Download citation
Download citation
link to html
(2SR,4RS)-7-Chloro-2-exo-[(E)-styryl]-2,3,4,5-tetra­hydro-1H-1,4-epoxy-1-benzazepine, C18H16ClNO, (I), crystallizes as a racemic twin in the space group P21 and the mol­ecules are linked into a chain of edge-fused R33(9) rings by a combination of C—H...O and C—H...N hydrogen bonds. The diastereo­isomer (2RS,4RS)-7-chloro-2-endo-[(E)-styryl]-2,3,4,5-tetra­hydro-1H-1,4-epoxy-1-benzazepine, (II), also crystallizes as a racemic twin, but in the space group P212121, and a two-centre C—H...N hydrogen bond and a three-centre C—H...(O,N) hydrogen bond combine to link the mol­ecules into a complex chain of rings. In (2R,4R)-7-fluoro-2-endo-[(E)-styryl]-2,3,4,5-tetra­hydro-1H-1,4-epoxy-1-benzazepine, C18H16FNO, (III), which is not isomorphous with (II), the mol­ecules are linked by a single C—H...O hydrogen bond into simple chains, but the mol­ecular arrangements in (II) and (III) are nonetheless very similar. The significance of this study lies in its observation of the variations in mol­ecular configuration and conformation, and in the variation in the supra­molecular aggregation, consequent upon modest changes in the peripheral substituents.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108025638/gg3177sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108025638/gg3177Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108025638/gg3177IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108025638/gg3177IIIsup4.hkl
Contains datablock III

CCDC references: 703737; 703738; 703739

Comment top

The tetrahydro-1-benzazepine ring is an important pharmacophore in drug discovery and many of its derivatives exhibit a broad spectrum of biological activity (Zuccotto et al., 2001; Fabio et al., 2003; Zhao et al., 2003; Seto et al., 2005; Shimada et al., 2005; Kunick et al., 2006). Accordingly, a number of synthetic methods have recently been developed for the synthesis of new derivatives of this heterocyclic system (Fujita et al., 2004; Ikemoto et al., 2005; Qadir et al., 2005). In this context, we have recently developed a simple and efficient synthetic pathway to obtain new 1,4-epoxy-2-aryltetrahydro-1-benzazepines and 1,4-epoxy-2-aryltetrahydronaphtho[1,2-b]azepines and their reduced amino alcohols from readily available 2-allyl-N-benzyl-substituted anilines or naphthylamines, respectively (Gómez et al., 2006; Yépez et al., 2006). Compounds of this type show promising action against Trypanosoma cruzi and Leishmania chagasi parasites (Palma et al., 2008).

Based on these results, and as part of a programme to identify structurally novel anti-parasitic compounds with new modes of action to combat both T. cruzi and L. chagasi, we have focused our attention on the synthesis of a range of 2-substituted 1,4-epoxy-tetrahydro-1-benzazepines. We report here the structures of three styryl-substituted examples, compounds (I)–(III) (Figs. 1–3); further reports are planned, to deal with aryl-substituted examples and with examples carrying heterocyclic substituents at C2. A search of the Cambridge Structural Database (CSD, Version 5.29, November 2007; Allen, 2002) found 72 examples of the bicyclic perhydro-1-benzazepine skeleton, which is a sub-structural fragment of (I)–(III), but found no examples at all of the 1,4-epoxy-tetrahydro-1-benzazepine skeleton itself.

The synthesis of compounds (I)–(III) involved treating the corresponding 2-allyl-N-cinnamylanilines (A) with an excess of hydrogen peroxide solution in the presence of catalytic amounts of sodium tungstate, and subsequent internal 1,3-dipolar cycloaddition of the resulting nitrones (B) across the terminal CC bond of the pendant allylic fragment connected to the ortho position, giving the tricyclic product (C) (see scheme). The 1,3-dipolar cycloaddition of these nitrones resulted in the formation of diastereomeric mixtures of both 2-exo- and 2-endo-1,4-epoxy-cycloadducts, which were successfully separated by column chromatography.

Compounds (I) and (II) were both found to crystallize as racemic twins; the reference molecules were selected as those having the R configuration at C4. The absolute configuration of (III) was indeterminate, so again the reference molecule was selected as having the R configuration at C4. On this basis, (I) has the S configuration at C2, while (II) and (III) have the R configuration at C2. Compounds (I) and (II) are thus diastereoisomers. However, despite the close similarity between the constitutions of (II) and (III), they are not isomorphous, crystallizing in space groups P212121 and P21, respectively.

The shapes of the heterobicyclic ring systems in (I)–(III), as defined by the ring-puckering parameters (Cremer & Pople, 1975), are very similar (Table 1). For the five-membered rings, those in (II) and (III) adopt half-chair conformations, for which the ideal puckering angle ϕ is (36k + 18)°, where k represents zero or an integer. For the corresponding ring in (I), the conformation is intermediate between an envelope form, where the ideal value of ϕ is 36k°, and the half-chair form observed in the other examples. In each compound studied here, the conformation of the six-membered heterocyclic ring is intermediate between a half-chair form, where the idealized values of the ring-puckering angles are θ = 50.8° and ϕ = (60k + 30)°, and an envelope form, where the idealized values are θ = 54.7° and ϕ = 60k°.

In the title compounds, the torsion angle N1—C2—C21—C22 (Fig. 1) is 137.8 (3)° in (I), as opposed to -101.4 (3) and -104.56 (10)° in (II) and (III), respectively, possibly associated with the difference in configuration at C2 in (I) on the one hand and in (II) and (III) on the other. In addition, the torsion angle C21—C22—C221—C222 defining the orientation of the terminal aryl group is 22.7 (5)° in (I), as opposed to 3.5 (4)° in (II) and -1.45 (14)° in (III), again highlighting the conformational similarity between (II) and (III).

The hydrogen-bonded supramolecular structures of (I)–(III) are all one-dimensional. In compound (I), molecules related by the 21 screw axis along (1/2, y, 1/2) are linked by two hydrogen bonds (Table 2). The C—H···O and C—H···N hydrogen bonds acting individually give rise to C(3) and C(4) (Bernstein et al., 1995) chains, respectively, while the combination of these two hydrogen bonds generates a chain of edge-fused R33(9) rings (Fig. 2). Although compounds (II) and (III) are not isomorphous, their supramolecular hydrogen-bonded structures show considerable similarity. In compound (II), molecules related by translation along [100] are linked by a combination of one two-centre C—H···N hydrogen bond and one three-centre C—H···(N,O) hydrogen bond (Table 2). Although several of the individual components are quite long, the cooperative effect of the three individual components is probably significant. Acting individually, these interactions generate C(5), C(4) and C(4) chains, respectively, while in combination they generate an R22(7) motif divided into R21(3) and R12(6) sectors (Fig. 3). In compound (III), in contrast, molecules related by translation along [100] are linked into simple C(4) chains (Fig. 4) by a single C—H···O hydrogen bond, the donor and acceptor of which correspond exactly to the C—H···O interaction in (III), although this interaction in (III) is characterized by significantly shorter H···O and C···O distances than its counterpart in (II) (Table 2). However, the slightly different mutual orientation of the molecules in (II) and (III) (Figs. 3 and 4) results in H3B···N1i and H5B···N1i [symmetry code: (i) 1 + x, y, z] distances in (III) of 3.08 and 2.74 Å, respectively, which are very much longer than the corresponding distances in (II) and well outside the range for effective hydrogen bonding. However, the overall arrangement of the molecules within the chains along [100] is remarkably similar in these two compounds (Figs. 3 and 4).

In summary, we have characterized three compounds containing a heterocyclic ring system whose structural characteristics have not previously been reported, we have analysed the supramolecular aggregation, and we have found that, for compounds (II) and (III), while the crystals are not isomorphous the molecular arrangements within the crystals are nonetheless very similar.

Experimental top

For each of compounds (I)–(III), to a stirred solution of the appropriately substituted 2-allylaniline (0.10 mol; see scheme) in methanol (40 ml) was added sodium tungstate dihydrate, Na2WO4.2H2O (5 mol%), followed by 30% aqueous hydrogen peroxide solution (0.30 mol). The resulting mixtures were then stirred at ambient temperature for periods ranging from 8 to 72 h. Each mixture was then filtered and the solvent was removed under reduced pressure. Toluene (50 ml) was added to the solid residue and the resulting solution was heated under reflux for periods ranging from 3 h to 10 h. After cooling the solution to ambient temperature, the solvent was removed under reduced pressure and the crude product was purified by chromatography on silica using heptane–ethyl acetate (compositions ranged from 10:1 to 60:1 v/v) as eluent. Crystallization from heptane gave crystals of compounds (I)–(III) suitable for single-crystal X-ray diffraction.

For (I): colourless crystals, yield 54%, m.p. 415–416 K; MS (70 eV) m/z (%): 297 (M+, 35Cl, 75), 296 (7), 280 (36), 267 (11), 164 (32), 139 (71), 138 (100), 130 (96), 129 (77), 128 (41), 112 (25). Analysis, found: C 72.4, H 5.8, N 4.5%; C18H16ClNO requires: C 72.6, H 5.4, N 4.7%.

For (II): colourless crystals, yield 25%, m.p. 403–404 K; MS (70 eV) m/z (%): 297 (M+, 35Cl, 67), 296 (11), 280 (36), 267 (11), 164 (27), 139 (72), 138 (100), 130 (95), 129 (76), 128 (44), 112 (23). Analysis, found: C 72.9, H 5.1, N 4.5%; C18H16ClNO requires: C 72.6, H 5.4, N 4.7%.

For (III): orange crystals, yield 20%, m.p. 407–408 K; MS (70 eV) m/z (%): 281 (M+, 64), 280 (41), 264 (33), 251 (12), 148 (29), 130 (62), 129 (58), 128 (33), 123 (56), 122 (100), 96 (30). Analysis, found: C 76.6, H 5.9, N 4.8%; C18H16FNO requires: C 76.8, H 5.7, N 5.0%.

Refinement top

The space group P212121 was uniquely assigned from the systematic absences for compound (II). For compounds (I) and (III), the systematic absences permitted P21 or P21/m as possible space groups; in each case, P21 was selected and confirmed by the subsequent structure analyses. All H atoms were located in difference maps and then treated as riding atoms in geometrically idealized positions, with C—H = 0.95 (aromatic, heteroaromatic and alkene), 0.99 (CH2) or 1.00 Å (aliphatic CH), and with Uiso(H) = 1.2Ueq(C). In the absence of significant resonant scattering in (III), the Flack parameter (Flack, 1983) was indeterminate (Flack & Bernardinelli, 2000), and hence Friedel-equivalent reflections were merged prior to the final refinements; the reference molecule in (III) was set to have the R configuration at C4. Compounds (I) and (II) crystallized as racemic twins and they were refined using the TWIN and BASF instructions in SHELXL97 (Sheldrick, 2008), giving twin fractions of 0.32 (9)/0.68 (9) in (I) and 0.44 (8)/0.56 (8) in (II), and again the reference molecules were chosen as those having the R configuration at C4.

Computing details top

For all compounds, data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular structure of compound (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. The molecular structure of compound (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of compound (I), showing the formation of a hydrogen-bonded chain of edge-fused R33(9) rings along [010]. For the sake of clarity, H atoms bonded to C atoms which are not involved in the motif shown have been omitted.
[Figure 5] Fig. 5. A stereoview of part of the crystal structure of compound (II), showing the formation of a hydrogen-bonded chain of rings along [100]. For the sake of clarity, H atoms bonded to C atoms which are not involved in the motif shown have been omitted.
[Figure 6] Fig. 6. A stereoview of part of the crystal structure of compound (III), showing the formation of a hydrogen-bonded C(4) chain along [100]. For the sake of clarity, only the H atoms bonded to atoms C3 and C5 are shown.
(I) (2SR,4RS)-7-Chloro-2-exo-[(E)-styryl]-2,3,4,5-tetrahydro- 1,4-epoxy-1H-1-benzazepine top
Crystal data top
C18H16ClNOF(000) = 312
Mr = 297.77Dx = 1.359 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3305 reflections
a = 10.5798 (8) Åθ = 5.1–27.5°
b = 5.3448 (10) ŵ = 0.26 mm1
c = 12.873 (3) ÅT = 120 K
β = 90.204 (12)°Lath, colourless
V = 727.9 (2) Å30.45 × 0.15 × 0.08 mm
Z = 2
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3305 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2033 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 5.1°
ϕ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 66
Tmin = 0.924, Tmax = 0.979l = 1616
17564 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.048P)2 + 0.173P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3305 reflectionsΔρmax = 0.31 e Å3
191 parametersΔρmin = 0.33 e Å3
1 restraintAbsolute structure: Flack (1983), with 1460 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.32 (9)
Crystal data top
C18H16ClNOV = 727.9 (2) Å3
Mr = 297.77Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.5798 (8) ŵ = 0.26 mm1
b = 5.3448 (10) ÅT = 120 K
c = 12.873 (3) Å0.45 × 0.15 × 0.08 mm
β = 90.204 (12)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3305 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2033 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.979Rint = 0.083
17564 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.120Δρmax = 0.31 e Å3
S = 1.05Δρmin = 0.33 e Å3
3305 reflectionsAbsolute structure: Flack (1983), with 1460 Friedel pairs
191 parametersAbsolute structure parameter: 0.32 (9)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl71.20480 (7)0.6898 (2)0.65479 (7)0.0577 (3)
O140.62139 (18)0.3471 (4)0.57943 (17)0.0416 (6)
N10.6811 (2)0.3167 (5)0.67945 (19)0.0321 (6)
C20.6050 (3)0.4855 (6)0.7457 (3)0.0359 (8)
C30.5667 (3)0.7010 (7)0.6734 (3)0.0493 (9)
C40.6093 (3)0.6136 (6)0.5665 (3)0.0469 (9)
C50.7361 (3)0.7137 (7)0.5354 (2)0.0425 (8)
C5a0.8373 (3)0.6060 (5)0.6031 (2)0.0309 (7)
C60.9611 (3)0.6886 (7)0.5988 (2)0.0355 (7)
C71.0508 (3)0.5803 (6)0.6613 (2)0.0361 (8)
C81.0234 (3)0.3899 (7)0.7272 (2)0.0382 (8)
C90.8999 (3)0.3028 (6)0.7310 (2)0.0354 (8)
C9a0.8085 (2)0.4117 (5)0.6701 (2)0.0287 (7)
C210.4925 (2)0.3474 (6)0.7873 (3)0.0363 (8)
C220.4526 (3)0.3671 (6)0.8840 (3)0.0368 (8)
C2210.3400 (3)0.2490 (5)0.9274 (2)0.0317 (7)
C2220.2866 (3)0.0386 (6)0.8834 (2)0.0375 (8)
C2230.1788 (3)0.0674 (6)0.9246 (2)0.0379 (8)
C2240.1238 (3)0.0329 (6)1.0107 (2)0.0373 (8)
C2250.1763 (3)0.2392 (6)1.0569 (2)0.0400 (8)
C2260.2837 (3)0.3460 (6)1.0163 (2)0.0367 (8)
H20.65780.55050.80430.043*
H3A0.47420.72850.67480.059*
H3B0.61000.85810.69340.059*
H40.54400.65390.51270.056*
H5A0.75300.67010.46200.051*
H5B0.73630.89830.54150.051*
H60.98380.81990.55280.043*
H81.08730.31790.76980.046*
H90.87860.16790.77570.043*
H210.44760.23970.74150.044*
H220.50170.46760.92970.044*
H2220.32440.03430.82380.045*
H2230.14280.21120.89280.046*
H2240.04940.04011.03850.045*
H2250.13850.30871.11720.048*
H2260.31990.48801.04930.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl70.0311 (4)0.0791 (7)0.0629 (6)0.0168 (5)0.0110 (4)0.0268 (5)
O140.0376 (12)0.0313 (13)0.0558 (14)0.0017 (10)0.0188 (10)0.0034 (11)
N10.0254 (13)0.0295 (14)0.0413 (15)0.0004 (10)0.0063 (11)0.0017 (12)
C20.0250 (15)0.0312 (18)0.051 (2)0.0015 (14)0.0014 (14)0.0104 (15)
C30.0222 (15)0.0321 (18)0.094 (3)0.0023 (16)0.0015 (16)0.002 (2)
C40.0400 (19)0.037 (2)0.064 (2)0.0040 (15)0.0237 (17)0.0095 (17)
C50.0489 (19)0.0340 (19)0.0444 (19)0.0012 (18)0.0105 (15)0.0070 (17)
C5a0.0347 (17)0.0266 (17)0.0315 (17)0.0013 (13)0.0045 (13)0.0019 (13)
C60.0373 (16)0.0330 (17)0.0362 (17)0.0094 (17)0.0052 (13)0.0010 (17)
C70.0305 (17)0.043 (2)0.0347 (18)0.0054 (14)0.0051 (14)0.0149 (16)
C80.0230 (15)0.053 (2)0.0383 (18)0.0081 (15)0.0061 (13)0.0016 (17)
C90.0316 (17)0.0364 (19)0.0382 (18)0.0052 (14)0.0003 (14)0.0028 (15)
C9a0.0268 (15)0.0261 (17)0.0331 (17)0.0021 (13)0.0026 (13)0.0043 (13)
C210.0207 (14)0.0341 (18)0.054 (2)0.0026 (14)0.0040 (14)0.0071 (16)
C220.0267 (16)0.0343 (19)0.049 (2)0.0000 (14)0.0065 (14)0.0070 (17)
C2210.0261 (15)0.034 (2)0.0350 (17)0.0026 (14)0.0077 (13)0.0018 (14)
C2220.0340 (17)0.037 (2)0.0417 (19)0.0011 (14)0.0006 (15)0.0028 (16)
C2230.0366 (17)0.034 (2)0.0429 (19)0.0046 (15)0.0026 (15)0.0029 (15)
C2240.0310 (17)0.039 (2)0.0417 (19)0.0018 (14)0.0036 (15)0.0022 (17)
C2250.0366 (17)0.047 (2)0.0365 (18)0.0071 (17)0.0004 (14)0.0036 (16)
C2260.0362 (17)0.0325 (19)0.0414 (19)0.0009 (15)0.0102 (14)0.0025 (16)
Geometric parameters (Å, º) top
Cl7—C71.733 (3)C7—C81.357 (5)
O14—C41.439 (4)C8—C91.389 (4)
O14—N11.441 (3)C8—H80.95
N1—C9a1.446 (4)C9—C9a1.372 (4)
N1—C21.481 (4)C9—H90.95
C2—C211.500 (4)C21—C221.321 (4)
C2—C31.534 (5)C21—H210.95
C2—H21.00C22—C2211.461 (4)
C3—C41.522 (5)C22—H220.95
C3—H3A0.99C221—C2221.379 (4)
C3—H3B0.99C221—C2261.391 (4)
C4—C51.501 (4)C222—C2231.381 (4)
C4—H41.00C222—H2220.95
C5—C5a1.494 (4)C223—C2241.363 (4)
C5—H5A0.99C223—H2230.95
C5—H5B0.99C224—C2251.370 (4)
C5a—C61.384 (4)C224—H2240.95
C5a—C9a1.384 (4)C225—C2261.377 (4)
C6—C71.370 (4)C225—H2250.95
C6—H60.95C226—H2260.95
C4—O14—N1104.7 (2)C8—C7—Cl7119.1 (3)
O14—N1—C9a107.0 (2)C6—C7—Cl7118.6 (3)
O14—N1—C2102.0 (2)C7—C8—C9118.5 (3)
C9a—N1—C2110.0 (2)C7—C8—H8120.8
N1—C2—C21109.8 (2)C9—C8—H8120.8
N1—C2—C3104.5 (3)C9a—C9—C8119.9 (3)
C21—C2—C3112.3 (2)C9a—C9—H9120.0
N1—C2—H2110.0C8—C9—H9120.0
C21—C2—H2110.0C9—C9a—C5a121.2 (3)
C3—C2—H2110.0C9—C9a—N1117.3 (3)
C4—C3—C2103.9 (3)C5a—C9a—N1121.5 (2)
C4—C3—H3A111.0C22—C21—C2123.7 (3)
C2—C3—H3A111.0C22—C21—H21118.2
C4—C3—H3B111.0C2—C21—H21118.2
C2—C3—H3B111.0C21—C22—C221126.2 (3)
H3A—C3—H3B109.0C21—C22—H22116.9
O14—C4—C5107.7 (3)C221—C22—H22116.9
O14—C4—C3103.1 (3)C222—C221—C226117.8 (3)
C5—C4—C3113.6 (3)C222—C221—C22121.9 (3)
O14—C4—H4110.7C226—C221—C22120.3 (3)
C5—C4—H4110.7C221—C222—C223121.0 (3)
C3—C4—H4110.7C221—C222—H222119.5
C5a—C5—C4110.2 (3)C223—C222—H222119.5
C5a—C5—H5A109.6C224—C223—C222120.4 (3)
C4—C5—H5A109.6C224—C223—H223119.8
C5a—C5—H5B109.6C222—C223—H223119.8
C4—C5—H5B109.6C223—C224—C225119.8 (3)
H5A—C5—H5B108.1C223—C224—H224120.1
C6—C5a—C9a118.3 (3)C225—C224—H224120.1
C6—C5a—C5122.0 (3)C224—C225—C226120.2 (3)
C9a—C5a—C5119.6 (3)C224—C225—H225119.9
C7—C6—C5a119.7 (3)C226—C225—H225119.9
C7—C6—H6120.1C225—C226—C221120.9 (3)
C5a—C6—H6120.1C225—C226—H226119.5
C8—C7—C6122.3 (3)C221—C226—H226119.5
C4—O14—N1—C9a67.9 (3)C8—C9—C9a—C5a1.0 (4)
C4—O14—N1—C247.6 (3)C8—C9—C9a—N1178.5 (3)
O14—N1—C2—C2187.4 (3)C6—C5a—C9a—C90.0 (4)
C9a—N1—C2—C21159.3 (2)C5—C5a—C9a—C9177.8 (3)
O14—N1—C2—C333.2 (3)C6—C5a—C9a—N1179.5 (3)
C9a—N1—C2—C380.1 (3)C5—C5a—C9a—N12.7 (4)
N1—C2—C3—C48.2 (3)O14—N1—C9a—C9149.2 (2)
C21—C2—C3—C4110.7 (3)C2—N1—C9a—C9100.8 (3)
N1—O14—C4—C578.3 (3)O14—N1—C9a—C5a31.3 (3)
N1—O14—C4—C342.0 (3)C2—N1—C9a—C5a78.7 (3)
C2—C3—C4—O1419.8 (3)N1—C2—C21—C22137.8 (3)
C2—C3—C4—C596.5 (3)C3—C2—C21—C22106.4 (4)
O14—C4—C5—C5a46.3 (4)C2—C21—C22—C221176.3 (3)
C3—C4—C5—C5a67.1 (4)C21—C22—C221—C22222.7 (5)
C4—C5—C5a—C6172.5 (3)C21—C22—C221—C226158.0 (3)
C4—C5—C5a—C9a9.8 (4)C226—C221—C222—C2231.8 (4)
C9a—C5a—C6—C71.0 (4)C22—C221—C222—C223178.8 (3)
C5—C5a—C6—C7178.8 (3)C221—C222—C223—C2240.7 (5)
C5a—C6—C7—C81.0 (5)C222—C223—C224—C2250.4 (5)
C5a—C6—C7—Cl7179.5 (2)C223—C224—C225—C2260.5 (4)
C6—C7—C8—C90.0 (5)C224—C225—C226—C2210.7 (4)
Cl7—C7—C8—C9179.5 (2)C222—C221—C226—C2251.8 (4)
C7—C8—C9—C9a1.0 (5)C22—C221—C226—C225178.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···N1i0.992.573.507 (5)158
C4—H4···O14ii1.002.353.318 (4)163
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1.
(II) (2RS,4RS)-7-Chloro-2-endo-[(E)-styryl]-2,3,4,5-tetrahydro- 1,4-epoxy-1H-1-benzazepine top
Crystal data top
C18H16ClNOF(000) = 624
Mr = 297.77Dx = 1.337 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3384 reflections
a = 5.2855 (10) Åθ = 3.5–27.5°
b = 15.649 (2) ŵ = 0.26 mm1
c = 17.880 (3) ÅT = 120 K
V = 1478.9 (4) Å3Block, colourless
Z = 40.36 × 0.27 × 0.14 mm
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3384 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2525 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.5°
ϕ and ω scansh = 66
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2020
Tmin = 0.929, Tmax = 0.965l = 2323
32581 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0236P)2 + 0.5604P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
3384 reflectionsΔρmax = 0.24 e Å3
191 parametersΔρmin = 0.22 e Å3
0 restraintsAbsolute structure: Flack (1983), with 1401 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.44 (8)
Crystal data top
C18H16ClNOV = 1478.9 (4) Å3
Mr = 297.77Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.2855 (10) ŵ = 0.26 mm1
b = 15.649 (2) ÅT = 120 K
c = 17.880 (3) Å0.36 × 0.27 × 0.14 mm
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3384 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2525 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.965Rint = 0.063
32581 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.084Δρmax = 0.24 e Å3
S = 1.12Δρmin = 0.22 e Å3
3384 reflectionsAbsolute structure: Flack (1983), with 1401 Friedel pairs
191 parametersAbsolute structure parameter: 0.44 (8)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl70.26769 (16)0.37935 (4)0.83238 (3)0.04339 (19)
O140.5908 (3)0.69616 (9)0.61265 (10)0.0305 (4)
N10.6466 (3)0.60833 (11)0.59337 (11)0.0271 (5)
C20.5013 (5)0.59945 (15)0.52196 (13)0.0269 (6)
C30.2559 (5)0.65030 (13)0.53609 (12)0.0255 (5)
C40.3163 (4)0.70133 (14)0.60672 (13)0.0264 (5)
C50.2071 (5)0.66351 (12)0.67763 (11)0.0240 (5)
C5a0.3357 (4)0.57909 (13)0.69370 (12)0.0209 (5)
C60.2514 (5)0.52469 (13)0.75038 (12)0.0238 (5)
C70.3772 (5)0.44850 (14)0.76345 (12)0.0261 (6)
C80.5868 (5)0.42502 (14)0.72237 (13)0.0277 (6)
C90.6709 (4)0.47882 (13)0.66638 (14)0.0271 (5)
C9a0.5462 (4)0.55505 (13)0.65238 (12)0.0211 (5)
C210.4707 (5)0.50834 (15)0.49879 (13)0.0261 (6)
C220.6092 (5)0.47215 (15)0.44635 (13)0.0274 (6)
C2210.5971 (4)0.38406 (15)0.41849 (12)0.0232 (5)
C2220.4196 (5)0.32487 (16)0.44247 (13)0.0317 (6)
C2230.4147 (5)0.24267 (17)0.41448 (14)0.0343 (6)
C2240.5891 (5)0.21790 (16)0.36117 (14)0.0326 (6)
C2250.7634 (6)0.27566 (15)0.33536 (15)0.0405 (6)
C2260.7685 (5)0.35768 (14)0.36393 (14)0.0359 (6)
H20.59820.62950.48180.032*
H3A0.21740.68870.49360.031*
H3B0.11060.61150.54430.031*
H40.26140.76210.60080.032*
H5A0.23410.70330.71990.029*
H5B0.02280.65460.67160.029*
H60.10850.53980.77980.029*
H80.67180.37280.73240.033*
H90.81460.46350.63740.033*
H210.34530.47480.52310.031*
H220.73290.50770.42360.033*
H2220.29850.34130.47900.038*
H2230.29150.20320.43190.041*
H2240.58830.16110.34250.039*
H2250.88080.25930.29780.049*
H2260.89150.39690.34600.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl70.0695 (5)0.0337 (3)0.0270 (3)0.0059 (4)0.0102 (4)0.0102 (3)
O140.0242 (9)0.0181 (8)0.0493 (10)0.0046 (7)0.0068 (8)0.0023 (8)
N10.0228 (11)0.0182 (10)0.0403 (12)0.0024 (8)0.0018 (9)0.0027 (9)
C20.0239 (13)0.0279 (13)0.0290 (13)0.0012 (11)0.0056 (11)0.0070 (10)
C30.0254 (13)0.0267 (11)0.0244 (11)0.0031 (12)0.0014 (12)0.0050 (9)
C40.0248 (14)0.0191 (11)0.0353 (13)0.0052 (10)0.0060 (11)0.0037 (10)
C50.0255 (13)0.0208 (11)0.0257 (12)0.0056 (10)0.0060 (11)0.0045 (9)
C5a0.0242 (13)0.0191 (11)0.0194 (10)0.0025 (10)0.0084 (9)0.0063 (9)
C60.0264 (13)0.0259 (11)0.0191 (10)0.0019 (12)0.0025 (11)0.0041 (9)
C70.0394 (16)0.0209 (12)0.0179 (12)0.0036 (11)0.0047 (11)0.0002 (9)
C80.0319 (14)0.0182 (11)0.0330 (13)0.0036 (11)0.0069 (12)0.0001 (10)
C90.0213 (13)0.0241 (12)0.0360 (13)0.0009 (9)0.0006 (11)0.0004 (11)
C9a0.0191 (12)0.0164 (11)0.0279 (13)0.0043 (10)0.0048 (10)0.0012 (9)
C210.0276 (14)0.0263 (13)0.0245 (12)0.0038 (12)0.0063 (12)0.0065 (10)
C220.0265 (14)0.0284 (13)0.0274 (13)0.0011 (11)0.0041 (11)0.0091 (11)
C2210.0202 (12)0.0290 (12)0.0205 (11)0.0002 (11)0.0014 (10)0.0062 (10)
C2220.0282 (14)0.0408 (15)0.0260 (12)0.0057 (13)0.0068 (12)0.0040 (11)
C2230.0313 (15)0.0389 (15)0.0327 (14)0.0102 (13)0.0024 (13)0.0026 (12)
C2240.0301 (15)0.0350 (14)0.0329 (14)0.0021 (12)0.0013 (13)0.0058 (11)
C2250.0344 (15)0.0406 (14)0.0467 (15)0.0007 (14)0.0189 (16)0.0082 (13)
C2260.0274 (14)0.0327 (13)0.0477 (15)0.0060 (13)0.0144 (14)0.0019 (11)
Geometric parameters (Å, º) top
Cl7—C71.739 (2)C7—C81.379 (3)
O14—N11.447 (2)C8—C91.382 (3)
O14—C41.457 (3)C8—H80.95
N1—C9a1.446 (3)C9—C9a1.386 (3)
N1—C21.497 (3)C9—H90.95
C2—C211.494 (3)C21—C221.317 (3)
C2—C31.542 (3)C21—H210.95
C2—H21.00C22—C2211.467 (3)
C3—C41.528 (3)C22—H220.95
C3—H3A0.99C221—C2221.386 (3)
C3—H3B0.99C221—C2261.394 (3)
C4—C51.513 (3)C222—C2231.381 (4)
C4—H41.00C222—H2220.95
C5—C5a1.513 (3)C223—C2241.381 (4)
C5—H5A0.99C223—H2230.95
C5—H5B0.99C224—C2251.371 (4)
C5a—C9a1.387 (3)C224—H2240.95
C5a—C61.397 (3)C225—C2261.382 (3)
C6—C71.385 (3)C225—H2250.95
C6—H60.95C226—H2260.95
N1—O14—C4103.78 (15)C8—C7—Cl7118.61 (18)
C9a—N1—O14107.40 (17)C6—C7—Cl7119.70 (19)
C9a—N1—C2112.37 (17)C7—C8—C9118.8 (2)
O14—N1—C2100.76 (16)C7—C8—H8120.6
C21—C2—N1112.38 (19)C9—C8—H8120.6
C21—C2—C3116.6 (2)C8—C9—C9a120.2 (2)
N1—C2—C3104.12 (18)C8—C9—H9119.9
C21—C2—H2107.8C9a—C9—H9119.9
N1—C2—H2107.8C9—C9a—C5a121.2 (2)
C3—C2—H2107.8C9—C9a—N1117.0 (2)
C4—C3—C2103.26 (19)C5a—C9a—N1121.78 (19)
C4—C3—H3A111.1C22—C21—C2123.2 (2)
C2—C3—H3A111.1C22—C21—H21118.4
C4—C3—H3B111.1C2—C21—H21118.4
C2—C3—H3B111.1C21—C22—C221128.4 (2)
H3A—C3—H3B109.1C21—C22—H22115.8
O14—C4—C5107.28 (18)C221—C22—H22115.8
O14—C4—C3103.85 (19)C222—C221—C226117.3 (2)
C5—C4—C3114.10 (18)C222—C221—C22123.5 (2)
O14—C4—H4110.5C226—C221—C22119.2 (2)
C5—C4—H4110.5C223—C222—C221121.5 (2)
C3—C4—H4110.5C223—C222—H222119.2
C5a—C5—C4109.22 (18)C221—C222—H222119.2
C5a—C5—H5A109.8C222—C223—C224119.9 (2)
C4—C5—H5A109.8C222—C223—H223120.0
C5a—C5—H5B109.8C224—C223—H223120.0
C4—C5—H5B109.8C225—C224—C223119.7 (2)
H5A—C5—H5B108.3C225—C224—H224120.1
C9a—C5a—C6118.5 (2)C223—C224—H224120.1
C9a—C5a—C5119.7 (2)C224—C225—C226120.1 (2)
C6—C5a—C5121.8 (2)C224—C225—H225120.0
C7—C6—C5a119.6 (2)C226—C225—H225120.0
C7—C6—H6120.2C225—C226—C221121.4 (2)
C5a—C6—H6120.2C225—C226—H226119.3
C8—C7—C6121.7 (2)C221—C226—H226119.3
C4—O14—N1—C9a67.7 (2)C8—C9—C9a—C5a0.1 (3)
C4—O14—N1—C250.05 (19)C8—C9—C9a—N1179.5 (2)
C9a—N1—C2—C2151.5 (3)C6—C5a—C9a—C90.2 (3)
O14—N1—C2—C21165.50 (18)C5—C5a—C9a—C9179.0 (2)
C9a—N1—C2—C375.6 (2)C6—C5a—C9a—N1179.3 (2)
O14—N1—C2—C338.5 (2)C5—C5a—C9a—N10.5 (3)
C21—C2—C3—C4138.1 (2)O14—N1—C9a—C9149.90 (19)
N1—C2—C3—C413.7 (2)C2—N1—C9a—C9100.2 (2)
N1—O14—C4—C579.8 (2)O14—N1—C9a—C5a29.6 (3)
N1—O14—C4—C341.4 (2)C2—N1—C9a—C5a80.3 (2)
C2—C3—C4—O1415.9 (2)N1—C2—C21—C22101.4 (3)
C2—C3—C4—C5100.5 (2)C3—C2—C21—C22138.5 (2)
O14—C4—C5—C5a47.7 (2)C2—C21—C22—C221179.7 (2)
C3—C4—C5—C5a66.8 (2)C21—C22—C221—C2223.5 (4)
C4—C5—C5a—C9a9.4 (3)C21—C22—C221—C226177.8 (3)
C4—C5—C5a—C6171.8 (2)C226—C221—C222—C2231.0 (4)
C9a—C5a—C6—C70.5 (3)C22—C221—C222—C223179.8 (2)
C5—C5a—C6—C7179.3 (2)C221—C222—C223—C2240.2 (4)
C5a—C6—C7—C80.7 (3)C222—C223—C224—C2251.2 (4)
C5a—C6—C7—Cl7178.36 (17)C223—C224—C225—C2261.6 (4)
C6—C7—C8—C90.6 (3)C224—C225—C226—C2210.7 (4)
Cl7—C7—C8—C9178.51 (18)C222—C221—C226—C2250.6 (4)
C7—C8—C9—C9a0.3 (3)C22—C221—C226—C225179.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···N1i0.992.613.443 (3)142
C5—H5B···N1i0.992.543.434 (3)151
C5—H5B···O14i0.992.603.496 (3)151
Symmetry code: (i) x1, y, z.
(III) (2R,4R)-7-fluoro-2-endo-[(E)-styryl]-2,3,4,5-tetrahydro- 1,4-epoxy-1H-1-benzazepine top
Crystal data top
C18H16FNOF(000) = 296
Mr = 281.32Dx = 1.335 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1715 reflections
a = 5.4172 (2) Åθ = 3.6–27.5°
b = 8.0164 (6) ŵ = 0.09 mm1
c = 16.2310 (11) ÅT = 120 K
β = 96.745 (4)°Block, orange
V = 699.98 (8) Å30.23 × 0.21 × 0.15 mm
Z = 2
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
1715 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1510 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.6°
ϕ and ω scansh = 67
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1010
Tmin = 0.970, Tmax = 0.986l = 2120
16046 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0366P)2 + 0.1566P]
where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max < 0.001
1715 reflectionsΔρmax = 0.17 e Å3
190 parametersΔρmin = 0.22 e Å3
1 restraintAbsolute structure: Flack (1983), with Friedel pairs merged
Primary atom site location: structure-invariant direct methods
Crystal data top
C18H16FNOV = 699.98 (8) Å3
Mr = 281.32Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.4172 (2) ŵ = 0.09 mm1
b = 8.0164 (6) ÅT = 120 K
c = 16.2310 (11) Å0.23 × 0.21 × 0.15 mm
β = 96.745 (4)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
1715 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1510 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.986Rint = 0.034
16046 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.083H-atom parameters constrained
S = 1.17Δρmax = 0.17 e Å3
1715 reflectionsΔρmin = 0.22 e Å3
190 parametersAbsolute structure: Flack (1983), with Friedel pairs merged
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F71.0264 (3)0.14342 (19)0.23347 (10)0.0409 (4)
O140.3957 (3)0.4145 (2)0.04915 (8)0.0253 (3)
N10.4135 (3)0.3925 (3)0.13836 (10)0.0220 (4)
C20.5376 (4)0.5523 (3)0.16776 (13)0.0239 (4)
C30.7282 (4)0.5844 (3)0.10512 (13)0.0269 (5)
C40.6459 (4)0.4639 (3)0.03407 (13)0.0262 (5)
C50.8014 (4)0.3069 (3)0.03615 (13)0.0261 (5)
C5a0.7630 (4)0.2072 (3)0.11269 (13)0.0225 (5)
C60.9128 (4)0.0705 (3)0.13801 (14)0.0271 (5)
C70.8722 (4)0.0146 (3)0.20819 (15)0.0287 (5)
C80.6846 (4)0.0262 (3)0.25577 (14)0.0285 (5)
C90.5330 (4)0.1600 (3)0.22982 (13)0.0242 (5)
C9a0.5735 (4)0.2502 (3)0.15977 (13)0.0201 (4)
C210.6481 (4)0.5455 (3)0.25676 (13)0.0235 (4)
C220.5467 (4)0.6184 (3)0.31775 (13)0.0225 (4)
C2210.6475 (4)0.6221 (3)0.40601 (13)0.0201 (4)
C2220.8684 (4)0.5415 (3)0.43665 (13)0.0247 (5)
C2230.9548 (4)0.5455 (3)0.52044 (13)0.0271 (5)
C2240.8224 (4)0.6303 (3)0.57557 (14)0.0265 (5)
C2250.6038 (4)0.7116 (3)0.54635 (14)0.0286 (5)
C2260.5178 (4)0.7069 (3)0.46232 (13)0.0246 (5)
H20.41070.64350.16160.029*
H3A0.72030.70150.08560.032*
H3B0.89960.55950.13030.032*
H40.64260.52130.02080.031*
H5A0.75180.23950.01420.031*
H5B0.97910.33650.03720.031*
H61.04190.03690.10670.033*
H80.66090.03510.30430.034*
H90.40020.19000.26020.029*
H210.79890.48570.27010.028*
H220.39300.67400.30310.027*
H2220.96050.48310.39950.030*
H2231.10520.49010.54020.032*
H2240.88140.63260.63300.032*
H2250.51290.77040.58370.034*
H2260.36750.76270.44280.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F70.0382 (8)0.0273 (8)0.0544 (10)0.0067 (6)0.0062 (7)0.0031 (7)
O140.0168 (7)0.0414 (9)0.0168 (7)0.0031 (7)0.0014 (5)0.0034 (7)
N10.0205 (8)0.0307 (10)0.0145 (8)0.0012 (8)0.0000 (6)0.0005 (8)
C20.0231 (10)0.0259 (11)0.0218 (10)0.0006 (9)0.0012 (8)0.0017 (9)
C30.0256 (11)0.0305 (13)0.0236 (11)0.0061 (9)0.0010 (9)0.0057 (9)
C40.0205 (10)0.0390 (13)0.0184 (10)0.0066 (9)0.0001 (8)0.0051 (9)
C50.0200 (10)0.0398 (13)0.0184 (10)0.0061 (10)0.0021 (8)0.0019 (10)
C5a0.0194 (10)0.0280 (11)0.0194 (10)0.0054 (9)0.0011 (8)0.0048 (9)
C60.0211 (10)0.0300 (12)0.0299 (12)0.0007 (9)0.0009 (8)0.0080 (10)
C70.0264 (11)0.0230 (11)0.0342 (12)0.0004 (10)0.0070 (9)0.0036 (10)
C80.0342 (12)0.0257 (13)0.0242 (11)0.0072 (10)0.0031 (9)0.0014 (9)
C90.0235 (10)0.0280 (12)0.0207 (10)0.0048 (9)0.0014 (8)0.0022 (9)
C9a0.0158 (9)0.0249 (11)0.0187 (10)0.0049 (8)0.0019 (8)0.0027 (9)
C210.0245 (10)0.0210 (11)0.0238 (11)0.0006 (9)0.0015 (8)0.0007 (9)
C220.0215 (10)0.0208 (10)0.0245 (10)0.0003 (9)0.0000 (8)0.0037 (9)
C2210.0200 (10)0.0183 (10)0.0223 (10)0.0019 (8)0.0034 (7)0.0006 (9)
C2220.0235 (10)0.0278 (11)0.0231 (10)0.0030 (10)0.0040 (8)0.0014 (10)
C2230.0231 (10)0.0322 (13)0.0254 (11)0.0029 (10)0.0005 (8)0.0029 (10)
C2240.0284 (11)0.0303 (12)0.0209 (10)0.0016 (10)0.0028 (8)0.0014 (10)
C2250.0328 (12)0.0274 (12)0.0271 (11)0.0037 (10)0.0100 (9)0.0026 (10)
C2260.0237 (10)0.0224 (11)0.0279 (11)0.0034 (9)0.0042 (8)0.0032 (9)
Geometric parameters (Å, º) top
F7—C71.361 (3)C7—C81.386 (3)
O14—N11.451 (2)C8—C91.386 (3)
O14—C41.460 (2)C8—H80.95
N1—C9a1.450 (3)C9—C9a1.387 (3)
N1—C21.498 (3)C9—H90.95
C2—C211.498 (3)C21—C221.323 (3)
C2—C31.553 (3)C21—H210.95
C2—H21.00C22—C2211.472 (3)
C3—C41.530 (3)C22—H220.95
C3—H3A0.99C221—C2261.394 (3)
C3—H3B0.99C221—C2221.399 (3)
C4—C51.513 (3)C222—C2231.386 (3)
C4—H41.00C222—H2220.95
C5—C5a1.512 (3)C223—C2241.388 (3)
C5—H5A0.99C223—H2230.95
C5—H5B0.99C224—C2251.386 (3)
C5a—C9a1.393 (3)C224—H2240.95
C5a—C61.396 (3)C225—C2261.389 (3)
C6—C71.367 (3)C225—H2250.95
C6—H60.95C226—H2260.95
N1—O14—C4104.26 (13)F7—C7—C8118.4 (2)
C9a—N1—O14107.61 (16)C6—C7—C8123.2 (2)
C9a—N1—C2111.29 (14)C9—C8—C7117.4 (2)
O14—N1—C2100.88 (16)C9—C8—H8121.3
C21—C2—N1112.91 (18)C7—C8—H8121.3
C21—C2—C3114.60 (18)C8—C9—C9a120.5 (2)
N1—C2—C3103.94 (17)C8—C9—H9119.8
C21—C2—H2108.4C9a—C9—H9119.8
N1—C2—H2108.4C9—C9a—C5a121.2 (2)
C3—C2—H2108.4C9—C9a—N1117.32 (18)
C4—C3—C2103.40 (17)C5a—C9a—N1121.44 (19)
C4—C3—H3A111.1C22—C21—C2123.4 (2)
C2—C3—H3A111.1C22—C21—H21118.3
C4—C3—H3B111.1C2—C21—H21118.3
C2—C3—H3B111.1C21—C22—C221126.7 (2)
H3A—C3—H3B109.0C21—C22—H22116.7
O14—C4—C5107.21 (18)C221—C22—H22116.7
O14—C4—C3103.82 (17)C226—C221—C222117.93 (19)
C5—C4—C3113.35 (18)C226—C221—C22119.34 (18)
O14—C4—H4110.7C222—C221—C22122.72 (19)
C5—C4—H4110.7C223—C222—C221120.9 (2)
C3—C4—H4110.7C223—C222—H222119.5
C5a—C5—C4109.17 (18)C221—C222—H222119.5
C5a—C5—H5A109.8C222—C223—C224120.2 (2)
C4—C5—H5A109.8C222—C223—H223119.9
C5a—C5—H5B109.8C224—C223—H223119.9
C4—C5—H5B109.8C225—C224—C223119.7 (2)
H5A—C5—H5B108.3C225—C224—H224120.2
C9a—C5a—C6118.2 (2)C223—C224—H224120.2
C9a—C5a—C5120.1 (2)C224—C225—C226119.9 (2)
C6—C5a—C5121.70 (19)C224—C225—H225120.1
C7—C6—C5a119.4 (2)C226—C225—H225120.1
C7—C6—H6120.3C225—C226—C221121.4 (2)
C5a—C6—H6120.3C225—C226—H226119.3
F7—C7—C6118.5 (2)C221—C226—H226119.3
C4—O14—N1—C9a67.0 (2)C8—C9—C9a—C5a1.5 (3)
C4—O14—N1—C249.69 (19)C8—C9—C9a—N1177.58 (19)
C9a—N1—C2—C2149.2 (2)C6—C5a—C9a—C90.3 (3)
O14—N1—C2—C21163.11 (17)C5—C5a—C9a—C9179.44 (19)
C9a—N1—C2—C375.61 (19)C6—C5a—C9a—N1178.75 (18)
O14—N1—C2—C338.31 (19)C5—C5a—C9a—N11.6 (3)
C21—C2—C3—C4137.8 (2)O14—N1—C9a—C9151.55 (17)
N1—C2—C3—C414.1 (2)C2—N1—C9a—C998.8 (2)
N1—O14—C4—C579.56 (19)O14—N1—C9a—C5a29.4 (2)
N1—O14—C4—C340.7 (2)C2—N1—C9a—C5a80.2 (2)
C2—C3—C4—O1415.2 (2)N1—C2—C21—C22104.4 (3)
C2—C3—C4—C5100.8 (2)C3—C2—C21—C22136.8 (2)
O14—C4—C5—C5a48.5 (2)C2—C21—C22—C221177.8 (2)
C3—C4—C5—C5a65.5 (2)C21—C22—C221—C226179.1 (2)
C4—C5—C5a—C9a11.0 (3)C21—C22—C221—C2221.8 (4)
C4—C5—C5a—C6169.35 (19)C226—C221—C222—C2230.2 (3)
C9a—C5a—C6—C71.0 (3)C22—C221—C222—C223178.8 (2)
C5—C5a—C6—C7179.3 (2)C221—C222—C223—C2240.0 (4)
C5a—C6—C7—F7177.54 (19)C222—C223—C224—C2250.3 (4)
C5a—C6—C7—C81.1 (3)C223—C224—C225—C2260.4 (4)
F7—C7—C8—C9178.72 (19)C224—C225—C226—C2210.2 (4)
C6—C7—C8—C90.1 (3)C222—C221—C226—C2250.1 (3)
C7—C8—C9—C9a1.3 (3)C22—C221—C226—C225179.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···O14i0.992.333.316 (3)176
Symmetry code: (i) x+1, y, z.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC18H16ClNOC18H16ClNOC18H16FNO
Mr297.77297.77281.32
Crystal system, space groupMonoclinic, P21Orthorhombic, P212121Monoclinic, P21
Temperature (K)120120120
a, b, c (Å)10.5798 (8), 5.3448 (10), 12.873 (3)5.2855 (10), 15.649 (2), 17.880 (3)5.4172 (2), 8.0164 (6), 16.2310 (11)
α, β, γ (°)90, 90.204 (12), 9090, 90, 9090, 96.745 (4), 90
V3)727.9 (2)1478.9 (4)699.98 (8)
Z242
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.260.260.09
Crystal size (mm)0.45 × 0.15 × 0.080.36 × 0.27 × 0.140.23 × 0.21 × 0.15
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.924, 0.9790.929, 0.9650.970, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
17564, 3305, 2033 32581, 3384, 2525 16046, 1715, 1510
Rint0.0830.0630.034
(sin θ/λ)max1)0.6500.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.120, 1.05 0.047, 0.084, 1.12 0.035, 0.083, 1.17
No. of reflections330533841715
No. of parameters191191190
No. of restraints101
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.330.24, 0.220.17, 0.22
Absolute structureFlack (1983), with 1460 Friedel pairsFlack (1983), with 1401 Friedel pairsFlack (1983), with Friedel pairs merged
Absolute structure parameter0.32 (9)0.44 (8)?

Computer programs: COLLECT (Nonius, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR2004 (Burla et al., 2005), OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 2008) and PRPKAPPA (Ferguson, 1999).

Ring-puckering parameters (Å, °) for compounds (I)–(III) top
CompoundFive-membered ringSix-membered ring
Q2ϕ2Qθϕ
(I)0.430 (3)190.2 (5)0.604 (3)50.3 (3)348.1 (4)
(II)0.457 (2)197.0 (3)0.622 (2)51.4 (2)345.9 (3)
(III)0.453 (2)197.9 (2)0.616 (2)50.6 (2)344.7 (2)
Puckering parameters for five-membered rings are defined for the atom sequence O14/N1/C2/C3/C4. Puckering parameters for six-membered rings are defined for the atom sequence O14/N1/C9a/C5a/C5/C4).
Hydrogen-bond parameters (Å, °) for compounds (I)–(III) top
CompoundD—H···AD—HH···AD···AD—H···A
(I)C3—H3B···N1i0.992.573.507 (5)158
C4—H4···O14ii1.002.353.318 (4)163
(II)C3—H3B···N1iii0.992.613.443 (3)142
C5—H5B···N1iii0.992.543.434 (3)151
C5—H5B···O14iii0.992.603.496 (3)151
(III)C5—H5B···O14iv0.992.333.316 (3)176
Symmetry codes: (i) x, 1 + y, z; (ii) 1 - x, 1/2 + y, 1 - z; (iii) -1 + x, y, z; (iv) 1 + x, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds