Download citation
Download citation
link to html
Mol­ecules of (E)-3-(2-chloro-6-methyl­quinolin-3-yl)-1-(5-iodo-2-­thienyl)prop-2-en-1-one, C17H11ClINOS, (I), and (E)-3-(2-chloro-6-methyl­quinolin-3-yl)-1-(5-methyl-2-­furyl)prop-2-en-1-one, C18H14ClNO2, (II), adopt conformations slightly twisted from coplanarity. Both structures are devoid of classical hydrogen bonds. However, nonclassical C—H...O/N inter­actions [with C...O = 3.146 (5) Å and C...N = 3.487 (3) Å] link the mol­ecules into chains extended along the b axis in (I) and form dimers with an R22(8) motif in (II). The structural analysis of these compounds provides an insight into the correlation between mol­ecular structures and inter­molecular inter­actions in compounds for drug development.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108029326/gg3168sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108029326/gg3168Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108029326/gg3168IIsup3.hkl
Contains datablock II

CCDC references: 707209; 707210

Comment top

Chalcones, α,β-unsaturated ketones, constitute an important group of natural products that serve as precursors for the synthesis of different classes of flavonoids (Lin et al., 2002), pyrimidines, imidazoles (Varga et al., 2003) and 2-pyrazolines (Lévai, 2005). Some of them possess anticancer (Prabhavat & Ghiya, 1998), antimalarial (Wu et al., 2002), antituberculous, antitumour, anti-inflammatory, antiviral and antimicrobial activities (Opletalova & Sedivy, 1999). In order to correlate their molecular structures and intermolecular interactions with their biological manifestations, we have synthesised and determined the crystal structures of two new quinoline-based chalcones, namely (2E)-3-(2-chloro-6-methylquinolin-3-yl)-1-(5-iodothiophen-2-yl)prop-2-en-1-one, (I), and (2E)-3-(2-chloro-6-methylquinolin-3-yl)-1-(5-methylfuran-2-yl)prop-2-en-1-one, (II). A series of similar chalcones are under investigation for biological activity.

The molecule of (I) (Fig. 1) has the mean-planes of the 2-chloro-6-methylquinoline and (iodothiophen-2-yl)prop-2-en-1-one moieties inclined at 12.87 (6)°, resulting in a slightly twisted conformation. The maximum deviations of atoms Cl1 and C11 from these planes are 0.047 (2) and 0.048 (3) Å, respectively. The structure, without classical hydrogen bonds, contains interactions involving the thiophene atom H15 with the carbonyl atom O1 (Table 1), linking the molecules into chains along the (010) direction (Fig. 2). These chains are oriented in opposite directions, with the thiophene (S1/C13–C16) and benzene (C1–C6) ring centroids separated by 3.649 (3) Å (perpendicular distance 3.40 Å), indicating weak ππ interactions. The structure is also stabilized by intramolecular interactions, wherein atom H10 bonded to atom C10 of the propenone chain interacts with atoms O1 and Cl1 (Table 1).

In (II) (Fig. 3), the mean-planes of the 2-chloro-6-methylquinoline and (methylfuran-2-yl)prop-2-en-1-one moieties are inclined at 11.11 (5)° in a slightly twisted conformation similar to (I). The maximum deviations of atoms C3 and C10 from these planes are 0.039 (2) and 0.077 (2) Å, respectively. The structure of (II) is also without classical hydrogen bonds, but, unlike for (I), there are interactions involving atom H2 bonded to atom C2 and atom N1 of the quinoline ring system, C2—H2···N1i [C2···N1 = 3.487 (3) Å and C2—H2···N1i = 154°] which link the molecules into dimers (Fig. 4), forming eight-membered rings with an R22(8) motif (Bernstein et al., 1994). Unlike the ππ interactions observed in (I), the furan rings of the symmetry-related molecules in (II) lie parallel to each other with a distance of 3.798 (2) Å between the ring centroids. Moreover, a methyl H atom bonded to C18 is oriented towards the heterocyclic ring (N1/C1/C6–C9), with a perpendicular distance H18A···Cg = 2.82 Å (Cg is the centroid of the ring). The structure of (II) is also also stabilized by intramolecular interactions as in (I), i.e. C10—H10···O1 [C10···O1 = 2.780 (2) Å] and C10—H10···Cl1 [C10···Cl1 = 3.048 (2) Å] (Table 2).

The bond distances and angles in both structures are mostly in agreement with expected values (Orpen et al., 1994). The C12—C13—C14 angles have been widened to 131.1 (4) and 134.34 (18)° for (I) and (II), respectively, as reported in a large number of thiophene derivatives [Cambridge Structural Database (CSD), Version 5.29; Allen, 2002]. The C9—Cl1 bond distances in (I) and (II) of 1.765 (4) and 1.751 (2) Å, respectively, lie within the range (1.722–1.782 Å) of corresponding distances in 22 structures in the CSD containing the 2-chloroquinoline fragment, excluding those involved in metal complexes. The Cl1—C9—N1 and Cl1—C9—C8 angles of 114.4((3) and 118.2 (3)° in (I), and 114.52 (14) and 119.20 (15)° in (II), respectively, also lie within the ranges of the corresponding angles in related structures (112.0–118.2° and 116.4–121.2°, respectively). Furthermore, the C8—C10—C11 angles are significantly different in (I) and (II), at 125.5 (4) and 128.25 (18)°, respectively. The remaining angles lie within narrow ranges in both structures. A search of the CSD for 2-chloroquinoline moieties containing a C atom attached at position 3 revealed only the following structures: 2-chloro-3-(chloromethyl)quinoline (ATEDEI; Lu et al., 2003), 1,5-bis(4-chlorophenyl)-3-(2-chloroquinolin-3-yl)pentane-1,5-dione (MAZZET; Insuasty et al., 2006), (S)-2-(2-chloroquinolin-3-yl)-2-[(S)-α-methylbenzylamino]acetonitrile (MEHDAF; Belfaitah et al., 2006) and 2-chloro-3-(β-nitrovinyl)quinoline (QAMNAU; Palani et al., 2004).

Related literature top

For related literature, see: Allen (2002); Belfaitah et al. (2006); Bernstein et al. (1994); Insuasty et al. (2006); Lévai (2005); Lin et al. (2002); Lu et al. (2003); Meth-Cohn (1981); Opletalova & Sedivy (1999); Orpen et al. (1994); Palani et al. (2004); Prabhavat & Ghiya (1998); Varga et al. (2003); Wu et al. (2002).

Experimental top

The precursor, 2-chloro-6-methyl-3-formylquinoline, was prepared using a literature procedure (Meth-Cohn et al., 1981). A mixture of 2-chloro-6-methyl-3-formylquinoline (2.055 g, 10 mmol) and 5-iodo-2-acetylthiophene (2.5207 g, 10 mmol) or 5-methyl-2-acetylfuran (1.2414 g, 10 mmol) in methanol (50 ml) was stirred at room temperature, followed by dropwise addition of aqueous NaOH (4 ml, 10%). The stirring was continued for 2 h and the reaction mixture was then kept at 273 K for 24 h. Subsequently, it was poured onto ice-cold water (200 ml). The precipitates were collected by filtration and washed with cold water followed by cold MeOH. The resulting chalcones were recrystallized from CHCl3 to obtain yellow [Both compounds given as colourless in CIF tables - please check] solid crystalline products, (I) and (II).

Analysis for (I): m.p. 457–458 K; IR (neat, νmax, cm-1): CO 1648 (s), CC 1596 (m); 1H NMR (400 MHz, CDCl3, δ, p.p.m.): 2.54 (s, 3H, CH3), 7.36 (d, 1H, H4', J = 3.92 Hz), 7.37 (d, 1H, Hα, J = 15.54 Hz), 7.50 (d, 1H, H3', J = 3.98 Hz), 7.59 (dd, 1H, H7, J = 8.70 Hz), 7.62 (s, 1H, H5), 7.90 (d, 1H, H8, J = 8.54 Hz), 8.20 (d, 1H, Hβ, J = 15.60 Hz), 8.35 (s, 1H, H4); yield: 3.17 g, 7.21 mmol (72%).

Analysis for (II): m.p. 445–447 K; IR (neat, νmax, cm-1): CO 1654 (s), CC 1594 (m); 1H NMR (400 MHz, CDCl3, δ, p.p.m.): 2.45 (s, 3H, CH3), 2.54 (s, 3H, CH3), 6.24 (dd, 1H, H4', J = 3.39 Hz), 7.29 (d, 1H, H3', J = 3.45 Hz), 7.45 (d, 1H, Hα, J = 15.70 Hz), 7.58 (dd, 1H, H7, J = 8.60 Hz), 7.63 (s, 1H, H5), 7.90 (d, 1H, H8, J = 8.58 Hz), 8.22 (d, 1H, Hβ, J = 15.79 Hz), 8.38 (s, 1H, H4); yield: 2.56 g, 8.21 mmol (82%).

Refinement top

For both structures, H atoms were included in the refinements in geometrically idealized positions, with aryl and methyl C—H distances of 0.95 and 0.98 Å, respectively, and Uiso = 1.2Ueq(C). The H atoms bonded to [Methyl?] atom C17 in (II) were [Equally?] disordered over six sites. The final difference maps were free of chemically significant features.

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1998); cell refinement: HKL DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SAPI91 (Fan, 1991); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Intermolecular interactions in the unit cell of (I), depicted as dashed lines. Only H atoms involved in interactions have been included. [Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z.]
[Figure 3] Fig. 3. The molecular structure of (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 4] Fig. 4. Intermolecular interactions in the dimeric unit of (II), depicted as dashed lines. Only H atoms involved in interactions have been included. [Symmetry codes: (i) -x, y, -z-1/2.]
(I) (2E)-3-(2-chloro-6-methylquinolin-3-yl)-1-(5-iodothiophen-2-yl)prop-2-en-1-one, top
Crystal data top
C17H11ClINOSF(000) = 856
Mr = 439.68Dx = 1.821 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6042 reflections
a = 17.112 (6) Åθ = 3.0–27.5°
b = 7.636 (3) ŵ = 2.29 mm1
c = 13.174 (5) ÅT = 173 K
β = 111.29 (2)°Needle, colourless
V = 1603.9 (10) Å30.26 × 0.07 × 0.06 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3652 independent reflections
Radiation source: fine-focus sealed tube2663 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω and ϕ scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 2222
Tmin = 0.587, Tmax = 0.875k = 98
6042 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.034P)2 + 2.3385P]
where P = (Fo2 + 2Fc2)/3
3652 reflections(Δ/σ)max = 0.001
200 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
C17H11ClINOSV = 1603.9 (10) Å3
Mr = 439.68Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.112 (6) ŵ = 2.29 mm1
b = 7.636 (3) ÅT = 173 K
c = 13.174 (5) Å0.26 × 0.07 × 0.06 mm
β = 111.29 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3652 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
2663 reflections with I > 2σ(I)
Tmin = 0.587, Tmax = 0.875Rint = 0.036
6042 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.03Δρmax = 0.52 e Å3
3652 reflectionsΔρmin = 0.63 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.477610 (18)0.68986 (4)0.85231 (3)0.04444 (13)
Cl10.01538 (6)0.32565 (11)0.59179 (9)0.0301 (2)
S10.36067 (6)0.33286 (11)0.80632 (9)0.0269 (2)
O10.24498 (17)0.0328 (3)0.7570 (3)0.0350 (7)
N10.1516 (2)0.1431 (4)0.5390 (3)0.0242 (7)
C10.1988 (2)0.0076 (4)0.5247 (3)0.0238 (8)
C20.2864 (2)0.0017 (5)0.4749 (3)0.0302 (9)
H20.31290.11130.45080.036*
C30.3334 (3)0.1471 (5)0.4610 (3)0.0313 (9)
H30.39270.13870.42730.038*
C40.2968 (3)0.3139 (5)0.4951 (3)0.0267 (8)
C50.2116 (3)0.3249 (5)0.5431 (3)0.0280 (9)
H50.18630.43590.56610.034*
C60.1600 (2)0.1738 (4)0.5593 (3)0.0224 (8)
C70.0726 (2)0.1781 (5)0.6082 (3)0.0255 (8)
H70.04560.28700.63310.031*
C80.0239 (2)0.0280 (5)0.6215 (3)0.0239 (8)
C90.0708 (2)0.1278 (5)0.5833 (3)0.0241 (8)
C100.0678 (2)0.0337 (5)0.6687 (3)0.0266 (9)
H100.09650.07510.68600.032*
C110.1141 (2)0.1775 (5)0.6893 (3)0.0271 (9)
H110.08690.28830.67550.033*
C120.2068 (2)0.1712 (5)0.7331 (3)0.0245 (8)
C130.2521 (2)0.3381 (5)0.7484 (3)0.0220 (8)
C140.2237 (2)0.5060 (5)0.7258 (3)0.0241 (8)
H140.16580.53480.69430.029*
C150.2881 (3)0.6329 (5)0.7534 (3)0.0283 (9)
H150.27910.75530.74220.034*
C160.3644 (2)0.5567 (5)0.7981 (3)0.0270 (9)
C170.3517 (3)0.4728 (5)0.4795 (4)0.0363 (10)
H17A0.31820.57850.48380.044*
H17B0.37580.47630.53660.044*
H17C0.39700.46720.40790.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02682 (17)0.03404 (17)0.0658 (2)0.00876 (12)0.00885 (15)0.00075 (15)
Cl10.0307 (5)0.0196 (4)0.0396 (6)0.0005 (4)0.0122 (5)0.0006 (4)
S10.0208 (5)0.0202 (4)0.0377 (6)0.0033 (4)0.0082 (4)0.0027 (4)
O10.0310 (16)0.0188 (14)0.051 (2)0.0008 (12)0.0095 (14)0.0006 (13)
N10.0277 (18)0.0202 (15)0.0261 (18)0.0044 (13)0.0117 (15)0.0032 (13)
C10.029 (2)0.0208 (18)0.024 (2)0.0008 (16)0.0119 (17)0.0003 (15)
C20.031 (2)0.026 (2)0.031 (2)0.0097 (17)0.0074 (19)0.0032 (17)
C30.025 (2)0.036 (2)0.031 (2)0.0016 (17)0.0068 (18)0.0008 (18)
C40.032 (2)0.0224 (18)0.025 (2)0.0021 (16)0.0087 (18)0.0033 (16)
C50.031 (2)0.0220 (19)0.032 (2)0.0022 (16)0.0132 (18)0.0006 (17)
C60.025 (2)0.0227 (18)0.021 (2)0.0054 (15)0.0109 (16)0.0020 (15)
C70.030 (2)0.0197 (18)0.028 (2)0.0045 (16)0.0111 (18)0.0004 (16)
C80.027 (2)0.0250 (18)0.022 (2)0.0026 (16)0.0115 (17)0.0007 (16)
C90.029 (2)0.0195 (17)0.026 (2)0.0010 (16)0.0125 (17)0.0008 (15)
C100.026 (2)0.0251 (19)0.029 (2)0.0004 (16)0.0104 (18)0.0001 (17)
C110.027 (2)0.0244 (19)0.030 (2)0.0002 (16)0.0105 (18)0.0008 (17)
C120.026 (2)0.0225 (19)0.025 (2)0.0011 (16)0.0089 (17)0.0002 (16)
C130.0224 (19)0.0217 (18)0.0210 (19)0.0003 (15)0.0068 (16)0.0009 (15)
C140.0182 (19)0.0243 (19)0.029 (2)0.0026 (15)0.0072 (17)0.0008 (16)
C150.030 (2)0.0189 (18)0.034 (2)0.0022 (16)0.0083 (19)0.0045 (16)
C160.024 (2)0.0223 (18)0.033 (2)0.0037 (16)0.0090 (18)0.0003 (17)
C170.034 (2)0.031 (2)0.041 (3)0.0089 (19)0.010 (2)0.0015 (19)
Geometric parameters (Å, º) top
I1—C162.072 (4)C7—C81.390 (5)
Cl1—C91.765 (4)C7—H70.9500
S1—C161.716 (4)C8—C91.422 (5)
S1—C131.734 (4)C8—C101.463 (5)
O1—C121.222 (4)C10—C111.324 (5)
N1—C91.295 (5)C10—H100.9500
N1—C11.379 (5)C11—C121.480 (5)
C1—C21.402 (5)C11—H110.9500
C1—C61.429 (5)C12—C131.467 (5)
C2—C31.366 (5)C13—C141.365 (5)
C2—H20.9500C14—C151.413 (5)
C3—C41.419 (5)C14—H140.9500
C3—H30.9500C15—C161.353 (5)
C4—C51.365 (6)C15—H150.9500
C4—C171.503 (5)C17—H17A0.9800
C5—C61.421 (5)C17—H17B0.9800
C5—H50.9500C17—H17C0.9800
C6—C71.397 (5)
C16—S1—C1390.4 (2)C8—C9—Cl1118.2 (3)
C9—N1—C1117.6 (3)C11—C10—C8125.5 (4)
N1—C1—C2119.7 (3)C11—C10—H10117.2
N1—C1—C6121.1 (3)C8—C10—H10117.2
C2—C1—C6119.2 (3)C10—C11—C12122.0 (3)
C3—C2—C1119.9 (3)C10—C11—H11119.0
C3—C2—H2120.1C12—C11—H11119.0
C1—C2—H2120.1O1—C12—C13120.6 (4)
C2—C3—C4122.2 (4)O1—C12—C11121.8 (3)
C2—C3—H3118.9C13—C12—C11117.6 (3)
C4—C3—H3118.9C14—C13—C12131.1 (4)
C5—C4—C3118.5 (3)C14—C13—S1111.0 (3)
C5—C4—C17121.6 (3)C12—C13—S1117.9 (3)
C3—C4—C17119.9 (4)C13—C14—C15113.9 (3)
C4—C5—C6121.4 (3)C13—C14—H14123.0
C4—C5—H5119.3C15—C14—H14123.0
C6—C5—H5119.3C16—C15—C14110.9 (3)
C7—C6—C5123.6 (3)C16—C15—H15124.6
C7—C6—C1117.6 (3)C14—C15—H15124.6
C5—C6—C1118.8 (3)C15—C16—S1113.8 (3)
C8—C7—C6122.1 (3)C15—C16—I1124.9 (3)
C8—C7—H7119.0S1—C16—I1121.2 (2)
C6—C7—H7119.0C4—C17—H17A109.5
C7—C8—C9114.2 (3)C4—C17—H17B109.5
C7—C8—C10122.0 (3)H17A—C17—H17B109.5
C9—C8—C10123.8 (3)C4—C17—H17C109.5
N1—C9—C8127.4 (3)H17A—C17—H17C109.5
N1—C9—Cl1114.4 (3)H17B—C17—H17C109.5
C9—N1—C1—C2178.6 (4)C10—C8—C9—N1178.7 (4)
C9—N1—C1—C61.1 (5)C7—C8—C9—Cl1177.9 (3)
N1—C1—C2—C3179.7 (4)C10—C8—C9—Cl10.7 (5)
C6—C1—C2—C30.6 (6)C7—C8—C10—C119.8 (6)
C1—C2—C3—C40.2 (6)C9—C8—C10—C11168.7 (4)
C2—C3—C4—C50.2 (6)C8—C10—C11—C12177.5 (4)
C2—C3—C4—C17179.0 (4)C10—C11—C12—O13.4 (6)
C3—C4—C5—C60.2 (6)C10—C11—C12—C13177.3 (4)
C17—C4—C5—C6179.0 (4)O1—C12—C13—C14178.3 (4)
C4—C5—C6—C7179.8 (4)C11—C12—C13—C142.4 (6)
C4—C5—C6—C10.2 (6)O1—C12—C13—S12.6 (5)
N1—C1—C6—C70.1 (5)C11—C12—C13—S1176.7 (3)
C2—C1—C6—C7179.7 (4)C16—S1—C13—C140.1 (3)
N1—C1—C6—C5179.7 (3)C16—S1—C13—C12179.4 (3)
C2—C1—C6—C50.7 (5)C12—C13—C14—C15179.7 (4)
C5—C6—C7—C8179.2 (4)S1—C13—C14—C150.5 (4)
C1—C6—C7—C81.2 (6)C13—C14—C15—C160.8 (5)
C6—C7—C8—C91.2 (5)C14—C15—C16—S10.7 (5)
C6—C7—C8—C10177.5 (4)C14—C15—C16—I1179.6 (3)
C1—N1—C9—C81.2 (6)C13—S1—C16—C150.4 (3)
C1—N1—C9—Cl1176.8 (3)C13—S1—C16—I1179.9 (2)
C7—C8—C9—N10.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···Cl10.952.673.087 (4)107
C10—H10···O10.952.512.826 (5)100
C15—H15···O1i0.952.223.146 (5)163
Symmetry code: (i) x, y+1, z.
(II) (2E)-3-(2-chloro-6-methylquinolin-3-yl)-1-(5-methylfuran-2-yl)prop-2-en-1-one top
Crystal data top
C18H14ClNO2F(000) = 1296
Mr = 311.75Dx = 1.403 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6103 reflections
a = 36.228 (10) Åθ = 3.2–27.4°
b = 7.372 (3) ŵ = 0.27 mm1
c = 11.214 (5) ÅT = 173 K
β = 99.70 (2)°Plate, colourless
V = 2952 (2) Å30.22 × 0.20 × 0.07 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
3355 independent reflections
Radiation source: fine-focus sealed tube2405 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω and ϕ scansθmax = 27.4°, θmin = 3.2°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 4546
Tmin = 0.944, Tmax = 0.982k = 99
6103 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.04P)2 + 4.06P]
where P = (Fo2 + 2Fc2)/3
3355 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C18H14ClNO2V = 2952 (2) Å3
Mr = 311.75Z = 8
Monoclinic, C2/cMo Kα radiation
a = 36.228 (10) ŵ = 0.27 mm1
b = 7.372 (3) ÅT = 173 K
c = 11.214 (5) Å0.22 × 0.20 × 0.07 mm
β = 99.70 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3355 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
2405 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.982Rint = 0.038
6103 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.01Δρmax = 0.25 e Å3
3355 reflectionsΔρmin = 0.24 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.089014 (14)0.17647 (8)0.03553 (4)0.03435 (16)
O10.20865 (4)0.4492 (2)0.14894 (12)0.0335 (4)
O20.27980 (4)0.5478 (2)0.13250 (12)0.0257 (3)
N10.06106 (4)0.1878 (2)0.19138 (14)0.0254 (4)
C10.06078 (5)0.2240 (3)0.31123 (17)0.0232 (4)
C20.02713 (5)0.1953 (3)0.39395 (18)0.0285 (5)
H20.00540.15240.36610.034*
C30.02624 (5)0.2298 (3)0.51355 (19)0.0297 (5)
H30.00350.21110.56810.036*
C40.05801 (5)0.2926 (3)0.55965 (18)0.0255 (4)
C50.09051 (5)0.3237 (3)0.47926 (17)0.0235 (4)
H50.11200.36730.50870.028*
C60.09271 (5)0.2923 (3)0.35407 (17)0.0216 (4)
C70.12495 (5)0.3284 (3)0.26713 (17)0.0215 (4)
H70.14680.37460.29290.026*
C80.12524 (5)0.2977 (3)0.14564 (17)0.0220 (4)
C90.09148 (5)0.2237 (3)0.11592 (17)0.0234 (4)
C100.15695 (5)0.3423 (3)0.05067 (17)0.0233 (4)
H100.15330.32060.03000.028*
C110.19024 (5)0.4092 (3)0.06317 (18)0.0249 (4)
H110.19650.42750.14120.030*
C120.21726 (5)0.4546 (3)0.04743 (17)0.0238 (4)
C130.25448 (5)0.5085 (3)0.02898 (16)0.0234 (4)
C140.27088 (5)0.5352 (3)0.07028 (18)0.0273 (5)
H140.25970.51760.15240.033*
C150.30793 (5)0.5946 (3)0.02707 (19)0.0294 (5)
H150.32640.62480.07480.035*
C160.31211 (5)0.6001 (3)0.09518 (18)0.0256 (4)
C170.34329 (6)0.6507 (3)0.19331 (19)0.0319 (5)
H17A0.33520.63580.27190.048*0.50
H17B0.35030.77740.18320.048*0.50
H17C0.36490.57220.18960.048*0.50
H17D0.36510.68780.15790.048*0.50
H17E0.35000.54620.24660.048*0.50
H17F0.33540.75140.24020.048*0.50
C180.05516 (6)0.3215 (3)0.69376 (18)0.0330 (5)
H18A0.07910.36670.71120.049*
H18B0.03540.41030.72130.049*
H18C0.04910.20620.73610.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0338 (3)0.0486 (4)0.0207 (3)0.0107 (2)0.00478 (19)0.0041 (2)
O10.0294 (8)0.0524 (10)0.0187 (7)0.0085 (7)0.0037 (6)0.0013 (7)
O20.0226 (7)0.0341 (8)0.0192 (7)0.0042 (6)0.0003 (5)0.0014 (6)
N10.0235 (8)0.0309 (10)0.0217 (8)0.0046 (7)0.0043 (6)0.0012 (7)
C10.0215 (9)0.0265 (11)0.0218 (10)0.0013 (8)0.0040 (7)0.0025 (8)
C20.0204 (9)0.0374 (13)0.0276 (10)0.0058 (9)0.0042 (8)0.0027 (10)
C30.0224 (10)0.0383 (13)0.0261 (11)0.0038 (9)0.0025 (8)0.0015 (9)
C40.0265 (10)0.0266 (11)0.0225 (10)0.0011 (8)0.0013 (8)0.0003 (9)
C50.0223 (9)0.0257 (11)0.0225 (10)0.0035 (8)0.0043 (7)0.0004 (9)
C60.0207 (9)0.0230 (11)0.0208 (9)0.0007 (8)0.0025 (7)0.0017 (8)
C70.0176 (9)0.0230 (10)0.0245 (10)0.0011 (8)0.0048 (7)0.0015 (8)
C80.0207 (9)0.0237 (11)0.0215 (9)0.0005 (8)0.0029 (7)0.0008 (8)
C90.0254 (10)0.0244 (11)0.0206 (9)0.0002 (8)0.0044 (7)0.0006 (8)
C100.0245 (9)0.0267 (11)0.0181 (9)0.0006 (8)0.0019 (7)0.0001 (8)
C110.0235 (10)0.0303 (11)0.0203 (10)0.0006 (8)0.0020 (8)0.0003 (9)
C120.0245 (10)0.0268 (11)0.0196 (10)0.0004 (8)0.0021 (7)0.0012 (8)
C130.0235 (10)0.0273 (11)0.0175 (9)0.0025 (8)0.0019 (7)0.0009 (8)
C140.0297 (11)0.0318 (12)0.0202 (10)0.0014 (9)0.0035 (8)0.0006 (9)
C150.0256 (10)0.0360 (13)0.0277 (11)0.0029 (9)0.0074 (8)0.0001 (10)
C160.0230 (10)0.0253 (11)0.0286 (11)0.0024 (8)0.0041 (8)0.0001 (9)
C170.0258 (10)0.0379 (13)0.0299 (11)0.0053 (9)0.0012 (8)0.0001 (10)
C180.0333 (11)0.0407 (14)0.0229 (11)0.0058 (10)0.0013 (8)0.0028 (10)
Geometric parameters (Å, º) top
Cl1—C91.751 (2)C10—C111.332 (3)
O1—C121.231 (2)C10—H100.9500
O2—C161.364 (2)C11—C121.483 (3)
O2—C131.383 (2)C11—H110.9500
N1—C91.299 (2)C12—C131.454 (3)
N1—C11.369 (2)C13—C141.362 (3)
C1—C61.418 (3)C14—C151.417 (3)
C1—C21.418 (3)C14—H140.9500
C2—C31.360 (3)C15—C161.354 (3)
C2—H20.9500C15—H150.9500
C3—C41.417 (3)C16—C171.485 (3)
C3—H30.9500C17—H17A0.9800
C4—C51.376 (3)C17—H17B0.9800
C4—C181.505 (3)C17—H17C0.9800
C5—C61.412 (3)C17—H17D0.9800
C5—H50.9500C17—H17E0.9800
C6—C71.415 (3)C17—H17F0.9800
C7—C81.379 (3)C18—H18A0.9800
C7—H70.9500C18—H18B0.9800
C8—C91.429 (3)C18—H18C0.9800
C8—C101.466 (3)
C16—O2—C13106.48 (15)C14—C13—C12134.34 (18)
C9—N1—C1117.70 (16)O2—C13—C12115.94 (16)
N1—C1—C6122.05 (16)C13—C14—C15106.48 (18)
N1—C1—C2118.47 (17)C13—C14—H14126.8
C6—C1—C2119.47 (18)C15—C14—H14126.8
C3—C2—C1119.50 (18)C16—C15—C14107.06 (18)
C3—C2—H2120.2C16—C15—H15126.5
C1—C2—H2120.2C14—C15—H15126.5
C2—C3—C4122.35 (18)C15—C16—O2110.29 (17)
C2—C3—H3118.8C15—C16—C17134.33 (19)
C4—C3—H3118.8O2—C16—C17115.38 (17)
C5—C4—C3118.26 (18)C16—C17—H17A109.5
C5—C4—C18122.55 (18)C16—C17—H17B109.5
C3—C4—C18119.19 (17)H17A—C17—H17B109.5
C4—C5—C6121.53 (17)C16—C17—H17C109.5
C4—C5—H5119.2H17A—C17—H17C109.5
C6—C5—H5119.2H17B—C17—H17C109.5
C5—C6—C7123.79 (17)C16—C17—H17D109.5
C5—C6—C1118.85 (16)H17A—C17—H17D141.1
C7—C6—C1117.35 (17)H17B—C17—H17D56.3
C8—C7—C6121.17 (17)H17C—C17—H17D56.3
C8—C7—H7119.4C16—C17—H17E109.5
C6—C7—H7119.4H17A—C17—H17E56.3
C7—C8—C9115.39 (17)H17B—C17—H17E141.1
C7—C8—C10123.72 (17)H17C—C17—H17E56.3
C9—C8—C10120.85 (17)H17D—C17—H17E109.5
N1—C9—C8126.28 (18)C16—C17—H17F109.5
N1—C9—Cl1114.52 (14)H17A—C17—H17F56.3
C8—C9—Cl1119.20 (15)H17B—C17—H17F56.3
C11—C10—C8128.25 (18)H17C—C17—H17F141.1
C11—C10—H10115.9H17D—C17—H17F109.5
C8—C10—H10115.9H17E—C17—H17F109.5
C10—C11—C12118.51 (18)C4—C18—H18A109.5
C10—C11—H11120.7C4—C18—H18B109.5
C12—C11—H11120.7H18A—C18—H18B109.5
O1—C12—C13121.76 (17)C4—C18—H18C109.5
O1—C12—C11122.13 (17)H18A—C18—H18C109.5
C13—C12—C11116.11 (17)H18B—C18—H18C109.5
C14—C13—O2109.68 (17)
C9—N1—C1—C62.3 (3)C10—C8—C9—N1176.3 (2)
C9—N1—C1—C2176.46 (19)C7—C8—C9—Cl1179.13 (15)
N1—C1—C2—C3179.8 (2)C10—C8—C9—Cl13.0 (3)
C6—C1—C2—C31.5 (3)C7—C8—C10—C113.2 (3)
C1—C2—C3—C40.5 (3)C9—C8—C10—C11179.1 (2)
C2—C3—C4—C51.7 (3)C8—C10—C11—C12176.17 (19)
C2—C3—C4—C18177.9 (2)C10—C11—C12—O17.2 (3)
C3—C4—C5—C60.8 (3)C10—C11—C12—C13173.57 (19)
C18—C4—C5—C6178.8 (2)C16—O2—C13—C140.3 (2)
C4—C5—C6—C7177.53 (19)C16—O2—C13—C12178.12 (17)
C4—C5—C6—C11.2 (3)O1—C12—C13—C14176.0 (2)
N1—C1—C6—C5178.98 (19)C11—C12—C13—C143.2 (4)
C2—C1—C6—C52.3 (3)O1—C12—C13—O21.8 (3)
N1—C1—C6—C72.2 (3)C11—C12—C13—O2178.97 (17)
C2—C1—C6—C7176.48 (19)O2—C13—C14—C150.3 (2)
C5—C6—C7—C8178.93 (19)C12—C13—C14—C15177.7 (2)
C1—C6—C7—C80.2 (3)C13—C14—C15—C160.2 (2)
C6—C7—C8—C91.6 (3)C14—C15—C16—O20.1 (2)
C6—C7—C8—C10176.28 (18)C14—C15—C16—C17179.5 (2)
C1—N1—C9—C80.3 (3)C13—O2—C16—C150.1 (2)
C1—N1—C9—Cl1179.01 (15)C13—O2—C16—C17179.47 (17)
C7—C8—C9—N11.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···Cl10.952.573.048 (2)111
C10—H10···O10.952.412.780 (2)103
C2—H2···N1i0.952.613.487 (3)154
Symmetry code: (i) x, y, z1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC17H11ClINOSC18H14ClNO2
Mr439.68311.75
Crystal system, space groupMonoclinic, P21/cMonoclinic, C2/c
Temperature (K)173173
a, b, c (Å)17.112 (6), 7.636 (3), 13.174 (5)36.228 (10), 7.372 (3), 11.214 (5)
α, β, γ (°)90, 111.29 (2), 9090, 99.70 (2), 90
V3)1603.9 (10)2952 (2)
Z48
Radiation typeMo KαMo Kα
µ (mm1)2.290.27
Crystal size (mm)0.26 × 0.07 × 0.060.22 × 0.20 × 0.07
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Multi-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.587, 0.8750.944, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
6042, 3652, 2663 6103, 3355, 2405
Rint0.0360.038
(sin θ/λ)max1)0.6500.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.097, 1.03 0.044, 0.110, 1.01
No. of reflections36523355
No. of parameters200200
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.630.25, 0.24

Computer programs: COLLECT (Nonius, 1998), HKL DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SAPI91 (Fan, 1991), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C10—H10···Cl10.952.673.087 (4)107
C10—H10···O10.952.512.826 (5)100
C15—H15···O1i0.952.223.146 (5)163
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C10—H10···Cl10.952.573.048 (2)111
C10—H10···O10.952.412.780 (2)103
C2—H2···N1i0.952.613.487 (3)154
Symmetry code: (i) x, y, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds