Download citation
Download citation
link to html
In the title compounds, C12H20O6, (I), and C9H16O6, (II), the five-membered furan­ose ring adopts a 4T3 conformation and the five-membered 1,3-dioxolane ring adopts an E3 conformation. The six-membered 1,3-dioxane ring in (I) adopts an almost ideal OC3 conformation. The hydrogen-bonding patterns for these compounds differ substanti­ally: (I) features just one intra­molecular O—H...O hydrogen bond [O...O = 2.933 (3) Å], whereas (II) exhibits, apart from the corresponding intra­molecular O—H...O hydrogen bond [O...O = 2.7638 (13) Å], two inter­molecular bonds of this type [O...O = 2.7708 (13) and 2.7730 (12) Å]. This study illustrates both the similarity between the con­formations of furan­ose, 1,3-dioxolane and 1,3-di­oxane rings in analogous isopropyl­idene-substituted carbohydrate structures and the only negligible influence of the presence of a 1,3-dioxane ring on the conformations of furan­ose and 1,3-dioxolane rings. In addition, in comparison with reported analogs, replacement of the –CH2OH group at the C1-furan­ose position by another group can considerably affect the conformation of the 1,3-dioxolane ring.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109008294/gg3193sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109008294/gg3193Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109008294/gg3193IIsup3.hkl
Contains datablock II

CCDC references: 730099; 730100

Comment top

The title isopropylidene derivatives of L-sorbofuranose, namely 2,3:4,6-di-O-isopropylidene-α-L-sorbofuranose, (I), and 2,3-O-isopropylidene-α-L-sorbofuranose, (II), are useful intermediates in organic synthesis. They have been used as starting materials for the stepwise synthesis of 1-deoxynojirimycin (Beaupere et al., 1989), the 6,6-difluoro analog (Szarek et al., 1997) and N-butyl-1-deoxynojirimycin (N-Bu DNJ, Zavesca) (Boucheron et al., 2005; Godin et al., 2002), known as a very efficient glycosidase inhibitors used, inter alia, as a therapeutic in the treatment for lysosomal disease. In the context of studies on the synthesis of iminosugar derivatives related to nojirimycin and mannojirimycin, we have prepared (I) from L-sorbose using acetone as isopropylidenation agent and concentrated sulfuric acid as a catalyst. Subsequent selective acid hydrolysis of the 4,6-O-isopropylidene group in (I) afforded the monoisopropylidenated compound (II).

The molecular structures of (I) and (II) are illustrated in Figs. 1 and 2 [the numbering of atoms corresponds to the numbering according to the IUPAC Nomenclature of Carbohydrates (McNaught, 1996)]. The puckering parameters (Cremer & Pople, 1975) Q = 0.250 (2)Å and ϕ = 112.(6)°, and the relevant dihedral angles (see Table 2) are indicative of the E3 (EO3) conformation for the O2/C2/C3/O3/C7 five-membered 1,3-dioxolane ring in (I). Considering the values for (I) of the relevant torsion angles (Table 2) and the puckering parameters Q = 0.370 (3)Å and ϕ = 127.0 (4)°, the five-membered O5/C2–C5 furanose ring adopts a 4T3 (C5TC4) conformation, with atom C4 lying in the exo and C5 the endo direction with respect to the O5/C2/C3 reference plane. Based on the values of relevant torsion angles (Table 2) and the puckering parameters Q = 0.509 (3)Å, ϕ = 300.0 (19)° and θ = 8.7 (3)°, the O4/C4–C6/O6/C10 six-membered 1,3-dioxane ring adopts an almost ideal OC3 (O4CC6) conformation slightly shifted to the E5 direction. Similar for compound (II), the puckering parameters Q = 0.2810 (11)Å and ϕ = 110.4 (2)° and the relevant dihedral angles (Table 2) are indicative of the E3 (EO3) conformation for the O2/C2/C3/O3/C7 five-membered 1,3-dioxolane ring. Analogously, considering the values of the relevant torsion angles (Table 2) and the puckering parameters Q = 0.3958 (11)Å and ϕ = 123.07 (16)°, the five-membered O5/C2–C5 furanose ring adopts a 4T3 (C5TC4) conformation.

To date, only a few crystal structures of this general type have been described. Among them, the most closely related structure is 2,3:4,6-di-O-isopropylidene-α-L-xylo-hex-2-ulosonic acid (2,3:4,6-di-O-isopropylidene-2-keto-L-gulonic acid) [CSD (Allen, 2002) refcode DIPKGA (Takagi & Jeffrey, 1978)]. Related structures include 1-phthalimido-1-deoxy-2,3:4,6-di-O-isopropylidene-α-L-sorbofuranose (refcode PHISOR; Glass & Johnson, 1976), cis-6-(2-deoxy-3,5-O-isopropylidene-1,2-isopropylidenedioxy-β-L-xylo-furanosyl)-2,3-dimethyl-1,2,5-oxadiazinane (refcode XAKKUP; Gravestock et al., 2000) and [2R,3S,4S,5S,5(2S,3S,4R,5S)]-5-(2,3,4-trihydroxy-5-hydroxymethyl-2,3:4,5'-di-O-isopropylidene-2-tetrahydrofuranyl)-4-methyl-2-phenyltetrahydrofuran-3-carbaldehyde (refcode TEZHAI; Kollmann et al., 2007) have the exocyclic CH2OH group replaced by a more complicated organic functionality and, finally, (2,3-O-isopropylidene-α-L-sorbofuranose)trimethylplatinum(IV) tetrafluoroborate (refcode GOZJEK; Junicke et al., 1999) is a metal–carbohydrate complex where 2,3-O-isopropylidene-α-L-sorbofuranose represents a tridentate ligand coordinated via the hydroxyl groups at C1, C4 and C6 positions to the PtIV centre.

A comparison of (I) and (II) with these structures shows only small differences in the conformation of furanose ring. Only TEZHAI exhibited the 4E (C4 furanose atom in endo direction) conformation, while the 4T3 conformation was observed for the other structures. Conformational similarity can be also seen for 1,3-dioxane ring in (I) and in related structures. Thus, in (I), PHISOR, TEZHAI and DIPKGA, the 0C3 conformation is slightly distorted to the E5 direction, while a slight shift to the 4H5 direction is observed for XAKKUP. Regarding the 1,3-dioxolane ring, its conformation is considerably affected by the substitution at C1 furanose position (CH2OH versus other substituent). In this respect, the 1,3-dioxolane ring in (I), (II) and GOZJEK adopts the E3 (O3 atom in an endo direction) conformation, while 4T3 (for TEZHAI and XAKKUP), 3E (for DIPKGA) and the 4T3 conformation shifted halfway to the 4E direction (for PHISOR) is observed.

Although the presence of a 1,3-dioxane ring fused to a furanose ring at the 4,6-positions imposes some conformational rigidity on (I), its influence on conformation of furanose (in a significant shift of E3 4T3) and 1,3-dioxolane ring is, as seen from comparison with (II), negligible (see Fig. 3). The most dramatic change in the conformation is apparent in the C2—C1—O1—H1 torsion angle from 8 to 127° for (I) and (II), respectively.

The hydrogen-bonding patterns are very different in both compounds. For (I), there is one strong intramolecular O—H···O hydrogen bond (Fig. 1) and some weak intermolecular C—H···O hydrogen bonds (see Table 1 for details). For (II), there are strong O—H···O hydrogen bonds, one intramolecular (denoted as a in Table 3) and two intermolecular (b and c), together with other weak intermolecular C—H···O hydrogen bonds (Table 3). On the first-level graph-set, defined by Bernstein et al. (1995) and Grell et al. (1999), string S(7) (bond a) and chains C(8) (b) and C(6) (c) were identified. On the second-level graph-set, chains C22(9) and C22(14) formed by hydrogen bonds (b and c) could be recognized. On the third-level graph set, rings R55(21) can be found (a, b and c), see Fig. 4 and Table 3.

Related literature top

For related literature, see: Beaupere et al. (1989); Boucheron et al. (2005); Cremer & Pople (1975); Glass & Johnson (1976); Godin et al. (2002); Gravestock et al. (2000); Grell et al. (1999); Junicke et al. (1999); Kollmann et al. (2007); McNaught (1996); Slobodin (1947); Szarek et al. (1997); Takagi & Jeffrey (1978).

Experimental top

Compound (I) was prepared according to a slight modification of the procedure of Slobodin (1947) (fast neutralization under efficient cooling using NaOH instead of KHCO3; four extractions with ethyl acetate instead of 11 extractions with CHCl3 was deemed sufficient). Compound (II) was obtained by heating (I) in 60% acetic acid at 348 K for 40 min, followed by evaporation of the solvent under reduced pressure and crystallization of the product from a mixture of ethyl acetate and hexane. The analytical data for (I) and (II) were in accordance with those published previously (Szarek et al., 1997; Beaupere et al., 1989). Colourless single crystals of adequate quality for diffraction analysis were obtained by slow crystallization of (I) from a 2:1 (v/v) mixture of diethyl ether and n-hexane under moderate cooling in a refrigerator. Analogous crystallization using a mixture of of ethyl acetate and n-hexane (2:1 v/v) afforded suitable crystals of (II).

Refinement top

In the absence of significant resonant scattering, the Friedel-equivalent reflections were merged for compounds (I) and (II), and therefore the absolute configuration of the molecules in (I) and (II) were not determined by diffraction techniques. However, the absolute configuration at chiral atoms C2, C3, C4 and C5 in (I) and (II) was assigned on the basis of the known arrangement in L-sorbofuranose derivatives, because isopropylidenation at O4 and O6 does not affect the arrangements of atoms O3, O4 and O5 with respect to the furanose ring in (I) and acetonation at O2 and O3 affords preferentially the cis-2,3-O-isopropylidenated product with an α configuration at anomeric atom C2. For secondary H atoms, the C—H distance was fixed at 0.99Å and for tertiary at 1.00Å. For the methyl groups, the C—H distances (0.98Å) and C—C—H angles (109.5°) were kept fixed. The O—H distances (0.84Å) and C—C—H angles (109.5°) were fixed. Isotropic displacement parameters were constrained to Uiso(H) = 1.2Ueq(C), 1.5Ueq(Cmethyl) and 1.5Ueq(O).

Computing details top

For both compounds, data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003) and SADABS (Sheldrick, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I), showing the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The intramolecular O—H···O hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. A view of (II), showing the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The intramolecular O—H···O hydrogen bond is shown as a dashed line.
[Figure 3] Fig. 3. A projection of (I) (red in the online version of the paper) and (II) (blue) with the furanose ring fitted as a common fragment. H atoms have been omitted for clarity.
[Figure 4] Fig. 4. The hydrogen bonding in (II) depicted as dashed lines. H atoms not involved in the strong hydrogen bonds have been omitted for clarity. Symmetry codes and geometric details are listed in Table 3.
(I) 2,3:4,6-di-O-isopropylidene-α-L-sorbofuranose top
Crystal data top
C12H20O6F(000) = 560
Mr = 260.28Dx = 1.261 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3977 reflections
a = 6.7203 (16) Åθ = 2.4–25.0°
b = 9.286 (2) ŵ = 0.10 mm1
c = 21.972 (5) ÅT = 153 K
V = 1371.1 (6) Å3Irregular block, colourless
Z = 40.78 × 0.48 × 0.32 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
1483 independent reflections
Radiation source: fine-focus sealed tube1236 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
ω scansθmax = 25.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 88
Tmin = 0.440, Tmax = 0.969k = 1111
15054 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0661P)2 + 0.1325P]
where P = (Fo2 + 2Fc2)/3
1483 reflections(Δ/σ)max < 0.001
168 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C12H20O6V = 1371.1 (6) Å3
Mr = 260.28Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.7203 (16) ŵ = 0.10 mm1
b = 9.286 (2) ÅT = 153 K
c = 21.972 (5) Å0.78 × 0.48 × 0.32 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
1483 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1236 reflections with I > 2σ(I)
Tmin = 0.440, Tmax = 0.969Rint = 0.067
15054 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.00Δρmax = 0.20 e Å3
1483 reflectionsΔρmin = 0.24 e Å3
168 parameters
Special details top

Experimental. Data were collected at low temperature using a Siemens SMART CCD diffractometer equipped with a LT-2 device. A full sphere of reciprocal space was scanned by 0.3° steps in ω with a crystal–to–detector distance of 3.97 cm, 1 second per frame. Preliminary orientation matrix was obtained from the first 100 frames using SMART (Siemens, 1995). The collected frames were integrated using the preliminary orientation matrix which was updated every 100 frames. Final cell parameters were obtained by refinement on the position of 3977 reflections with I>10σ(I) after integration of all the frames data using SAINT (Siemens, 1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9233 (3)0.9707 (2)0.09736 (8)0.0394 (5)
H10.81910.95770.11770.059*
O20.6209 (3)0.93796 (18)0.03997 (7)0.0296 (4)
O30.3917 (2)1.09678 (18)0.00481 (7)0.0286 (4)
O40.5305 (2)1.02849 (19)0.15016 (8)0.0280 (4)
O50.5865 (2)0.82378 (16)0.05348 (8)0.0255 (4)
O60.4873 (3)0.79170 (19)0.18309 (8)0.0352 (5)
C10.8789 (3)0.9596 (3)0.03459 (12)0.0319 (6)
H1A0.94570.87330.01770.038*
H1B0.93211.04510.01320.038*
C20.6563 (3)0.9487 (3)0.02292 (11)0.0233 (5)
C30.5237 (4)1.0734 (2)0.04474 (11)0.0239 (5)
H30.60131.16130.05600.029*
C40.4079 (4)1.0115 (3)0.09739 (11)0.0241 (5)
H40.27411.05730.10230.029*
C50.3946 (4)0.8528 (3)0.07970 (11)0.0248 (5)
H50.28770.83830.04860.030*
C60.3612 (4)0.7554 (3)0.13298 (12)0.0311 (6)
H6A0.22040.76230.14590.037*
H6B0.38710.65460.12060.037*
C70.4864 (4)1.0487 (3)0.05926 (11)0.0273 (6)
C80.3315 (4)0.9848 (3)0.10048 (13)0.0390 (7)
H8A0.26810.90270.08020.058*
H8B0.39450.95220.13830.058*
H8C0.23071.05770.10990.058*
C90.6024 (5)1.1697 (3)0.08852 (14)0.0409 (7)
H9A0.51161.24840.09900.061*
H9B0.66741.13430.12550.061*
H9C0.70351.20480.06000.061*
C100.4758 (4)0.9399 (3)0.20076 (12)0.0332 (6)
C110.2711 (4)0.9796 (4)0.22501 (14)0.0437 (7)
H11A0.17290.97180.19220.066*
H11B0.27351.07870.24030.066*
H11C0.23500.91400.25810.066*
C120.6366 (5)0.9590 (4)0.24816 (12)0.0479 (8)
H12A0.60380.90180.28430.072*
H12B0.64591.06090.25940.072*
H12C0.76430.92670.23150.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0225 (9)0.0523 (12)0.0433 (11)0.0037 (9)0.0060 (8)0.0041 (10)
O20.0324 (9)0.0262 (9)0.0301 (9)0.0052 (8)0.0008 (8)0.0054 (7)
O30.0271 (8)0.0283 (9)0.0305 (10)0.0056 (8)0.0001 (8)0.0023 (7)
O40.0301 (9)0.0247 (9)0.0291 (9)0.0005 (8)0.0037 (7)0.0027 (7)
O50.0220 (8)0.0151 (8)0.0395 (10)0.0021 (7)0.0014 (8)0.0022 (7)
O60.0440 (11)0.0265 (10)0.0351 (11)0.0035 (9)0.0100 (9)0.0017 (8)
C10.0210 (12)0.0311 (14)0.0437 (16)0.0014 (11)0.0002 (11)0.0073 (12)
C20.0208 (11)0.0192 (12)0.0297 (13)0.0018 (10)0.0012 (10)0.0033 (10)
C30.0236 (11)0.0162 (11)0.0319 (13)0.0016 (10)0.0001 (11)0.0025 (10)
C40.0214 (11)0.0213 (12)0.0296 (13)0.0047 (10)0.0002 (10)0.0021 (10)
C50.0205 (11)0.0229 (12)0.0311 (14)0.0005 (11)0.0005 (11)0.0016 (10)
C60.0321 (14)0.0261 (14)0.0351 (15)0.0026 (11)0.0023 (12)0.0025 (11)
C70.0314 (13)0.0206 (12)0.0300 (14)0.0004 (11)0.0023 (11)0.0026 (11)
C80.0433 (15)0.0336 (16)0.0401 (16)0.0048 (13)0.0113 (13)0.0035 (13)
C90.0481 (16)0.0294 (15)0.0452 (17)0.0100 (14)0.0088 (15)0.0017 (13)
C100.0404 (15)0.0296 (14)0.0296 (14)0.0030 (13)0.0017 (12)0.0008 (12)
C110.0462 (16)0.0469 (19)0.0379 (17)0.0051 (15)0.0076 (14)0.0028 (14)
C120.058 (2)0.0474 (19)0.0380 (17)0.0050 (18)0.0160 (15)0.0056 (14)
Geometric parameters (Å, º) top
O1—C11.415 (3)C5—C61.496 (3)
O1—H10.8400C5—H51.0000
O2—C21.406 (3)C6—H6A0.9900
O2—C71.433 (3)C6—H6B0.9900
O3—C31.421 (3)C7—C81.502 (4)
O3—C71.427 (3)C7—C91.512 (3)
O4—C101.431 (3)C8—H8A0.9800
O4—C41.431 (3)C8—H8B0.9800
O5—C21.420 (3)C8—H8C0.9800
O5—C51.437 (3)C9—H9A0.9800
O6—C101.432 (3)C9—H9B0.9800
O6—C61.430 (3)C9—H9C0.9800
C1—C21.521 (3)C10—C121.511 (4)
C1—H1A0.9900C10—C111.521 (4)
C1—H1B0.9900C11—H11A0.9800
C2—C31.538 (3)C11—H11B0.9800
C3—C41.508 (3)C11—H11C0.9800
C3—H31.0000C12—H12A0.9800
C4—C51.528 (3)C12—H12B0.9800
C4—H41.0000C12—H12C0.9800
C1—O1—H1109.5O6—C6—H6B109.3
C2—O2—C7110.28 (18)C5—C6—H6B109.3
C3—O3—C7108.44 (16)H6A—C6—H6B107.9
C10—O4—C4114.73 (19)O3—C7—O2104.95 (18)
C2—O5—C5109.45 (17)O3—C7—C8108.7 (2)
C10—O6—C6113.8 (2)O2—C7—C8109.4 (2)
O1—C1—C2112.1 (2)O3—C7—C9110.7 (2)
O1—C1—H1A109.2O2—C7—C9109.5 (2)
C2—C1—H1A109.2C8—C7—C9113.2 (2)
O1—C1—H1B109.2C7—C8—H8A109.5
C2—C1—H1B109.2C7—C8—H8B109.5
H1A—C1—H1B107.9H8A—C8—H8B109.5
O2—C2—O5110.57 (19)C7—C8—H8C109.5
O2—C2—C1109.7 (2)H8A—C8—H8C109.5
O5—C2—C1107.4 (2)H8B—C8—H8C109.5
O2—C2—C3105.17 (19)C7—C9—H9A109.5
O5—C2—C3106.03 (18)C7—C9—H9B109.5
C1—C2—C3117.9 (2)H9A—C9—H9B109.5
O3—C3—C4108.90 (19)C7—C9—H9C109.5
O3—C3—C2103.76 (19)H9A—C9—H9C109.5
C4—C3—C2104.56 (19)H9B—C9—H9C109.5
O3—C3—H3113.0O6—C10—O4109.1 (2)
C4—C3—H3113.0O6—C10—C12105.1 (2)
C2—C3—H3113.0O4—C10—C12106.5 (2)
O4—C4—C3106.40 (19)O6—C10—C11112.1 (2)
O4—C4—C5110.24 (19)O4—C10—C11111.4 (2)
C3—C4—C5101.68 (19)C12—C10—C11112.1 (2)
O4—C4—H4112.6C10—C11—H11A109.5
C3—C4—H4112.6C10—C11—H11B109.5
C5—C4—H4112.6H11A—C11—H11B109.5
O5—C5—C6109.6 (2)C10—C11—H11C109.5
O5—C5—C4103.32 (19)H11A—C11—H11C109.5
C6—C5—C4113.1 (2)H11B—C11—H11C109.5
O5—C5—H5110.2C10—C12—H12A109.5
C6—C5—H5110.2C10—C12—H12B109.5
C4—C5—H5110.2H12A—C12—H12B109.5
O6—C6—C5111.8 (2)C10—C12—H12C109.5
O6—C6—H6A109.3H12A—C12—H12C109.5
C5—C6—H6A109.3H12B—C12—H12C109.5
C7—O2—C2—O5116.75 (19)C2—C3—C4—C529.7 (2)
C7—O2—C2—C1124.9 (2)C2—O5—C5—C6154.45 (19)
C7—O2—C2—C32.7 (2)C2—O5—C5—C433.6 (2)
C5—O5—C2—O299.0 (2)O4—C4—C5—O574.0 (2)
C5—O5—C2—C1141.3 (2)C3—C4—C5—O538.5 (2)
C5—O5—C2—C314.5 (2)O4—C4—C5—C644.4 (3)
O1—C1—C2—O2179.99 (19)C3—C4—C5—C6156.9 (2)
O1—C1—C2—O559.8 (3)C10—O6—C6—C553.1 (3)
O1—C1—C2—C359.8 (3)O5—C5—C6—O669.7 (3)
C7—O3—C3—C4136.56 (19)C4—C5—C6—O645.0 (3)
C7—O3—C3—C225.6 (2)C3—O3—C7—O227.7 (2)
O2—C2—C3—O313.8 (2)C3—O3—C7—C8144.7 (2)
O5—C2—C3—O3103.3 (2)C3—O3—C7—C990.4 (2)
C1—C2—C3—O3136.4 (2)C2—O2—C7—O318.3 (2)
O2—C2—C3—C4127.9 (2)C2—O2—C7—C8134.7 (2)
O5—C2—C3—C410.8 (2)C2—O2—C7—C9100.6 (2)
C1—C2—C3—C4109.5 (2)C6—O6—C10—O459.2 (3)
C10—O4—C4—C3162.14 (19)C6—O6—C10—C12173.1 (2)
C10—O4—C4—C552.7 (3)C6—O6—C10—C1164.8 (3)
O3—C3—C4—O4163.87 (17)C4—O4—C10—O659.8 (3)
C2—C3—C4—O485.7 (2)C4—O4—C10—C12172.9 (2)
O3—C3—C4—C580.7 (2)C4—O4—C10—C1164.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.842.172.933 (3)151
C1—H1A···O5i0.992.593.551 (3)165
C4—H4···O1ii1.002.493.278 (3)135
C8—H8A···O5iii0.982.503.462 (3)166
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x1, y, z; (iii) x1/2, y+3/2, z.
(II) 2,3-O-isopropylidene-α-L-sorbofuranose top
Crystal data top
C9H16O6F(000) = 472
Mr = 220.22Dx = 1.385 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7904 reflections
a = 6.7321 (3) Åθ = 2.4–32.5°
b = 9.1945 (5) ŵ = 0.12 mm1
c = 17.0658 (9) ÅT = 153 K
V = 1056.34 (9) Å3Irregular block, colourless
Z = 41.08 × 1.06 × 0.54 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
2219 independent reflections
Radiation source: fine-focus sealed tube2019 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 33.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1010
Tmin = 0.690, Tmax = 0.940k = 1313
19061 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0553P)2 + 0.0956P]
where P = (Fo2 + 2Fc2)/3
2219 reflections(Δ/σ)max < 0.001
141 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C9H16O6V = 1056.34 (9) Å3
Mr = 220.22Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.7321 (3) ŵ = 0.12 mm1
b = 9.1945 (5) ÅT = 153 K
c = 17.0658 (9) Å1.08 × 1.06 × 0.54 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
2219 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2019 reflections with I > 2σ(I)
Tmin = 0.690, Tmax = 0.940Rint = 0.037
19061 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.00Δρmax = 0.27 e Å3
2219 reflectionsΔρmin = 0.23 e Å3
141 parameters
Special details top

Experimental. Data were collected at low temperature using a Siemens SMART CCD diffractometer equipped with a LT-2 device. A full sphere of reciprocal space was scanned by 0.3° steps in ω with a crystal–to–detector distance of 3.97 cm, 1 second per frame. Preliminary orientation matrix was obtained from the first 100 frames using SMART (Siemens, 1995). The collected frames were integrated using the preliminary orientation matrix which was updated every 100 frames. Final cell parameters were obtained by refinement on the position of 7904 reflections with I>10σ(I) after integration of all the frames data using SAINT (Siemens, 1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.08504 (14)0.47499 (11)0.13317 (5)0.02462 (19)
H11.16160.41160.15170.037*
O20.79129 (14)0.42804 (9)0.04444 (5)0.02109 (17)
O30.57185 (13)0.59732 (9)0.00054 (4)0.01970 (17)
O40.72499 (14)0.53949 (9)0.20279 (5)0.02040 (17)
H40.84270.51890.19080.031*
O50.75362 (12)0.32123 (8)0.07773 (5)0.01728 (16)
O60.34248 (14)0.29332 (10)0.21358 (5)0.0252 (2)
H60.30250.22410.24160.038*
C11.05278 (17)0.44662 (14)0.05149 (8)0.0227 (2)
H1A1.11380.35250.03680.027*
H1B1.11460.52410.01950.027*
C20.83068 (16)0.44197 (12)0.03653 (6)0.01622 (19)
C30.70930 (17)0.57618 (12)0.06294 (6)0.01656 (19)
H30.79370.66360.07330.020*
C40.60026 (17)0.52195 (12)0.13564 (6)0.01622 (19)
H4A0.47060.57350.14270.019*
C50.56865 (17)0.36174 (11)0.11392 (6)0.01569 (19)
H50.45880.35390.07470.019*
C60.53096 (18)0.25721 (12)0.18050 (7)0.0188 (2)
H6A0.52990.15590.16090.023*
H6B0.63660.26620.22060.023*
C70.66284 (18)0.54490 (12)0.06966 (6)0.0185 (2)
C80.5025 (2)0.48565 (15)0.12224 (7)0.0255 (2)
H8A0.42550.41220.09380.038*
H8B0.56310.44120.16860.038*
H8C0.41440.56500.13850.038*
C90.7878 (2)0.66200 (14)0.10785 (8)0.0267 (3)
H9A0.70160.74130.12560.040*
H9B0.85870.62080.15280.040*
H9C0.88400.69970.06980.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0192 (4)0.0279 (4)0.0268 (4)0.0038 (4)0.0045 (3)0.0039 (3)
O20.0260 (4)0.0209 (4)0.0164 (3)0.0048 (3)0.0015 (3)0.0018 (3)
O30.0230 (4)0.0198 (3)0.0163 (3)0.0050 (3)0.0007 (3)0.0011 (3)
O40.0224 (4)0.0220 (4)0.0168 (3)0.0022 (3)0.0022 (3)0.0044 (3)
O50.0171 (4)0.0139 (3)0.0208 (3)0.0020 (3)0.0034 (3)0.0008 (3)
O60.0245 (4)0.0256 (4)0.0254 (4)0.0019 (3)0.0073 (4)0.0093 (4)
C10.0155 (4)0.0274 (5)0.0252 (5)0.0001 (4)0.0022 (4)0.0038 (4)
C20.0164 (4)0.0163 (4)0.0160 (4)0.0007 (4)0.0016 (4)0.0010 (4)
C30.0191 (5)0.0139 (4)0.0166 (4)0.0013 (4)0.0010 (4)0.0009 (3)
C40.0177 (4)0.0158 (4)0.0152 (4)0.0027 (4)0.0009 (4)0.0008 (3)
C50.0156 (4)0.0155 (4)0.0159 (4)0.0006 (4)0.0007 (4)0.0006 (3)
C60.0205 (5)0.0182 (4)0.0178 (4)0.0007 (4)0.0018 (4)0.0030 (4)
C70.0229 (5)0.0160 (5)0.0166 (4)0.0003 (4)0.0016 (4)0.0013 (4)
C80.0276 (6)0.0257 (5)0.0231 (5)0.0049 (5)0.0036 (5)0.0001 (4)
C90.0341 (6)0.0223 (5)0.0237 (5)0.0087 (5)0.0041 (5)0.0032 (4)
Geometric parameters (Å, º) top
O1—C11.4347 (15)C3—C41.5255 (15)
O1—H10.8400C3—H31.0000
O2—C21.4128 (14)C4—C51.5338 (15)
O2—C71.4448 (14)C4—H4A1.0000
O3—C71.4292 (13)C5—C61.5097 (15)
O3—C31.4241 (14)C5—H51.0000
O4—C41.4298 (14)C6—H6A0.9900
O4—H40.8400C6—H6B0.9900
O5—C21.4128 (13)C7—C81.5057 (17)
O5—C51.4391 (13)C7—C91.5138 (17)
O6—C61.4279 (14)C8—H8A0.9800
O6—H60.8400C8—H8B0.9800
C1—C21.5175 (16)C8—H8C0.9800
C1—H1A0.9900C9—H9A0.9800
C1—H1B0.9900C9—H9B0.9800
C2—C31.5471 (15)C9—H9C0.9800
C1—O1—H1109.5O5—C5—C6107.68 (9)
C2—O2—C7109.65 (8)O5—C5—C4103.43 (9)
C7—O3—C3107.60 (8)C6—C5—C4116.93 (9)
C4—O4—H4109.5O5—C5—H5109.5
C2—O5—C5109.15 (8)C6—C5—H5109.5
C6—O6—H6109.5C4—C5—H5109.5
O1—C1—C2108.52 (10)O6—C6—C5107.39 (9)
O1—C1—H1A110.0O6—C6—H6A110.2
C2—C1—H1A110.0C5—C6—H6A110.2
O1—C1—H1B110.0O6—C6—H6B110.2
C2—C1—H1B110.0C5—C6—H6B110.2
H1A—C1—H1B108.4H6A—C6—H6B108.5
O5—C2—O2110.29 (9)O3—C7—O2104.93 (8)
O5—C2—C1107.47 (9)O3—C7—C8108.31 (10)
O2—C2—C1110.61 (9)O2—C7—C8109.73 (10)
O5—C2—C3106.73 (8)O3—C7—C9111.05 (9)
O2—C2—C3104.96 (9)O2—C7—C9108.94 (10)
C1—C2—C3116.68 (10)C8—C7—C9113.53 (10)
O3—C3—C4109.89 (9)C7—C8—H8A109.5
O3—C3—C2103.55 (8)C7—C8—H8B109.5
C4—C3—C2103.32 (9)H8A—C8—H8B109.5
O3—C3—H3113.1C7—C8—H8C109.5
C4—C3—H3113.1H8A—C8—H8C109.5
C2—C3—H3113.1H8B—C8—H8C109.5
O4—C4—C5112.55 (9)C7—C9—H9A109.5
O4—C4—C3109.42 (9)C7—C9—H9B109.5
C5—C4—C3100.61 (8)H9A—C9—H9B109.5
O4—C4—H4A111.3C7—C9—H9C109.5
C5—C4—H4A111.3H9A—C9—H9C109.5
C3—C4—H4A111.3H9B—C9—H9C109.5
C5—O5—C2—O2100.87 (10)C2—C3—C4—O486.04 (10)
C5—O5—C2—C1138.48 (9)O3—C3—C4—C577.35 (10)
C5—O5—C2—C312.61 (11)C2—C3—C4—C532.62 (10)
C7—O2—C2—O5116.66 (9)C2—O5—C5—C6158.42 (9)
C7—O2—C2—C1124.60 (10)C2—O5—C5—C434.03 (10)
C7—O2—C2—C32.05 (12)O4—C4—C5—O575.55 (11)
O1—C1—C2—O565.12 (12)C3—C4—C5—O540.80 (10)
O1—C1—C2—O2174.44 (9)O4—C4—C5—C642.58 (14)
O1—C1—C2—C354.60 (14)C3—C4—C5—C6158.93 (10)
C7—O3—C3—C4138.85 (9)O5—C5—C6—O6177.09 (8)
C7—O3—C3—C229.03 (10)C4—C5—C6—O667.11 (13)
O5—C2—C3—O3100.74 (9)C3—O3—C7—O230.81 (11)
O2—C2—C3—O316.32 (11)C3—O3—C7—C8147.96 (9)
C1—C2—C3—O3139.14 (10)C3—O3—C7—C986.73 (11)
O5—C2—C3—C413.88 (11)C2—O2—C7—O319.73 (12)
O2—C2—C3—C4130.95 (9)C2—O2—C7—C8135.90 (10)
C1—C2—C3—C4106.23 (11)C2—O2—C7—C999.25 (11)
O3—C3—C4—O4163.98 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O10.841.952.7638 (13)164
O1—H1···O6i0.841.942.7708 (13)168
O6—H6···O4ii0.841.952.7730 (12)165
C8—H8A···O5iii0.982.453.3682 (15)155
C9—H9C···O3iv0.982.553.4508 (16)154
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x1/2, y+1/2, z; (iv) x+1/2, y+3/2, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC12H20O6C9H16O6
Mr260.28220.22
Crystal system, space groupOrthorhombic, P212121Orthorhombic, P212121
Temperature (K)153153
a, b, c (Å)6.7203 (16), 9.286 (2), 21.972 (5)6.7321 (3), 9.1945 (5), 17.0658 (9)
V3)1371.1 (6)1056.34 (9)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.100.12
Crystal size (mm)0.78 × 0.48 × 0.321.08 × 1.06 × 0.54
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Siemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.440, 0.9690.690, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
15054, 1483, 1236 19061, 2219, 2019
Rint0.0670.037
(sin θ/λ)max1)0.6030.765
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.00 0.031, 0.082, 1.00
No. of reflections14832219
No. of parameters168141
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.240.27, 0.23

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003) and SADABS (Sheldrick, 2003), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2008).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.842.172.933 (3)151
C1—H1A···O5i0.992.593.551 (3)165
C4—H4···O1ii1.002.493.278 (3)135
C8—H8A···O5iii0.982.503.462 (3)166
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x1, y, z; (iii) x1/2, y+3/2, z.
Hydrogen-bonding geometry for (II) (Å, °) top
LabelD—H···AD—HH···AD···AD—H···A
aO4—H4···O10.841.952.7638 (13)164
bO1—H1···O6i0.841.942.7708 (13)168
cO6—H6···O4ii0.841.952.7730 (12)165
dC8—H8A···O5iii0.982.453.3682 (15)155
eC9—H9C···O3iv0.982.553.4508 (16)154
Symmetry codes: (i) x+1, y, z; (ii) -x+1, y-1/2, -z+1/2; (iii) x-1/2, -y+1/2, -z; (iv) x+1/2, -y+3/2, -z.
Selected torsion angles (°) for (I) and (II). top
(I)(II)
O2—C2—C3—O313.8 (2)16.32 (11)
C7-O3—C3—C2-25.6 (2)-29.03 (10)
C3—O3—C7—O227.7 (2)30.81 (11)
C2—O2—C7—O3-18.3 (2)-19.73 (12)
C7—O2—C2—C32.7 (2)2.05 (12)
O5—C2—C3—C410.8 (2)13.88 (11)
C2—C3—C4—C5-29.7 (2)-32.62 (10)
C3—C4—C5—O538.5 (2)40.80 (10)
C2—O5—C5—C4-33.6 (2)-34.03 (10)
C5—O5—C2—C314.5 (2)12.61 (11)
O4—C4—C5—C644.4 (3)
C4—C5—C6—O6-45.0 (3)
C10—O6—C6—C553.1 (3)
C6—O6—C10—O4-59.2 (3)
C4—O4—C10—O659.8 (3)
C10—O4—C4—C5-52.7 (3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds