å (tetrahedral N), and with Uiso(H) = kUeq(carrier), where k = 1.5 for the methyl groups, which were allowed to rotate but not to tilt, and 1.2 for the other H atoms. Atoms H31 and H41 were permitted to ride at the positions deduced from the difference maps, with Uiso(H) = 1.2Ueq(N), giving the N—H distances listed in Table 2.

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The independent components of compound (I), showing the atom-labelling scheme and the 15 hydrogen bonds (dashed lines) within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A stereoview of part of the crystal structure of compound (I), showing the formation of a hydrogen-bonded chain running parallel to the [110] direction. For the sake of clarity, H atoms bonded to C atoms which are not involved in the motifs shown have been omitted.
[Figure 3] Fig. 3. A stereoview of part of the crystal structure of compound (I), showing the formation of a hydrogen-bonded chain running parallel to the [001] direction. For the sake of clarity, H atoms bonded to C atoms have been omitted.
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of compound (IV) (Low et al., 1999), showing the formation of a hydrogen-bonded chain running parallel to [101]. The original atomic coordinates have been employed and, for the sake of clarity, H atoms bonded to C atoms have been omitted.
Piperidinium 6-amino-3-methyl-5-nitroso-2,4-dioxo-1,2,3,tetrahydropyrimidin-1-ide 6-amino-3-methyl-5-nitrosopyrimidine-2,4(1H,3H)-dione top
Crystal data top
C5H12N+·C5H5N4O3·C5H6N4O3Z = 4
Mr = 425.42F(000) = 896
Triclinic, P1Dx = 1.474 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3287 (19) ÅCell parameters from 8768 reflections
b = 13.1352 (10) Åθ = 3.1–27.5°
c = 16.2814 (19) ŵ = 0.12 mm1
α = 87.815 (10)°T = 120 K
β = 74.095 (10)°Block, red-violet
γ = 89.987 (16)°0.41 × 0.25 × 0.22 mm
V = 1917.2 (5) Å3
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
8768 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode3414 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.107
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1717
Tmin = 0.922, Tmax = 0.975l = 2121
44265 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.216H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0865P)2 + 1.0774P]
where P = (Fo2 + 2Fc2)/3
8768 reflections(Δ/σ)max = 0.001
545 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C5H12N+·C5H5N4O3·C5H6N4O3γ = 89.987 (16)°
Mr = 425.42V = 1917.2 (5) Å3
Triclinic, P1Z = 4
a = 9.3287 (19) ÅMo Kα radiation
b = 13.1352 (10) ŵ = 0.12 mm1
c = 16.2814 (19) ÅT = 120 K
α = 87.815 (10)°0.41 × 0.25 × 0.22 mm
β = 74.095 (10)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
8768 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3414 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.975Rint = 0.107
44265 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.216H-atom parameters constrained
S = 1.02Δρmax = 0.54 e Å3
8768 reflectionsΔρmin = 0.41 e Å3
545 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.1618 (3)0.6588 (2)0.59672 (18)0.0288 (8)
C120.2300 (4)0.5691 (3)0.5677 (2)0.0283 (9)
N130.2162 (3)0.5326 (2)0.49240 (19)0.0292 (8)
C140.1264 (4)0.5771 (3)0.4459 (2)0.0291 (9)
C150.0609 (4)0.6726 (3)0.4764 (2)0.0291 (9)
C160.0802 (4)0.7121 (3)0.5532 (2)0.0262 (9)
O120.3043 (3)0.5217 (2)0.60778 (16)0.0376 (7)
C130.2977 (5)0.4402 (3)0.4617 (3)0.0367 (10)
H13A0.40450.45180.45330.055*
H13B0.27990.42280.40730.055*
H13C0.26320.38390.50380.055*
O140.1080 (3)0.5336 (2)0.38422 (16)0.0382 (7)
N150.0162 (4)0.7172 (3)0.4244 (2)0.0352 (8)
O150.0772 (3)0.8019 (2)0.44621 (17)0.0411 (7)
N160.0214 (3)0.7982 (2)0.58338 (19)0.0348 (8)
H1610.03530.82020.63100.042*
H1620.03210.83410.55600.042*
N210.6455 (3)0.1526 (2)0.57182 (18)0.0274 (7)
C220.7308 (4)0.0849 (3)0.6017 (2)0.0263 (9)
N230.7745 (3)0.1028 (2)0.67544 (18)0.0280 (8)
C240.7282 (4)0.1865 (3)0.7239 (2)0.0272 (9)
C250.6297 (4)0.2551 (3)0.6949 (2)0.0264 (9)
C260.5944 (4)0.2353 (3)0.6170 (2)0.0256 (9)
O220.7737 (3)0.0051 (2)0.56419 (16)0.0341 (7)
C230.8752 (4)0.0309 (3)0.7015 (3)0.0359 (10)
H23A0.94730.00600.65060.054*
H23B0.81740.02670.73430.054*
H23C0.92830.06520.73700.054*
O240.7719 (3)0.19891 (19)0.78832 (16)0.0345 (7)
N250.5809 (4)0.3307 (3)0.7490 (2)0.0404 (9)
O250.4929 (4)0.3955 (2)0.72880 (18)0.0512 (9)
N260.5102 (3)0.2990 (2)0.58649 (19)0.0328 (8)
H2610.48920.28670.53830.039*
H2620.47510.35380.61440.039*
N310.5878 (3)0.1050 (2)0.41495 (18)0.0292 (8)
H310.61380.11590.47300.035*
C320.4998 (4)0.1739 (3)0.3865 (2)0.0313 (10)
N330.4660 (3)0.1551 (2)0.31159 (18)0.0300 (8)
C340.5149 (4)0.0693 (3)0.2631 (2)0.0316 (10)
C350.6056 (4)0.0016 (3)0.2973 (2)0.0288 (9)
C360.6393 (4)0.0181 (3)0.3750 (2)0.0279 (9)
O320.4543 (3)0.2497 (2)0.42627 (16)0.0424 (8)
C330.3653 (5)0.2259 (3)0.2836 (3)0.0422 (11)
H33A0.26660.22210.32490.063*
H33B0.35710.20730.22740.063*
H33C0.40500.29550.28000.063*
O340.4809 (3)0.0589 (2)0.19703 (17)0.0422 (8)
N350.6483 (4)0.0850 (3)0.2498 (2)0.0416 (9)
O350.7275 (3)0.1490 (2)0.27647 (17)0.0471 (8)
N360.7187 (3)0.0428 (2)0.41032 (18)0.0309 (8)
H3610.73710.02670.45850.037*
H3620.75370.09970.38590.037*
N410.1991 (3)0.7189 (2)0.75467 (18)0.0285 (8)
H410.18840.68410.68140.034*
C420.1388 (4)0.8096 (3)0.7831 (2)0.0288 (9)
N430.1605 (3)0.8459 (2)0.85836 (19)0.0304 (8)
C440.2395 (4)0.7930 (3)0.9078 (2)0.0305 (9)
C450.3009 (4)0.6964 (3)0.8753 (2)0.0283 (9)
C460.2806 (4)0.6635 (3)0.7972 (2)0.0274 (9)
O420.0667 (3)0.8603 (2)0.74346 (16)0.0358 (7)
C430.1041 (5)0.9462 (3)0.8872 (3)0.0404 (11)
H43A0.04830.97500.84910.061*
H43B0.18800.99140.88640.061*
H43C0.03840.93920.94550.061*
O440.2520 (3)0.8282 (2)0.97397 (16)0.0383 (7)
N450.3816 (4)0.6485 (3)0.9221 (2)0.0429 (9)
O450.4428 (4)0.5640 (2)0.89741 (19)0.0544 (9)
N460.3391 (4)0.5783 (2)0.7633 (2)0.0372 (9)
H4610.32450.55940.71490.045*
H4620.39270.54020.78910.045*
N510.5322 (4)0.2437 (2)0.93532 (19)0.0351 (8)
H5110.59560.26330.88310.042*
H5120.58640.24220.97480.042*
C520.4738 (5)0.1392 (3)0.9300 (3)0.0387 (11)
H52A0.55770.09090.91620.046*
H52B0.42400.13860.88360.046*
C530.3649 (5)0.1058 (3)1.0131 (3)0.0424 (11)
H53A0.41790.09861.05800.051*
H53B0.32270.03831.00680.051*
C540.2395 (5)0.1810 (4)1.0404 (3)0.0524 (13)
H54A0.17490.15981.09750.063*
H54B0.17800.18160.99950.063*
C550.3019 (5)0.2877 (3)1.0434 (3)0.0496 (12)
H55A0.21870.33661.05660.060*
H55B0.35140.28881.08990.060*
C560.4124 (5)0.3208 (3)0.9599 (3)0.0460 (12)
H56A0.36050.32860.91460.055*
H56B0.45690.38750.96610.055*
N610.0599 (4)0.6191 (2)0.2404 (2)0.0375 (9)
H6110.05230.59710.29580.045*
H6120.13110.67010.22600.045*
C620.1103 (6)0.5326 (4)0.1829 (3)0.0630 (15)
H62A0.04030.47430.20160.076*
H62B0.21020.51040.18580.076*
C630.1164 (6)0.5657 (4)0.0928 (3)0.0590 (14)
H63A0.14120.50650.05590.071*
H63B0.19660.61740.07190.071*
C640.0304 (6)0.6102 (4)0.0859 (3)0.0557 (13)
H64A0.02000.63530.02650.067*
H64B0.10890.55660.10070.067*
C650.0748 (6)0.6969 (4)0.1460 (3)0.0562 (14)
H65A0.00040.75290.12820.067*
H65B0.17260.72350.14300.067*
C660.0844 (5)0.6615 (4)0.2362 (3)0.0526 (13)
H66A0.11040.71940.27450.063*
H66B0.16350.60870.25550.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0269 (19)0.035 (2)0.0255 (17)0.0040 (16)0.0087 (14)0.0003 (15)
C120.027 (2)0.039 (2)0.021 (2)0.003 (2)0.0094 (17)0.0013 (18)
N130.0286 (19)0.0330 (19)0.0286 (18)0.0052 (16)0.0121 (15)0.0017 (15)
C140.028 (2)0.035 (2)0.026 (2)0.0027 (19)0.0096 (18)0.0025 (18)
C150.026 (2)0.038 (2)0.024 (2)0.0024 (19)0.0093 (17)0.0095 (18)
C160.022 (2)0.031 (2)0.026 (2)0.0011 (18)0.0063 (17)0.0016 (18)
O120.0441 (18)0.0423 (17)0.0340 (15)0.0107 (14)0.0230 (14)0.0053 (13)
C130.039 (3)0.036 (2)0.039 (2)0.010 (2)0.016 (2)0.0089 (19)
O140.0469 (18)0.0443 (18)0.0303 (15)0.0047 (14)0.0222 (14)0.0038 (13)
N150.035 (2)0.033 (2)0.036 (2)0.0005 (17)0.0081 (16)0.0019 (16)
O150.0437 (18)0.0356 (17)0.0445 (17)0.0114 (15)0.0133 (14)0.0010 (14)
N160.030 (2)0.041 (2)0.0335 (19)0.0085 (17)0.0085 (15)0.0026 (16)
N210.0278 (18)0.0286 (18)0.0264 (17)0.0034 (15)0.0083 (14)0.0013 (15)
C220.028 (2)0.025 (2)0.025 (2)0.0012 (18)0.0058 (17)0.0028 (18)
N230.0288 (19)0.0299 (19)0.0271 (17)0.0032 (15)0.0103 (15)0.0032 (15)
C240.024 (2)0.031 (2)0.026 (2)0.0034 (18)0.0054 (18)0.0040 (18)
C250.030 (2)0.025 (2)0.027 (2)0.0032 (18)0.0109 (17)0.0060 (17)
C260.025 (2)0.028 (2)0.023 (2)0.0009 (18)0.0057 (17)0.0011 (17)
O220.0395 (17)0.0316 (16)0.0331 (15)0.0052 (13)0.0124 (13)0.0075 (13)
C230.036 (3)0.035 (2)0.042 (2)0.011 (2)0.019 (2)0.0049 (19)
O240.0385 (17)0.0381 (17)0.0329 (15)0.0065 (13)0.0189 (13)0.0071 (13)
N250.044 (2)0.041 (2)0.040 (2)0.0128 (18)0.0161 (17)0.0066 (17)
O250.070 (2)0.0458 (19)0.0448 (18)0.0269 (18)0.0274 (16)0.0079 (15)
N260.040 (2)0.0326 (19)0.0284 (18)0.0104 (17)0.0131 (16)0.0034 (15)
N310.034 (2)0.0311 (19)0.0234 (17)0.0044 (16)0.0096 (15)0.0019 (15)
C320.032 (2)0.036 (3)0.025 (2)0.003 (2)0.0080 (18)0.0012 (19)
N330.034 (2)0.035 (2)0.0224 (17)0.0039 (16)0.0092 (15)0.0032 (15)
C340.029 (2)0.039 (3)0.027 (2)0.010 (2)0.0094 (19)0.0049 (19)
C350.033 (2)0.030 (2)0.023 (2)0.0041 (19)0.0064 (18)0.0020 (18)
C360.028 (2)0.031 (2)0.024 (2)0.0013 (19)0.0065 (18)0.0015 (18)
O320.054 (2)0.0411 (18)0.0369 (16)0.0174 (15)0.0196 (14)0.0080 (14)
C330.043 (3)0.047 (3)0.039 (2)0.006 (2)0.018 (2)0.006 (2)
O340.0462 (19)0.0521 (19)0.0334 (16)0.0061 (15)0.0198 (14)0.0005 (14)
N350.047 (2)0.041 (2)0.038 (2)0.0031 (19)0.0129 (18)0.0031 (18)
O350.061 (2)0.0421 (18)0.0427 (18)0.0101 (17)0.0204 (16)0.0097 (15)
N360.039 (2)0.0298 (19)0.0254 (17)0.0021 (16)0.0106 (15)0.0047 (14)
N410.0284 (19)0.0310 (19)0.0286 (17)0.0047 (16)0.0123 (15)0.0017 (15)
C420.024 (2)0.034 (2)0.028 (2)0.0001 (19)0.0059 (18)0.0017 (18)
N430.0305 (19)0.0330 (19)0.0289 (18)0.0040 (16)0.0097 (15)0.0055 (15)
C440.029 (2)0.037 (2)0.025 (2)0.0042 (19)0.0063 (18)0.0010 (19)
C450.039 (2)0.027 (2)0.0203 (19)0.0011 (19)0.0103 (18)0.0019 (17)
C460.029 (2)0.025 (2)0.030 (2)0.0001 (18)0.0115 (18)0.0016 (18)
O420.0354 (17)0.0393 (17)0.0342 (15)0.0100 (14)0.0121 (13)0.0033 (13)
C430.042 (3)0.035 (2)0.044 (3)0.010 (2)0.012 (2)0.011 (2)
O440.0517 (19)0.0407 (17)0.0257 (15)0.0027 (14)0.0156 (14)0.0034 (13)
N450.066 (3)0.033 (2)0.040 (2)0.007 (2)0.0307 (19)0.0014 (17)
O450.088 (3)0.0346 (18)0.058 (2)0.0166 (18)0.0472 (18)0.0087 (15)
N460.046 (2)0.034 (2)0.040 (2)0.0115 (17)0.0258 (17)0.0089 (16)
N510.045 (2)0.038 (2)0.0256 (17)0.0009 (17)0.0146 (16)0.0014 (15)
C520.051 (3)0.029 (2)0.042 (3)0.006 (2)0.023 (2)0.009 (2)
C530.050 (3)0.038 (3)0.044 (3)0.004 (2)0.020 (2)0.005 (2)
C540.048 (3)0.067 (3)0.046 (3)0.002 (3)0.019 (2)0.001 (2)
C550.053 (3)0.047 (3)0.050 (3)0.017 (2)0.015 (2)0.012 (2)
C560.064 (3)0.030 (2)0.052 (3)0.007 (2)0.031 (3)0.001 (2)
N610.050 (2)0.035 (2)0.0328 (19)0.0014 (18)0.0204 (17)0.0051 (16)
C620.098 (4)0.042 (3)0.059 (3)0.027 (3)0.037 (3)0.019 (2)
C630.078 (4)0.056 (3)0.048 (3)0.019 (3)0.024 (3)0.024 (3)
C640.066 (3)0.065 (3)0.047 (3)0.001 (3)0.033 (3)0.007 (3)
C650.061 (3)0.071 (4)0.047 (3)0.024 (3)0.032 (2)0.008 (3)
C660.043 (3)0.075 (4)0.044 (3)0.019 (3)0.019 (2)0.013 (2)
Geometric parameters (Å, º) top
N11—C121.376 (5)C42—N431.396 (5)
C12—N131.372 (4)N43—C441.399 (5)
N13—C141.390 (5)C44—C451.450 (5)
C14—C151.439 (5)C45—C461.419 (5)
C15—C161.427 (5)C46—N411.356 (4)
C16—N111.352 (4)C42—O421.233 (4)
C12—O121.229 (4)C44—O441.222 (4)
C14—O141.226 (4)C45—N451.349 (5)
C15—N151.368 (5)N45—O451.275 (4)
N15—O151.267 (4)C46—N461.318 (5)
C16—N161.311 (5)N41—H411.32
N13—C131.462 (5)N43—C431.463 (5)
C13—H13A0.9800C43—H43A0.9800
C13—H13B0.9800C43—H43B0.9800
C13—H13C0.9800C43—H43C0.9800
N16—H1610.8800N46—H4610.8800
N16—H1620.8800N46—H4620.8800
N21—C221.356 (5)N51—C561.489 (5)
C22—N231.397 (4)N51—C521.492 (5)
N23—C241.376 (5)N51—H5110.9200
C24—C251.444 (5)N51—H5120.9200
C25—C261.428 (5)C52—C531.502 (5)
C26—N211.348 (4)C52—H52A0.9900
C22—O221.245 (4)C52—H52B0.9900
C24—O241.242 (4)C53—C541.513 (6)
C25—N251.347 (5)C53—H53A0.9900
N25—O251.277 (4)C53—H53B0.9900
C26—N261.322 (4)C54—C551.525 (6)
N23—C231.464 (4)C54—H54A0.9900
C23—H23A0.9800C54—H54B0.9900
C23—H23B0.9800C55—C561.512 (6)
C23—H23C0.9800C55—H55A0.9900
N26—H2610.8800C55—H55B0.9900
N26—H2620.8800C56—H56A0.9900
N31—C321.373 (5)C56—H56B0.9900
C32—N331.371 (5)N61—C661.475 (5)
N33—C341.404 (5)N61—C621.493 (5)
C34—C351.454 (5)N61—H6110.9200
C35—C361.417 (5)N61—H6120.9200
C36—N311.358 (5)C62—C631.499 (6)
C32—O321.221 (4)C62—H62A0.9900
C34—O341.214 (4)C62—H62B0.9900
C35—N351.361 (5)C63—C641.519 (6)
N35—O351.261 (4)C63—H63A0.9900
C36—N361.311 (4)C63—H63B0.9900
N31—H311.05C64—C651.513 (6)
N33—C331.468 (5)C64—H64A0.9900
C33—H33A0.9800C64—H64B0.9900
C33—H33B0.9800C65—C661.502 (6)
C33—H33C0.9800C65—H65A0.9900
N36—H3610.8800C65—H65B0.9900
N36—H3620.8800C66—H66A0.9900
N41—C421.360 (5)C66—H66B0.9900
C16—N11—C12121.8 (3)O44—C44—N43120.2 (3)
C16—N11—H41127.3O44—C44—C45124.3 (4)
C12—N11—H41110.9N43—C44—C45115.5 (3)
O12—C12—N13119.5 (3)N45—C45—C46125.9 (3)
O12—C12—N11121.1 (3)N45—C45—C44114.6 (3)
N13—C12—N11119.5 (3)C46—C45—C44119.5 (3)
C12—N13—C14123.4 (3)N46—C46—N41117.4 (3)
C12—N13—C13117.5 (3)N46—C46—C45121.8 (3)
C14—N13—C13119.1 (3)N41—C46—C45120.9 (3)
O14—C14—N13119.1 (3)N43—C43—H43A109.5
O14—C14—C15125.5 (3)N43—C43—H43B109.5
N13—C14—C15115.4 (3)H43A—C43—H43B109.5
N15—C15—C16126.5 (4)N43—C43—H43C109.5
N15—C15—C14113.0 (3)H43A—C43—H43C109.5
C16—C15—C14120.6 (3)H43B—C43—H43C109.5
N16—C16—N11118.6 (3)O45—N45—C45119.1 (3)
N16—C16—C15122.4 (3)C46—N46—H461120.0
N11—C16—C15119.0 (3)C46—N46—H462120.0
N13—C13—H13A109.5H461—N46—H462120.0
N13—C13—H13B109.5C56—N51—C52113.1 (3)
H13A—C13—H13B109.5C56—N51—H512109.0
N13—C13—H13C109.5C52—N51—H512109.0
H13A—C13—H13C109.5C56—N51—H511109.0
H13B—C13—H13C109.5C52—N51—H511109.0
O15—N15—C15117.3 (3)H511—N51—H512107.8
C16—N16—H161120.0N51—C52—C53110.7 (3)
C16—N16—H162120.0N51—C52—H52A109.5
H161—N16—H162120.0C53—C52—H52A109.5
C26—N21—C22119.3 (3)N51—C52—H52B109.5
O22—C22—N21121.2 (3)C53—C52—H52B109.5
O22—C22—N23117.7 (3)H52A—C52—H52B108.1
N21—C22—N23121.1 (3)C52—C53—C54111.7 (4)
C24—N23—C22122.5 (3)C52—C53—H53A109.3
C24—N23—C23118.7 (3)C54—C53—H53A109.3
C22—N23—C23118.9 (3)C52—C53—H53B109.3
O24—C24—N23119.6 (3)C54—C53—H53B109.3
O24—C24—C25124.1 (3)H53A—C53—H53B107.9
N23—C24—C25116.3 (3)C53—C54—C55110.4 (4)
N25—C25—C26128.7 (3)C53—C54—H54A109.6
N25—C25—C24112.6 (3)C55—C54—H54A109.6
C26—C25—C24118.6 (3)C53—C54—H54B109.6
N26—C26—N21117.7 (3)C55—C54—H54B109.6
N26—C26—C25120.3 (3)H54A—C54—H54B108.1
N21—C26—C25122.0 (3)C56—C55—C54112.1 (4)
N23—C23—H23A109.5C56—C55—H55A109.2
N23—C23—H23B109.5C54—C55—H55A109.2
H23A—C23—H23B109.5C56—C55—H55B109.2
N23—C23—H23C109.5C54—C55—H55B109.2
H23A—C23—H23C109.5H55A—C55—H55B107.9
H23B—C23—H23C109.5N51—C56—C55110.1 (3)
O25—N25—C25117.3 (3)N51—C56—H56A109.6
C26—N26—H261120.0C55—C56—H56A109.6
C26—N26—H262120.0N51—C56—H56B109.6
H261—N26—H262120.0C55—C56—H56B109.6
C36—N31—C32124.0 (3)H56A—C56—H56B108.2
C36—N31—H31116.0C66—N61—C62113.6 (4)
C32—N31—H31119.9C66—N61—H611108.8
O32—C32—N33121.3 (4)C62—N61—H611108.8
O32—C32—N31120.9 (4)C66—N61—H612108.8
N33—C32—N31117.8 (4)C62—N61—H612108.8
C32—N33—C34123.8 (3)H611—N61—H612107.7
C32—N33—C33117.7 (3)N61—C62—C63109.6 (4)
C34—N33—C33118.4 (3)N61—C62—H62A109.8
O34—C34—N33119.7 (4)C63—C62—H62A109.8
O34—C34—C35124.6 (4)N61—C62—H62B109.8
N33—C34—C35115.8 (3)C63—C62—H62B109.8
N35—C35—C36125.7 (4)H62A—C62—H62B108.2
N35—C35—C34114.2 (3)C62—C63—C64112.0 (4)
C36—C35—C34120.1 (3)C62—C63—H63A109.2
N36—C36—N31117.9 (3)C64—C63—H63A109.2
N36—C36—C35123.6 (4)C62—C63—H63B109.2
N31—C36—C35118.5 (3)C64—C63—H63B109.2
N33—C33—H33A109.5H63A—C63—H63B107.9
N33—C33—H33B109.5C65—C64—C63110.0 (4)
H33A—C33—H33B109.5C65—C64—H64A109.7
N33—C33—H33C109.5C63—C64—H64A109.7
H33A—C33—H33C109.5C65—C64—H64B109.7
H33B—C33—H33C109.5C63—C64—H64B109.7
O35—N35—C35116.9 (3)H64A—C64—H64B108.2
C36—N36—H361120.0C66—C65—C64110.5 (4)
C36—N36—H362120.0C66—C65—H65A109.5
H361—N36—H362120.0C64—C65—H65A109.5
C46—N41—C42121.6 (3)C66—C65—H65B109.5
C46—N41—H41117.1C64—C65—H65B109.5
C42—N41—H41121.2H65A—C65—H65B108.1
O42—C42—N41121.2 (3)N61—C66—C65109.7 (4)
O42—C42—N43119.7 (3)N61—C66—H66A109.7
N41—C42—N43119.1 (3)C65—C66—H66A109.7
C42—N43—C44123.5 (3)N61—C66—H66B109.7
C42—N43—C43119.9 (3)C65—C66—H66B109.7
C44—N43—C43116.6 (3)H66A—C66—H66B108.2
C16—N11—C12—O12179.7 (4)C32—N33—C34—O34179.4 (3)
C16—N11—C12—N130.4 (5)C33—N33—C34—O344.5 (5)
O12—C12—N13—C14175.4 (4)C32—N33—C34—C350.3 (5)
N11—C12—N13—C145.3 (5)C33—N33—C34—C35175.8 (3)
O12—C12—N13—C132.7 (5)O34—C34—C35—N351.7 (6)
N11—C12—N13—C13176.5 (3)N33—C34—C35—N35178.6 (3)
C12—N13—C14—O14172.3 (3)O34—C34—C35—C36179.8 (4)
C13—N13—C14—O145.8 (5)N33—C34—C35—C360.0 (5)
C12—N13—C14—C157.2 (5)C32—N31—C36—N36178.0 (3)
C13—N13—C14—C15174.7 (3)C32—N31—C36—C352.5 (5)
O14—C14—C15—N155.6 (6)N35—C35—C36—N360.7 (6)
N13—C14—C15—N15175.0 (3)C34—C35—C36—N36179.1 (3)
O14—C14—C15—C16174.8 (4)N35—C35—C36—N31179.8 (4)
N13—C14—C15—C164.7 (5)C34—C35—C36—N311.4 (5)
C12—N11—C16—N16178.3 (3)C36—C35—N35—O351.6 (6)
C12—N11—C16—C151.8 (5)C34—C35—N35—O35179.9 (3)
N15—C15—C16—N161.0 (6)C46—N41—C42—O42178.9 (3)
C14—C15—C16—N16179.4 (4)C46—N41—C42—N430.5 (5)
N15—C15—C16—N11179.2 (4)O42—C42—N43—C44179.4 (4)
C14—C15—C16—N110.4 (5)N41—C42—N43—C441.2 (5)
C16—C15—N15—O150.1 (6)O42—C42—N43—C433.1 (5)
C14—C15—N15—O15179.7 (3)N41—C42—N43—C43176.3 (3)
C26—N21—C22—O22176.3 (3)C42—N43—C44—O44178.6 (3)
C26—N21—C22—N234.1 (5)C43—N43—C44—O443.8 (5)
O22—C22—N23—C24177.2 (3)C42—N43—C44—C450.7 (5)
N21—C22—N23—C243.2 (5)C43—N43—C44—C45176.9 (3)
O22—C22—N23—C233.9 (5)O44—C44—C45—N453.2 (6)
N21—C22—N23—C23175.7 (3)N43—C44—C45—N45177.5 (3)
C22—N23—C24—O24179.3 (3)O44—C44—C45—C46179.4 (4)
C23—N23—C24—O240.3 (5)N43—C44—C45—C461.3 (5)
C22—N23—C24—C250.7 (5)C42—N41—C46—N46177.7 (3)
C23—N23—C24—C25179.6 (3)C42—N41—C46—C452.6 (5)
O24—C24—C25—N254.6 (6)N45—C45—C46—N461.5 (6)
N23—C24—C25—N25175.4 (3)C44—C45—C46—N46177.3 (4)
O24—C24—C25—C26176.5 (4)N45—C45—C46—N41178.8 (4)
N23—C24—C25—C263.5 (5)C44—C45—C46—N413.0 (6)
C22—N21—C26—N26179.3 (3)C46—C45—N45—O452.5 (6)
C22—N21—C26—C251.2 (5)C44—C45—N45—O45178.4 (4)
N25—C25—C26—N264.5 (6)C56—N51—C52—C5356.5 (4)
C24—C25—C26—N26176.9 (3)N51—C52—C53—C5455.3 (5)
N25—C25—C26—N21176.0 (4)C52—C53—C54—C5554.4 (5)
C24—C25—C26—N212.7 (5)C53—C54—C55—C5654.2 (5)
C26—C25—N25—O251.3 (6)C52—N51—C56—C5555.7 (4)
C24—C25—N25—O25180.0 (3)C54—C55—C56—N5154.3 (5)
C36—N31—C32—O32178.5 (4)C66—N61—C62—C6355.9 (6)
C36—N31—C32—N332.2 (5)N61—C62—C63—C6453.9 (6)
O32—C32—N33—C34180.0 (4)C62—C63—C64—C6555.5 (6)
N31—C32—N33—C340.7 (5)C63—C64—C65—C6656.7 (6)
O32—C32—N33—C333.9 (6)C62—N61—C66—C6558.0 (5)
N31—C32—N33—C33176.8 (3)C64—C65—C66—N6157.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N31—H31···N211.051.802.842 (4)172
N41—H41···N111.321.522.829 (4)171
N16—H161···O420.882.022.899 (4)176
N16—H162···O150.882.012.637 (4)128
N26—H261···O320.882.022.893 (4)175
N26—H262···O250.882.012.650 (4)128
N36—H361···O220.881.902.786 (4)178
N36—H362···O350.881.992.614 (4)126
N36—H362···O15i0.882.422.940 (4)118
N46—H461···O120.881.892.768 (4)177
N46—H462···O450.881.982.620 (5)128
N46—H462···O250.882.262.793 (4)119
N51—H511···O240.922.122.872 (4)138
N51—H511···N250.922.363.114 (4)139
N51—H512···O44ii0.922.112.941 (5)150
N51—H512···N45ii0.922.333.052 (5)135
N61—H611···O140.921.832.706 (4)159
N61—H611···N150.922.613.204 (5)123
N61—H612···O24iii0.921.922.812 (4)163
C66—H66A···O35iv0.992.293.033 (6)131
Symmetry codes: (i) x+1, y1, z; (ii) x+1, y+1, z+2; (iii) x+1, y+1, z+1; (iv) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC5H12N+·C5H5N4O3·C5H6N4O3
Mr425.42
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)9.3287 (19), 13.1352 (10), 16.2814 (19)
α, β, γ (°)87.815 (10), 74.095 (10), 89.987 (16)
V3)1917.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.41 × 0.25 × 0.22
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.922, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
44265, 8768, 3414
Rint0.107
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.216, 1.02
No. of reflections8768
No. of parameters545
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.41

Computer programs: COLLECT (Nonius, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
N11—C121.376 (5)N31—C321.373 (5)
C12—N131.372 (4)C32—N331.371 (5)
N13—C141.390 (5)N33—C341.404 (5)
C14—C151.439 (5)C34—C351.454 (5)
C15—C161.427 (5)C35—C361.417 (5)
C16—N111.352 (4)C36—N311.358 (5)
C12—O121.229 (4)C32—O321.221 (4)
C14—O141.226 (4)C34—O341.214 (4)
C15—N151.368 (5)C35—N351.361 (5)
N15—O151.267 (4)N35—O351.261 (4)
C16—N161.311 (5)C36—N361.311 (4)
N21—C221.356 (5)N41—C421.360 (5)
C22—N231.397 (4)C42—N431.396 (5)
N23—C241.376 (5)N43—C441.399 (5)
C24—C251.444 (5)C44—C451.450 (5)
C25—C261.428 (5)C45—C461.419 (5)
C26—N211.348 (4)C46—N411.356 (4)
C22—O221.245 (4)C42—O421.233 (4)
C24—O241.242 (4)C44—O441.222 (4)
C25—N251.347 (5)C45—N451.349 (5)
N25—O251.277 (4)N45—O451.275 (4)
C26—N261.322 (4)C46—N461.318 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N31—H31···N211.051.802.842 (4)172
N41—H41···N111.321.522.829 (4)171
N16—H161···O420.882.022.899 (4)176
N16—H162···O150.882.012.637 (4)128
N26—H261···O320.882.022.893 (4)175
N26—H262···O250.882.012.650 (4)128
N36—H361···O220.881.902.786 (4)178
N36—H362···O350.881.992.614 (4)126
N36—H362···O15i0.882.422.940 (4)118
N46—H461···O120.881.892.768 (4)177
N46—H462···O450.881.982.620 (5)128
N46—H462···O250.882.262.793 (4)119
N51—H511···O240.922.122.872 (4)138
N51—H511···N250.922.363.114 (4)139
N51—H512···O44ii0.922.112.941 (5)150
N51—H512···N45ii0.922.333.052 (5)135
N61—H611···O140.921.832.706 (4)159
N61—H611···N150.922.613.204 (5)123
N61—H612···O24iii0.921.922.812 (4)163
C66—H66A···O35iv0.992.293.033 (6)131
Symmetry codes: (i) x+1, y1, z; (ii) x+1, y+1, z+2; (iii) x+1, y+1, z+1; (iv) x1, y+1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds