Download citation
Download citation
link to html
In the title compound, C24H18N4O3S·C2H6OS, the biinden­ylidene component shows evidence of polarization of the electronic structure. The dimethyl sulfoxide solvent mol­ecules are disordered over two sites, and they are linked to the biindenylidene­dione components via N—H...O and C—H...O hydrogen bonds. A combination of N—H...N and N—H...O hydrogen bonds links the nonsolvent components into a chain of edge-fused centrosymmetric R22(8) and R22(22) rings, and these chains are linked into sheets by a single aromatic π–π stacking inter­action.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109011251/gg3196sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109011251/gg3196Isup2.hkl
Contains datablock I

CCDC reference: 735130

Comment top

In order to explore synthetic routes to new pyrimido[4,5-b][1,4]diazepine derivatives incorporating fused and/or spirane residues at the diazepine moiety (of interest in view of their potential biological activity), we have utilized 1,2'-biindene-1',3,3'(2H)-trione, (II), prepared by autocondensation of 1,3-indandione, as a novel chalcone reagent in reactions with 4,5-diaminopyrimidines (Orozco et al., 2008). However, in the reaction with one such 4,5-diaminopyrimidine, 4,5-diamino-6-methoxy-2-(methylsulfanyl)pyrimidine, rather than the expected 7'H-spiro[indene-1,6'-indeno[1,2-e]pyrimido[4,5-b][1,4]diazepine]-3,5'-diol, we have obtained the title compound (I) instead, the product of simple condensation at the 5-amino group. A similar condensation was found to occur between the same chalcone reagent and 2,5,6-triaminopyrimidin-4(3H)-one, where the condensation product was accompanied by a modest yield of the biindenetrione oxidation product dispiro[indene-2,5'-indeno[2,1-a]fluorene-6',2''-indene]- 1,1'',3,3'',11',12'-hexaone (Orozco et al., 2008). As a continuation of this study, we report here the structure and supramolecular aggregation of the title compound (I).

The title compound is a stoichiometric monosolvate with dimethyl sulfoxide. The solvent molecules are disordered over two orientations, with refined site occupancies of 0.5505 (15) and 0.4495 (15), respectively (Fig. 1). For each orientation of the solvent component, the dimethyl sulfoxide moiety is linked to the biindene component by an almost linear N—H···O hydrogen bond (Table 2); there is also a fairly long, but nearly linear C—H···O hydrogen bond for each orientation of the solvent and these may augment the linkage between the biindene and solvent components. However, the solvent molecules play no other role in the supramolecular aggregation and it is possible that they are present primarily to fill what would otherwise be void space, centred near (0, 0, 1/2) and amounting to some 23.6% of the total unit-cell volume.

The pyrimidine ring is nearly planar but it shows a slight distortion towards a very shallow boat conformation, with atoms C2 and C5 displaced by 0.036 (3) and 0.039 (3) Å to one side of the mean plane and all the remaining ring atoms displaced to the other side of this plane by distances ranging from 0.011 (3) Å for N3 to 0.026 (3) Å for C4. The rest of the molecular conformation in the nonsolvent molecule can be described in terms of five torsional angles (Table 1). The methyl atoms in the methoxy and methylsulfanyl substituents lie fairly close to the mean plane of the pyrimidine ring, with displacements from the mean plane of this ring of 0.220 (2) and 0.521 (4) Å for atoms S2 and C41, respectively, on one side of the mean plane, and 0.76 (2) and 0.211 (4) Å for atoms O6 and C42, respectively, on the other side. The two five-membered rings of the biindene fragment are not coplanar, and there is a dihedral angle between them of 11.4 (2)°; this may be compared with the corresponding dihedral angle, 6.0°, in biindene itself [CSD (Allen, 2002) refcode BIINDO (Bravic et al., 1976); unfortunately, there are no s.u. values associated with the deposited coordinates retrieved from the CSD]. The pyrimidine ring is twisted out of the plane of the adjacent five-membered ring by almost 70° (Table 1). Accordingly, the molecules have no internal symmetry so that they are conformationally chiral, but the centrosymmetric space group accommodates equal numbers of the two enantiomers.

While the bond distances within the pyrimidine unit in (I) show no unusual features, there are some interesting patterns amongst the bond distances in the aminobiindenedione unit (Table 1). Within the ring (C33A,C34—C37, C37A), the range of C—C distances is only 0.013 (5) Å, consistent with normal aromatic delocalization; by contrast, in ring (C23A, C24—C27, C27A), the bond distances show regular alternation, with the distances C23A—C24, C25—C26 and C27—C27A significantly shorter than those for the intermediate bonds, indicative of some bond fixation in this ring (see Scheme). In addition, the bonds C23—N5, C21—C22 and C32—C33 are all short for their types (Allen et al., 1987), while the bonds C22—C23 and C21—C32 are long for their types, suggesting some contribution from the polarized form 1-{[4-amino-6-methoxy-2-(methylsulfanyl)pyrimidin-5-yl]iminio}-1'-oxo-3H,1'H-1,2'-biinden-3'-olate (Ia, see Scheme).

In addition to the hydrogen bonds within the selected asymmetric unit (Table 2), two further hydrogen bonds, one each of N—H···N and N—H···O types, link the nonsolvent molecules into a chain of edge-fused rings from which the solvent molecules are pendent, playing no further role in the hydrogen bonding. Pairs of molecules related by inversion are linked by paired N—H···N hydrogen bonds to form R22(8) (Bernstein et al., 1995) rings, while paired N—H···O hydrogen bonds link pairs of molecules forming a centrosymmetric R22(22) motif. Propagation by inversion of these two hydrogen bonds then generates a chain of edge-fused rings running parallel to the [001] direction in which R22(8) rings centred at (1/2, 1/2, 0.5 + n), where n represents an integer, alternating with centrosymmetric R22(22) rings centred at (1/2, 1/2, n), where n represents an integer (Fig. 2).

Chains of this type are linked into sheets by a single aromatic ππ stacking interaction. The fully aromatic rings (C33A, C34—C37, C37A) at (x, y, z) and (2 - x, -y, -z) are strictly parallel with an interplanar spacing of 3.543 (2) Å; the ring-centroid separation is 3.839 (2) Å, corresponding to an almost ideal ring-centroid offset of 1.477 (2) Å. The two molecules involved form parts, respectively, of the hydrogen-bonded chains along (1/2, 1/2, z) and (1.5, -0.5, z), so that propagation by inversion of this interaction links the chains into a sheet parallel to (110) (Fig. 3).

The supramolecular aggregation of compound (I) may be compared with that in its precursor trione, (II), where a single C—H···O hydrogen bond links the molecules into simple C(4) chains (Bravic et al., 1976; Orozco et al., 2008).

Related literature top

For related literature, see: Allen (2002); Allen et al. (1987); Bernstein et al. (1995); Bravic et al. (1976); Orozco et al. (2008).

Experimental top

A solution of 4,5-diamino-6-methoxy-2-(methylsulfanyl)pyrimidine (1.1 mmol) and 1,2'-biindene-1',3,3'(2H)-trione (1.1 mmol) in a mixture of absolute ethanol (10 cm3) and glacial acetic acid (1 cm3) was heated under reflux for 6 h, while the progress of the reaction was monitored using thin-layer chromatography. The resulting precipitate was collected by filtration, washed with ethanol, dried and recrystallized from ethanol; yield 57%, m. p. 605 K. Purple crystals of the monosolvate (I) suitable for single-crystal X-ray diffraction were grown from a solution in DMSO (dimethyl sulfoxide).

Refinement top

It was apparent from an early stage in the refinement process that the structure contained disordered DMSO molecules, and these were modelled using two orientations to give site occupancies with values summing to unity within experimental uncertainty and giving final values of 0.5505 (15) (major orientation, S51) and 0.4495 (15) (minor orientation, S61) (Fig. 1). For both orientations of the solvent molecule the C atoms were refined isotropically; attempts to refine these atom sites anisotropically led to unsatisfactory outcomes. All H atoms were located in difference maps and then treated as riding atoms in geometrically idealized positions, such that the methyl groups were permitted to rotate about the adjacent C—X bonds (X = O or S) but not to tilt, with distances C—H 0.95 Å (aromatic) or 0.98 Å (CH3) and N—H 0.88 Å, and with Uiso(H) = kUiso(carrier) where k = 1.5 for the methyl groups and 1.2 for all other H atoms.

Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular components of compound (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A stereoview of part of the crystal structure of (I) showing the formation of a hydrogen-bonded chain of edge-fused rings along [001]. For clarity, the disordered solvent molecules have been omitted and only the H atoms involved in the motif included.
[Figure 3] Fig. 3. A stereoview of part of the crystal structure of (I) showing the formation of a sheet of π-stacked hydrogen-bonded chains. For clarity, the H atoms bonded to C atoms have all been omitted.
3-{[4-Amino-6-methoxy-2-(methylsulfanyl)pyrimidin-5-yl]amino}-1,2'- biindenylidene-1',3'-dione dimethyl sulfoxide solvate top
Crystal data top
C24H18N4O3S·C2H6OSZ = 2
Mr = 520.71F(000) = 544
Triclinic, P1Dx = 1.388 Mg m3
Hall symbol: -P 1Melting point: 605 K
a = 10.6056 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9946 (11) ÅCell parameters from 5681 reflections
c = 12.6770 (11) Åθ = 2.4–27.5°
α = 69.780 (13)°µ = 0.26 mm1
β = 76.523 (5)°T = 120 K
γ = 64.484 (7)°Block, purple
V = 1245.6 (2) Å30.21 × 0.15 × 0.10 mm
Data collection top
Bruker Nonius KappaCCD
diffractometer
5681 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode3324 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.4°
ϕ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1414
Tmin = 0.922, Tmax = 0.975l = 1616
21189 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0254P)2 + 2.1332P]
where P = (Fo2 + 2Fc2)/3
5681 reflections(Δ/σ)max = 0.001
334 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C24H18N4O3S·C2H6OSγ = 64.484 (7)°
Mr = 520.71V = 1245.6 (2) Å3
Triclinic, P1Z = 2
a = 10.6056 (5) ÅMo Kα radiation
b = 10.9946 (11) ŵ = 0.26 mm1
c = 12.6770 (11) ÅT = 120 K
α = 69.780 (13)°0.21 × 0.15 × 0.10 mm
β = 76.523 (5)°
Data collection top
Bruker Nonius KappaCCD
diffractometer
5681 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3324 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.975Rint = 0.071
21189 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.04Δρmax = 0.56 e Å3
5681 reflectionsΔρmin = 0.51 e Å3
334 parameters
Special details top

Experimental. Mass spectrum (M, %): 444 (M+, 9), 443 (29), 442 (100), 441 (11), 427 (26), 297 (48), 296 (19), 282 (19), 76 (10)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.4132 (3)0.1360 (3)0.5926 (2)0.0164 (6)
C20.4805 (3)0.2085 (3)0.6030 (2)0.0162 (7)
N30.4845 (3)0.3306 (3)0.5356 (2)0.0179 (6)
C40.4193 (3)0.3835 (3)0.4397 (2)0.0157 (6)
C50.3561 (3)0.3098 (3)0.4146 (2)0.0146 (6)
C60.3512 (3)0.1896 (3)0.4969 (2)0.0152 (6)
S20.58279 (10)0.14146 (9)0.71703 (7)0.0268 (2)
C410.5821 (4)0.0312 (3)0.7792 (3)0.0259 (8)
H41A0.48590.02470.80750.039*
H41B0.64120.08050.84200.039*
H41C0.61900.08310.72230.039*
N40.4202 (3)0.5072 (3)0.3713 (2)0.0209 (6)
H410.46170.55040.38930.031*
H420.37920.54520.30840.031*
N50.3011 (3)0.3547 (3)0.3093 (2)0.0167 (6)
H50.20970.38840.30690.020*
O60.2799 (2)0.1247 (2)0.47801 (17)0.0195 (5)
C420.2683 (4)0.0038 (3)0.5667 (3)0.0251 (8)
H42A0.36240.06680.58330.038*
H42B0.21720.03610.54220.038*
H42C0.21740.03240.63490.038*
C210.5814 (3)0.3050 (3)0.0843 (2)0.0160 (7)
C220.5307 (3)0.3059 (3)0.1985 (2)0.0168 (7)
H220.58760.28220.25600.020*
C230.3876 (3)0.3459 (3)0.2132 (2)0.0148 (6)
C23A0.3364 (3)0.3744 (3)0.1048 (2)0.0172 (7)
C240.2042 (3)0.4082 (3)0.0795 (3)0.0236 (7)
H240.12520.42650.13410.028*
C250.1899 (4)0.4150 (4)0.0302 (3)0.0287 (8)
H250.09950.44030.05090.034*
C260.3058 (4)0.3851 (4)0.1078 (3)0.0302 (8)
H260.29460.38750.18080.036*
C270.4402 (3)0.3513 (3)0.0807 (3)0.0245 (8)
H270.51940.33170.13500.029*
C27A0.4554 (3)0.3470 (3)0.0254 (2)0.0160 (7)
C310.7874 (3)0.2745 (3)0.0751 (3)0.0193 (7)
C320.7208 (3)0.2652 (3)0.0426 (2)0.0166 (7)
C330.8376 (3)0.1991 (3)0.1153 (3)0.0186 (7)
C33A0.9724 (3)0.1616 (3)0.0417 (3)0.0202 (7)
C341.1090 (3)0.0899 (3)0.0696 (3)0.0258 (8)
H341.12940.05640.14600.031*
C351.2151 (4)0.0685 (4)0.0173 (3)0.0318 (9)
H351.30980.01790.00020.038*
C361.1858 (4)0.1198 (4)0.1298 (3)0.0314 (8)
H361.26090.10550.18800.038*
C371.0491 (3)0.1912 (4)0.1577 (3)0.0265 (8)
H371.02880.22670.23420.032*
C37A0.9426 (3)0.2093 (3)0.0702 (3)0.0195 (7)
O310.7337 (2)0.3245 (2)0.16428 (17)0.0255 (5)
O330.8307 (2)0.1754 (2)0.21811 (17)0.0247 (5)
S510.12000 (17)0.45217 (19)0.40427 (14)0.0327 (3)0.5505 (15)
O510.0034 (10)0.4640 (6)0.3224 (8)0.0374 (16)0.5505 (15)
C510.1603 (9)0.3201 (9)0.3907 (8)0.0548 (18)*0.5505 (15)
H51A0.07470.23520.39260.082*0.5505 (15)
H51B0.19970.35170.31880.082*0.5505 (15)
H51C0.22900.29930.45320.082*0.5505 (15)
C520.0578 (8)0.3704 (8)0.5408 (6)0.0392 (15)*0.5505 (15)
H52A0.03690.43610.56310.059*0.5505 (15)
H52B0.02770.28630.53860.059*0.5505 (15)
H52C0.13000.34370.59570.059*0.5505 (15)
S610.0359 (2)0.2887 (2)0.40947 (17)0.0327 (3)0.4495 (15)
O610.0179 (13)0.4008 (8)0.3395 (11)0.0374 (16)0.4495 (15)
C610.2192 (11)0.3637 (12)0.3862 (10)0.0548 (18)*0.4495 (15)
H61A0.22750.36630.31000.082*0.4495 (15)
H61B0.26220.45930.39400.082*0.4495 (15)
H61C0.26730.30630.44200.082*0.4495 (15)
C620.0634 (10)0.3009 (10)0.5487 (7)0.0392 (15)*0.4495 (15)
H62A0.12520.39710.55050.059*0.4495 (15)
H62B0.02690.27640.57460.059*0.4495 (15)
H62C0.10710.23600.59850.059*0.4495 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0176 (14)0.0160 (13)0.0146 (13)0.0068 (11)0.0010 (11)0.0032 (11)
C20.0179 (17)0.0161 (16)0.0132 (15)0.0033 (13)0.0033 (13)0.0054 (13)
N30.0228 (15)0.0170 (13)0.0147 (13)0.0079 (12)0.0046 (11)0.0034 (11)
C40.0163 (16)0.0170 (16)0.0140 (15)0.0062 (13)0.0007 (12)0.0063 (13)
C50.0144 (16)0.0171 (15)0.0110 (15)0.0050 (13)0.0010 (12)0.0038 (12)
C60.0124 (16)0.0179 (16)0.0161 (16)0.0049 (13)0.0036 (12)0.0100 (13)
S20.0423 (6)0.0187 (4)0.0230 (5)0.0117 (4)0.0187 (4)0.0001 (4)
C410.033 (2)0.0200 (17)0.0234 (18)0.0111 (16)0.0072 (15)0.0001 (14)
N40.0290 (16)0.0207 (14)0.0163 (14)0.0137 (13)0.0093 (12)0.0010 (11)
N50.0140 (14)0.0204 (14)0.0163 (14)0.0061 (11)0.0029 (11)0.0058 (11)
O60.0242 (12)0.0193 (11)0.0179 (11)0.0133 (10)0.0041 (9)0.0007 (9)
C420.031 (2)0.0239 (18)0.0249 (18)0.0180 (16)0.0033 (15)0.0014 (15)
C210.0216 (17)0.0131 (15)0.0146 (15)0.0086 (13)0.0024 (13)0.0023 (12)
C220.0186 (17)0.0165 (15)0.0151 (16)0.0060 (13)0.0038 (13)0.0039 (13)
C230.0195 (17)0.0121 (15)0.0137 (15)0.0061 (13)0.0050 (13)0.0026 (12)
C23A0.0227 (18)0.0135 (15)0.0160 (16)0.0067 (14)0.0063 (14)0.0025 (13)
C240.0199 (18)0.0297 (19)0.0200 (17)0.0079 (15)0.0021 (14)0.0075 (15)
C250.0194 (18)0.044 (2)0.0225 (18)0.0081 (16)0.0086 (15)0.0098 (16)
C260.030 (2)0.043 (2)0.0190 (18)0.0109 (18)0.0053 (16)0.0120 (16)
C270.0236 (19)0.0296 (19)0.0177 (17)0.0072 (16)0.0002 (14)0.0086 (15)
C27A0.0201 (17)0.0120 (15)0.0147 (16)0.0061 (13)0.0014 (13)0.0027 (12)
C310.0212 (17)0.0145 (15)0.0195 (17)0.0053 (14)0.0024 (14)0.0036 (13)
C320.0209 (17)0.0159 (15)0.0132 (15)0.0072 (13)0.0036 (13)0.0027 (13)
C330.0213 (18)0.0179 (16)0.0181 (17)0.0083 (14)0.0015 (14)0.0061 (13)
C33A0.0229 (18)0.0206 (17)0.0189 (17)0.0106 (14)0.0014 (14)0.0055 (14)
C340.0229 (19)0.0319 (19)0.0220 (18)0.0100 (16)0.0046 (15)0.0061 (15)
C350.0175 (19)0.043 (2)0.036 (2)0.0089 (17)0.0007 (16)0.0160 (18)
C360.0201 (19)0.047 (2)0.028 (2)0.0122 (17)0.0065 (15)0.0179 (18)
C370.0248 (19)0.035 (2)0.0190 (17)0.0122 (16)0.0022 (15)0.0085 (15)
C37A0.0218 (18)0.0144 (15)0.0212 (17)0.0056 (14)0.0024 (14)0.0052 (13)
O310.0260 (13)0.0297 (13)0.0156 (12)0.0076 (11)0.0044 (10)0.0026 (10)
O330.0235 (13)0.0337 (13)0.0160 (12)0.0104 (11)0.0037 (10)0.0054 (10)
S510.0220 (7)0.0445 (8)0.0291 (7)0.0099 (6)0.0002 (5)0.0128 (6)
O510.022 (2)0.051 (5)0.029 (3)0.016 (5)0.001 (2)0.001 (4)
S610.0220 (7)0.0445 (8)0.0291 (7)0.0099 (6)0.0002 (5)0.0128 (6)
O610.022 (2)0.051 (5)0.029 (3)0.016 (5)0.001 (2)0.001 (4)
Geometric parameters (Å, º) top
N1—C21.331 (4)C26—H260.9500
N1—C61.340 (4)C27—H270.9500
C2—N31.332 (4)C31—C321.484 (4)
C2—S21.765 (3)C32—C331.485 (4)
N3—C41.360 (4)C33—C33A1.490 (4)
C4—N41.339 (4)C33A—C341.382 (4)
C4—C51.398 (4)C34—C351.382 (5)
C5—C61.385 (4)C35—C361.395 (5)
C5—N51.423 (4)C36—C371.382 (5)
C6—O61.344 (3)C37—C37A1.386 (4)
S2—C411.789 (3)C37A—C311.493 (4)
C41—H41A0.9800C33A—C37A1.392 (4)
C41—H41B0.9800C31—O311.227 (3)
C41—H41C0.9800C33—O331.228 (3)
N4—H410.8800C34—H340.9500
N4—H420.8800C35—H350.9500
N5—H50.8800C36—H360.9500
O6—C421.445 (3)C37—H370.9500
C42—H42A0.9800S51—O511.493 (10)
C42—H42B0.9800S51—C511.750 (9)
C42—H42C0.9800S51—C521.785 (7)
C21—C221.423 (4)C51—H51A0.9800
C22—C231.372 (4)C51—H51B0.9800
C23—C23A1.479 (4)C51—H51C0.9800
C23A—C241.372 (4)C52—H52A0.9800
C24—C251.407 (4)C52—H52B0.9800
C25—C261.379 (5)C52—H52C0.9800
C26—C271.403 (4)S61—O611.499 (9)
C27—C27A1.375 (4)S61—C621.764 (9)
C27A—C211.501 (4)S61—C611.807 (11)
C23A—C27A1.409 (4)C61—H61A0.9800
C21—C321.377 (4)C61—H61B0.9800
C23—N51.349 (4)C61—H61C0.9800
C22—H220.9500C62—H62A0.9800
C24—H240.9500C62—H62B0.9800
C25—H250.9500C62—H62C0.9800
C2—N1—C6114.3 (2)C25—C26—H26119.5
N1—C2—N3128.3 (3)C27—C26—H26119.5
N1—C2—S2119.7 (2)C27A—C27—C26119.0 (3)
N3—C2—S2112.0 (2)C27A—C27—H27120.5
C2—N3—C4115.9 (3)C26—C27—H27120.5
N4—C4—N3117.0 (3)C27—C27A—C23A119.3 (3)
N4—C4—C5122.3 (3)C27—C27A—C21132.8 (3)
N3—C4—C5120.7 (3)C23A—C27A—C21107.6 (2)
C6—C5—C4116.6 (3)O31—C31—C32130.0 (3)
C6—C5—N5121.5 (3)O31—C31—C37A122.6 (3)
C4—C5—N5121.8 (3)C32—C31—C37A107.4 (3)
N1—C6—O6119.2 (3)C21—C32—C31130.5 (3)
N1—C6—C5123.6 (3)C21—C32—C33123.3 (3)
O6—C6—C5117.2 (3)C31—C32—C33106.2 (3)
C2—S2—C41102.69 (15)O33—C33—C32128.4 (3)
S2—C41—H41A109.5O33—C33—C33A123.6 (3)
S2—C41—H41B109.5C32—C33—C33A108.0 (3)
H41A—C41—H41B109.5C34—C33A—C37A121.0 (3)
S2—C41—H41C109.5C34—C33A—C33130.3 (3)
H41A—C41—H41C109.5C37A—C33A—C33108.7 (3)
H41B—C41—H41C109.5C35—C34—C33A117.8 (3)
C4—N4—H41120.0C35—C34—H34121.1
C4—N4—H42120.0C33A—C34—H34121.1
H41—N4—H42120.0C34—C35—C36121.3 (3)
C23—N5—C5120.7 (2)C34—C35—H35119.4
C23—N5—H5119.7C36—C35—H35119.4
C5—N5—H5119.7C37—C36—C35121.0 (3)
C6—O6—C42117.1 (2)C37—C36—H36119.5
O6—C42—H42A109.5C35—C36—H36119.5
O6—C42—H42B109.5C36—C37—C37A117.6 (3)
H42A—C42—H42B109.5C36—C37—H37121.2
O6—C42—H42C109.5C37A—C37—H37121.2
H42A—C42—H42C109.5C37—C37A—C33A121.2 (3)
H42B—C42—H42C109.5C37—C37A—C31129.1 (3)
C32—C21—C22124.6 (3)C33A—C37A—C31109.7 (3)
C32—C21—C27A129.0 (3)O51—S51—C51109.0 (5)
C22—C21—C27A106.3 (3)O51—S51—C52106.4 (5)
C23—C22—C21110.0 (3)C51—S51—C5299.8 (4)
C23—C22—H22125.0O61—S61—C62104.9 (6)
C21—C22—H22125.0O61—S61—C61104.5 (6)
N5—C23—C22128.3 (3)C62—S61—C6196.3 (5)
N5—C23—C23A122.3 (3)S61—C61—H61A109.5
C22—C23—C23A109.4 (3)S61—C61—H61B109.5
C24—C23A—C27A122.4 (3)H61A—C61—H61B109.5
C24—C23A—C23130.6 (3)S61—C61—H61C109.5
C27A—C23A—C23106.7 (3)H61A—C61—H61C109.5
C23A—C24—C25117.6 (3)H61B—C61—H61C109.5
C23A—C24—H24121.2S61—C62—H62A109.5
C25—C24—H24121.2S61—C62—H62B109.5
C26—C25—C24120.6 (3)H62A—C62—H62B109.5
C26—C25—H25119.7S61—C62—H62C109.5
C24—C25—H25119.7H62A—C62—H62C109.5
C25—C26—C27121.1 (3)H62B—C62—H62C109.5
C6—N1—C2—N35.5 (5)C24—C23A—C27A—C271.3 (4)
C6—N1—C2—S2173.3 (2)C23—C23A—C27A—C27173.5 (3)
N1—C2—N3—C44.9 (5)C24—C23A—C27A—C21176.5 (3)
S2—C2—N3—C4174.1 (2)C23—C23A—C27A—C211.6 (3)
C2—N3—C4—N4179.1 (3)C32—C21—C27A—C274.1 (5)
C2—N3—C4—C51.6 (4)C22—C21—C27A—C27172.6 (3)
N4—C4—C5—C6174.3 (3)C32—C21—C27A—C23A178.3 (3)
N3—C4—C5—C66.4 (4)C22—C21—C27A—C23A1.6 (3)
N4—C4—C5—N56.5 (5)C22—C21—C32—C31171.9 (3)
N3—C4—C5—N5172.9 (3)C27A—C21—C32—C3111.9 (5)
C2—N1—C6—O6179.8 (3)C22—C21—C32—C338.9 (5)
C2—N1—C6—C50.3 (4)C27A—C21—C32—C33167.3 (3)
C4—C5—C6—N15.8 (4)O31—C31—C32—C212.8 (5)
N5—C5—C6—N1173.4 (3)C37A—C31—C32—C21177.4 (3)
C4—C5—C6—O6174.3 (3)O31—C31—C32—C33177.9 (3)
N5—C5—C6—O66.5 (4)C37A—C31—C32—C331.9 (3)
N1—C2—S2—C417.9 (3)C21—C32—C33—O333.3 (5)
N3—C2—S2—C41171.1 (2)C31—C32—C33—O33177.4 (3)
C6—C5—N5—C23109.4 (3)C21—C32—C33—C33A175.9 (3)
N1—C6—O6—C423.4 (4)C31—C32—C33—C33A3.4 (3)
C4—C5—N5—C2369.8 (4)O33—C33—C33A—C344.2 (5)
C5—C6—O6—C42176.7 (3)C32—C33—C33A—C34175.0 (3)
C32—C21—C22—C23177.8 (3)O33—C33—C33A—C37A177.0 (3)
C27A—C21—C22—C230.9 (3)C32—C33—C33A—C37A3.7 (3)
C5—N5—C23—C224.9 (4)C37A—C33A—C34—C350.7 (5)
C5—N5—C23—C23A172.1 (3)C33—C33A—C34—C35179.3 (3)
C21—C22—C23—N5177.2 (3)C33A—C34—C35—C361.2 (5)
C21—C22—C23—C23A0.1 (3)C34—C35—C36—C371.5 (6)
N5—C23—C23A—C242.1 (5)C35—C36—C37—C37A0.3 (5)
C22—C23—C23A—C24175.4 (3)C36—C37—C37A—C33A2.2 (5)
N5—C23—C23A—C27A176.4 (3)C36—C37—C37A—C31176.4 (3)
C22—C23—C23A—C27A1.1 (3)C34—C33A—C37A—C372.4 (5)
C27A—C23A—C24—C250.1 (5)C33—C33A—C37A—C37178.7 (3)
C23—C23A—C24—C25173.4 (3)C34—C33A—C37A—C31176.4 (3)
C23A—C24—C25—C261.5 (5)C33—C33A—C37A—C312.5 (3)
C24—C25—C26—C271.8 (5)O31—C31—C37A—C371.1 (5)
C25—C26—C27—C27A0.6 (5)C32—C31—C37A—C37179.1 (3)
C26—C27—C27A—C23A1.0 (5)O31—C31—C37A—C33A179.8 (3)
C26—C27—C27A—C21174.6 (3)C32—C31—C37A—C33A0.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O510.881.972.840 (11)172
N5—H5···O610.881.932.777 (15)160
N4—H41···N3i0.882.173.026 (5)165
N4—H42···O31ii0.882.133.002 (3)169
C22—H22···O330.952.342.904 (4)118
C24—H24···O510.952.513.394 (10)154
C24—H24···O610.952.563.419 (14)151
C27—H27···O310.952.192.964 (4)138
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC24H18N4O3S·C2H6OS
Mr520.71
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)10.6056 (5), 10.9946 (11), 12.6770 (11)
α, β, γ (°)69.780 (13), 76.523 (5), 64.484 (7)
V3)1245.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.21 × 0.15 × 0.10
Data collection
DiffractometerBruker Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.922, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
21189, 5681, 3324
Rint0.071
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.132, 1.04
No. of reflections5681
No. of parameters334
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.51

Computer programs: COLLECT (Hooft, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
C21—C221.423 (4)C31—C321.484 (4)
C22—C231.372 (4)C32—C331.485 (4)
C23—C23A1.479 (4)C33—C33A1.490 (4)
C23A—C241.372 (4)C33A—C341.382 (4)
C24—C251.407 (4)C34—C351.382 (5)
C25—C261.379 (5)C35—C361.395 (5)
C26—C271.403 (4)C36—C371.382 (5)
C27—C27A1.375 (4)C37—C37A1.386 (4)
C27A—C211.501 (4)C37A—C311.493 (4)
C23A—C27A1.409 (4)C33A—C37A1.392 (4)
C21—C321.377 (4)C31—O311.227 (3)
C23—N51.349 (4)C33—O331.228 (3)
N1—C2—S2—C417.9 (3)C5—N5—C23—C224.9 (4)
N1—C6—O6—C423.4 (4)C22—C21—C32—C31171.9 (3)
C4—C5—N5—C2369.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O510.881.972.840 (11)172
N5—H5···O610.881.932.777 (15)160
N4—H41···N3i0.882.173.026 (5)165
N4—H42···O31ii0.882.133.002 (3)169
C24—H24···O510.952.513.394 (10)154
C24—H24···O610.952.563.419 (14)151
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds